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Abstract 
 
Currently, the Specification for Aluminum Structures (Aluminum Association 2010) indicates 
thin-walled open circular-arc plate sections with radii greater than eight inches have a lower 
elastic compressive strength than a flat plate with the same width and thickness. This seems 
inconsistent with intuition, which would suggest any degree of plate folding should increase the 
elastic buckling strength. This paper will provide an overview of a study recently completed by 
the authors on a wide range of curvatures—from a nearly flat plate to semicircular. To quantify 
the curvature, a single non-dimensional parameter is used to represent all combinations of 
circumferential width, thickness, and radius. Employing the finite strip method (CU-FSM), 
elastic local buckling stresses are investigated. Based on the ratio of critical stress values of 
curved plates compared to flat plates of the same size, equivalent plate-buckling coefficients are 
computed.  Using this data, nonlinear regression analyses are then performed to develop closed 
form capacity equations for five different edge support conditions. These expressions appear 
reasonable for calculating the elastic critical buckling stress for any open circular-arc section 
when the geometric properties (circumferential width, thickness, and radius) and the material 
properties (elastic modulus and Poisson’s ratio) are known. Examples that show the applicability 
of these equations to circular-arc geometries other than those used as a basis for their 
development are also provided.  
 
1. Introduction 
 
1.1 Objective 
Local buckling is an important failure mode to be considered particularly in the design of a 
structural compression member. Local buckling is identified by a portion of a structural shape 
(typically a web or flange) deflecting over a short region. The effects of local buckling are more 
severe with larger width-to-thickness ratios b/t.  

 
Curved elements in extruded aluminum shapes are significantly more common than curved 
elements in steel due to the relative ease of fabrication. The current aluminum specification 
(Aluminum Association 2010) predicts that sections with radii greater than eight inches will have 
a lower strength capacity than an equivalent flat plate, which is inconsistent with intuition. In 
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addition to investigating this inconsistency, this study serves to determine simple equations for 
computing the elastic critical buckling stress of an aluminum thin plate with a defined 
circumferential width, thickness, and radius when subject to uniform compression over a typical 
range of edge support conditions.  
 
1.2 Scope 
This study develops an expression for an equivalent plate buckling coefficient 𝑘!! that can be 
used in the calculation of the elastic plate buckling stress 𝜎!"!  for plates of open curved cross-
section. This expression is a function of a non-dimensional variable Z that accounts for all 
pertinent geometric parameters of the plate, including circumferential width b, thickness t, and 
radius of curvature R (Fig. 1). 

𝑍 = !!

!"
 (1) 

 
Note that a flat plate can be represented by a curvature parameter Z equaling zero.  Constants 
appearing in the derived 𝑘!! expression are defined according to the five edge support conditions 
shown in Fig. 2.  
 

 
Figure 1: Geometric properties of curved plate sections used to calculate the curvature parameter Z. 
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Figure 2: Edge support conditions considered in this study.  Note that flat plate buckling coefficients 𝑘 = 𝑘𝒄

𝒑𝒍𝒂𝒕𝒆are 
also provided (Ziemian 2010). 

 
2. Background 
 
2.1 Theory 
Local buckling can occur at stresses much lower than those at which member flexural and/or 
torsional buckling occurs. Due to the low moment of inertia and low initial resistance to out-of-
plane deformations, thin-walled plate sections, like those often found in extruded aluminum 
shapes, are particularly susceptible to local buckling (White et al. 1974). Figure 3 shows 
examples of curved elements within popular aluminum structural shapes.  Open sections, such as 
the one shown in the right of Fig. 3, are the primary focus of this paper. 
 

 
Figure 3: Sample of aluminum curved shapes as they appear within structural shapes (Kissell 1995). 

 
The elastic critical stress 𝜎!" of a transversely loaded flat plate is dependent on the width-to-
thickness ratio b/t and longitudinal edge support conditions according to 
 
 𝜎!" = 𝑘 !!!

!" !!!! !
!

!   (2) 

 
in which k is the plate buckling coefficient (Fig. 1), E is the elastic modulus of the material, and ν 
is Poisson’s ratio (Ziemian 2010).   
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2.2 History 
LeTran and Davaine (2011) investigated curved steel plates using extensive three-dimensional 
finite element studies based on shell elements. Their studies indicate that local buckling behavior 
depends on the radius of curvature, width-to-thickness ratio, and initial imperfections. 
 
The four primary equations (Table 1) reviewed by LeTran and Davaine (2011) document the 
evolution of modeling curved plate behavior. These equations provide for calculating a buckling 
coefficient 𝑘!! that includes curvature effects from which the elastic critical buckling stress 𝜎!"!  
can then be computed from 
 
 𝜎!"! = 𝑘!!𝜎! (3) 
 
where σE	    is the elastic critical stress as defined in Eq. 2 with k = 1. LeTran and Davaine 
investigated buckling coefficients for the simply-supported edge-condition as proposed by 
Redshaw, Timoshenko, Stowell, and Domb and Leigh. The authors note (1) Redshaw and 
Stowell use similar forms to their equations, whereas Timoshenko makes an assumption on the 
form of the displacements, (2) Domb & Leigh’s equation is calibrated using a curve fitting 
method, and (3) Stowell’s is the only equation to account for different edge support conditions.   
 

Table 1: Buckling coefficient formulas for curved panels (LeTran & Davaine 2011) 
Author (Year) Expression for buckling coefficient, 𝑘!!  

Redshaw (1933) 2 1 + 1 +
12 1 − 𝜈!

𝜋!
𝑍!  

 

Timoshenko (1961) 

4 +
3(1 + 𝜈!)

𝜋!
𝑍!  𝑖𝑓  𝑍 ≤

2𝜋!

3(1 − 𝜈!)
4 3
𝜋!

𝑍!  𝑖𝑓  𝑍 ≥
2𝜋!

3(1 − 𝜈!)

 

	  

Stowell (1943) 
𝑘!
!"#$%

2
1 + 1 +

48 1 − 𝜈!

𝜋!(𝑘!
!"#$%)!

𝑍! 	  

 

Domb and Leigh (2001)1 10 𝑐!(log𝑍!)!
!

!!!

  𝑖𝑓  1 ≤ 𝑍 < 23.15

𝑐(𝑍)!   𝑖𝑓  23.15 ≤ 𝑍 ≤ 200

	  

1Where Zb=Z(1-v2), c0=0.6021, c1=0.005377, c2=0.192495, c3=0.00267, c=0.4323, and d=0.9748 
  

A recent literature survey found that little to no research into the behavior of aluminum open-
curved plates could be located. In this regard, the Specification for Aluminum Structures 
(Aluminum Association 2010) has had to settle on employing the nominal capacity equations for 
closed circular and oval shapes when designing open curved shapes. Unfortunately, this results 
in the prediction that some open thin-walled circular-arc plate sections will have a lower elastic 
compressive strength than a flat plate of equivalent width and thickness. The study contained 
herein applies the knowledge from LeTran and Davaine’s research on steel curved plate behavior 
with simple edge supports to an aluminum curved section with various combinations of edge 
support. 
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3. Discussion 
 
3.1 Software 
The elastic buckling behavior of thin-walled members can be modeled and analyzed through the 
use of CU-FSM (Schafer and Ádány 2006). This software employs the finite strip method—a 
specialized form of the finite element method—to find the buckling curve (buckling stress versus 
wave-length) of a particular cross section. Edge support conditions may be modeled by changing 
the restraint condition (fixed or free) at the nodal degrees of freedom. The minima of the 
buckling curves provide the half-wavelength and load factor for a given buckling mode. Because 
local buckling is the focus of this study, the buckling mode at the shortest half-wavelength is 
identified and used in subsequent analyses.  
 
3.2 Inputs and Assumptions 
To create the input geometries for CU-FSM, a constant width-to-thickness ratio b/t is maintained 
while the radius R is varied. In this study, the cross-section is comprised of 32 elements and 
subject to a uniform compressive stress of 1 ksi, thereby permitting the resulting buckling load 
ratio to be equivalent to the elastic critical buckling stress (ksi). In all analyses, initial 
imperfections are not considered.  Input variables include the elastic modulus (E=10,100 ksi), 
Poisson’s ratio (v=0.33), shear modulus (G=3,797 ksi), the coordinates and support conditions of 
each node, and the properties of the elements, including thickness and node connectivity 
 
3.3 Methodology 
In this research, CU-FSM is used to analyze open-curved plate sections for a series of twenty 
curvature Z values for each of five pairs of edge support conditions (pin-pin, fixed-free, fixed-
fixed, pin-fixed and pin-free). To find the critical elastic buckling stress of interest, the entire 
buckling stress curve is reviewed in order to target the correct minimum, as more than one may 
exist (Fig. 4). The input wavelength range can be tailored to include the minimum of interest 
with a narrower range and smaller increment to obtain more precise results. 
 
By combining the expression for the critical stress in a flat plate of arbitrary b/t and edge support 
condition (given by 𝜎!"

!"#$% = 𝑘!
!"#$%𝜎! ) with Eq. 3, the equivalent curved plate buckling 

coefficient 𝑘!! for the same b/t ratio and edge support condition may be defined in terms of the 
flat plate buckling coefficient 𝑘!

!"#$% and the critical stress ratio 𝜎!"! 𝜎!"
!"#$% as follows 

 
 𝑘!! = 𝑘!

!"#$% !!"!

!!"
!"#$% (4) 

 

By using CU-FSM to compute the elastic buckling stress 𝜎!"!  over a wide range of curvature Z 
values, Eq. 4 may be used to plot the relationship between Z and the plate buckling coefficient 
𝑘!! for the edge support conditions being investigated. 
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Figure 4: Screenshot of the CU-FSM results including buckled shape, half-wavelength and load factors 

 
Before preparing plots of Eq. 4 for different edge support conditions, the fixed-free support 
condition was used to ensure the critical stress ratio 𝜎!"! /𝜎!"

!"#$% is independent of b/t. Each of the 
b/t ratios provided in Table 2 were analyzed using CU-FSM over a wide range of curvature Z 
values and the resulting plots of Eq. 4 (Fig. 5) illustrate this invariance. With this in mind, only 
one b/t ratio and a wide range of radii need be analyzed for each of the edge support conditions. 

 
Table 2: Geometries used to test different b/t ratios in CU-FSM 

Width-to-thickness 
ratio, b/t 

Width, b 
(inches) 

Thickness, t 
(inches) 

100 10 0.1 
60 6 0.1 
20 10 0.5 

 
Figure 5: Critical stress ratios for fixed-free edge support condition analyzed with three b/t ratios 
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The range of curvature parameters investigated was from a nearly flat plate condition of Z=0.01 
to a semi-circular section of Z=314 (Fig. 6). 
  

 
 

Figure 6: Range of curvature Z values investigated 
 
3.4 Equation for Computing 𝑘!! 
CU-FSM data points for each edge support condition were plotted against the four equations 
listed in Table 1. The numerical results aligned best with Redshaw’s equation for the buckling 
coefficient in the pin-pin edge support condition case (Fig. 7). Unfortunately, this equation does 
not account for other edge support conditions. As shown in Fig. 8 for the fixed-fixed edge 
support condition, the analysis results from CU-FSM align best with Stowell’s curve for low Z-
values, but trend towards Redshaw’s curve at higher Z-values. 
 

 
 

Figure 7: Previously considered equations (Table 1) for buckling coefficients verses CU-FSM results for the pin-pin 
edge support condition. 
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Figure 8: Previously considered equations (Table 1) for buckling coefficients verses CU-FSM results for the fixed-
fixed edge support condition 

 
Given that Redshaw’s and Stowell’s equations are of the same general form and the CU-FSM 
results agree with either depending on magnitude of Z, the basic form of Eq. 5 was selected for 
further study. 
 
 𝑘!! = 𝐴 1+ 1+ 𝐵𝑍!  (5) 
 
Noting that at low curvature parameters (Z approximately equal to 0.0), flat plate behavior 
should be observed, the coefficient A was set equal to 0.5𝑘!

!"#$%, where 𝑘!
!"#$% is the flat plate 

buckling coefficient for the given edge support condition (Fig. 1). Using nonlinear regression 
analyses, the unknown B coefficients, which are function of the edge support condition, can then 
be obtained by fitting the numerical data to this equation.  
 
To assess the regression analysis results, a coefficient of determination R2 is calculated according 
to 
 

 𝑅! = 1− (!!!!)!

!!!!! !
= 1−

(!!,!
!,!"!!"#!!!

!,!"!!"#)!

(!!,!
!,!"!!"#!!!

!,!".    !)!
 (6) 

 
where yi is the calculated 𝑘!! from the CU-FSM data at a specific value of Z, 𝑦 is the average of 
CU-FSM buckling coefficients for all Z-values, and fi is the buckling coefficient as calculated 
from Eq. 5 for each of the corresponding Z-values. 
 
4. Results 
 
Detailed results for the five edge support conditions are provided in Appendix 1. In all cases, it 
can be observed that the critical buckling stress increases with increases in the curvature Z-
parameter. That is, the critical buckling stress for a given b/t ratio will increase as the radius R of 

113



 

the curved section decreases. Using the general form of Eq. 7, Table 2 provides values for 
obtained for B and their corresponding coefficients of determination R2. 
 

 𝑘!! =
!!
!"#$%

!
1+ 1+ 𝐵𝑍!  (7) 

 
In all cases, R2 values are very close to unity, thereby indicating good accuracy of Eq. 7 when 
combined with the B values obtained from the nonlinear regression analyses. 
 

Table 2: Summary of results of nonlinear regression analysis 
Edge support 

Condition 
Plate Buckling 

Coefficient, 𝑘!
!"#$%  

Calculated 
Parameter, B 

Coefficient of 
Determination, R2 

Pin-Pin 4.0 0.1090 0.99983 
Pin-Fixed 5.42 0.0587 0.99975 

Fixed-Fixed 6.97 0.0349 0.99956 
Fixed-Free 1.277 0.0201 0.99528 
Pin-Free 0.425 0.1737 0.99118 

 
As expected, the coefficient B = 0.1090 for the pin-pin edge support condition is nearly equal to 
the equivalent parameter contained within the Redshaw and Stowell equations (Table 1) 
 
 𝐵!"#$!!" =

!" !!!!

!!
= 0.1098 

 𝐵!"#$%&& =
!" !!!!

!! !!
!"#$% ! = 0.1097 

 
The merit of this research, however, becomes more apparent when similar comparisons are made 
for other support conditions. For example, Table 2 provides a coefficient B = 0.0349 for the 
fixed-fixed case, whereas Redshaw and Stowell provide significantly different values of 
BRedshaw= 0.1098 and BStowell = 0.00904.  The largest difference is observed for the fixed-free case 
with B = 0.0201, and BRedshaw = 0.1098 and BStowell = 0.2693.  It is noted that in all cases, the 
Redshaw equation does not account for variation in edge support conditions. 
 
Fig. 9 shows plots of the buckling coefficient curves obtained from regression analyses for all 
five edge support conditions over a wide range of Z-values. As expected, each curve intercepts 
the vertical axis at the flat plate-buckling coefficient 𝑘!

!"#$% associated with its edge support 
condition. 
 
From Eq. 4, the critical buckling stress ratio 𝜎!"! /𝜎!"

!"#$%   may be defined as the ratio of the plate 
buckling coefficients 
 

 !!"!

!!"
!"#$% =

!!"!

!!"
!"#$% (8) 

 
With this in mind, normalizing each of the curves shown in Fig. 9 by the corresponding flat 
plate-buckling coefficient 𝑘!

!"#$% results in the critical buckling stress ratio 𝜎!"! /𝜎!"
!"#$% curves 

provided Fig. 10.  Two important factors may be observed, including (1) any amount of 
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curvature in the plate results in an increase plate buckling resistance, and (2) for a given Z value, 
the largest increase in capacity resulting from moving from a flat plate to a curved plate of the 
same cross-sectional area will occur for the pin-free edge combination, the smallest increase will 
be for the fixed-free case, and with increases for the remaining edge support conditions shown in 
the figure.  
 
 

 
Figure 9: Buckling coefficients from nonlinear regression analysis versus curvature parameter, Z for each edge 

support condition considered in this study 
 

 
Figure 10: Critical buckling stress ratios versus curvature parameter for all five edge support conditions 
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5. Examples 
 
Two examples are presented to illustrate the use and show the accuracy of Eqs. 3 and 5.  For the 
geometry shown in Fig. 11, Eqs. 1 and 2 (with k = 1) result in a Z = 15 and 𝜎! = 10.36ksi.  With 
these values, curved plate buckling coefficients and stresses computed using Eqs. 3 and 5, 
respectively, are provided in Table 3 for typical edge support conditions.  Using the same 
approach to assess the geometry shown in Fig. 12 and with Z = 750 and 𝜎! = 0.1036ksi, the 
results provided in Table 4 are obtained.  In both tables, comparisons with the theoretical exact 
solutions obtained by CU-FSM are also provided and indicate that accurate results are obtained 
by Eq. 4. 
 
 

 
Figure 11: Aluminum circular curved section with t = 0.1 in., b = 12 in., R = 24 in., E = 10,100ksi, and v = 0.33. 

 
Table 3: Results obtained for the geometry shown in Fig. 13. 

Edge Support 
Condition kc

plate B kc
Z σc

Z (ksi) σc
Z, CUFSM 

(ksi) 
% 

Error 
Pin-Pin 4 0.109 41.669 26.975 26.1839 3.021 

Pin-Fixed 5.42 0.0587 42.198 27.318 26.2247 4.167 
Fixed-Fixed 6.97 0.0349 42.703 27.645 26.2723 5.224 
Fixed-Free 1.277 0.0201 6.107 3.954 4.519 12.510 
Pin-Free 0.425 0.1737 5.531 3.580 4.1639 14.015 

 
 

 
Figure 12: Aluminum circular curved section with t = 0.1 in., b = 30 in., R = 12 in., E = 10,100ksi, and v = 0.33. 

 
Table 4: Results obtained for the geometry shown in Fig. 13. 

Edge Support 
Condition kc

plate B kc
Z σc

Z (ksi) σc
Z, CUFSM 

(ksi) 
% 

Error 
Pin-Pin 4 0.109 497.231 51.503 53.4402 3.626 

Pin-Fixed 5.42 0.0587 495.153 51.287 53.4414 4.031 
Fixed-Fixed 6.97 0.0349 491.786 50.939 53.4426 4.685 
Fixed-Free 1.277 0.0201 68.534 7.099 6.3591 11.630 
Pin-Free 0.425 0.1737 66.636 6.902 6.2962 9.623 
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6. Summary 
 
By performing more than one hundred CU-FSM finite strip analyses, the theoretical elastic 
critical buckling stresses of curved aluminum plates over a variety of curvatures and edge 
support conditions are provided.  Employing concepts presented by LeTran and Davaine (2011), 
who investigated steel curved plates with pin-pin edge supports, nonlinear regression analyses 
are used to develop accurate closed-form expressions for curved plate buckling coefficients 
𝑘!!  and elastic critical buckling stresses 𝜎!"! . These relatively simple equations are based on a 
geometrical parameter Z, which is a function of the plate’s curvature R, width b, and thickness t. 
 
This study only investigated the perfect edge support conditions shown in Fig. 1. In many cases, 
such as the open section shown in Fig. 3, the degree of edge support restraint is somewhere 
between ideal conditions. Until such research is completed, Fig. 10 may be used to define the 
upper and lower bounds of the elastic critical buckling stress and approximations may be made 
via an interpolation based on an estimate of the degree of rotational restraint provided at the 
edges. 
 
It is also important to note that this study did not consider the effects of initial imperfections, 
which have been shown to impact the local buckling capacity of closed circular and oval shapes 
(Ziemian 2010). Of course, there may also exist the possibility of some increase in capacity 
resulting from post-buckling strength, especially for plates with small amounts of curvature 
(nearly flat). With this in mind, the next step in this research will be to assess the impact of such 
effects on the strength of open curved sections. Unfortunately, this will require moving away 
from the relatively easy to employ CU-FSM software (due to the corresponding limitations in the 
finite strip method) and into the use of more complex three-dimensional finite element analyses 
that most likely employ shell elements. 
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Appendix 
 
The following sections contain the numerical data obtained for the various edge support 
conditions investigated. 
 
A.1 Pin-Pin 

 
Figure A1: Plot of CU-FSM data and the nonlinear regression curve for the pin-pin edge support condition.  

 
Table A1: CU-FSM results with output from the nonlinear regression for the pin-pin edge support condition. 

 
 Bpin-pin= 0.1090 R2= 0.9998 
Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr,	  CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM,   
𝑘!,!"!!"#!  

Buckling Coefficient 
from Eq. 7,   

𝑘!!  
0.01 3.7288 10 4.000 4.000 
0.5 3.8106 9.8 4.088 4.027 
1 3.7927 9.9 4.069 4.106 
2 4.2167 8.9 4.523 4.397 
5 5.1463 7.6 5.521 5.860 

10 8.0892 5.5 8.677 8.899 
20 13.562 4.1 14.55 15.36 
30 19.473 3.3 20.89 21.91 
35 22.5 3.1 24.14 25.20 
50 31.5973 2.6 33.90 35.08 

100 62.215 1.8 66.74 68.06 
120 74.9218 1.6 80.37 81.26 
135 83.9449 1.5 90.05 91.16 
150 93.2204 1.5 100.0 101.1 
157 97.6299 1.4 104.7 105.7 
200 124.7926 1.3 133.9 134.1 
250 156.3662 1.1 167.7 167.1 
300 188.0642 1 201.7 200.1 
314 196.4419 1 210.2 209.3 
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A.2 Pin-Fixed 
 

 
 

Figure A2: Plot of CU-FSM data and the nonlinear regression curve for the pin-fixed edge support condition.  
 
 

Table A2: CU-FSM results with output from the nonlinear regression for the pin-fixed edge support condition. 
 

 Bpin-fixed= 0.0587 R2= 0.9997 
Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr,	  CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM,   
𝑘!,!"!!"#!  

Buckling Coefficient 
from Eq. 7,  

𝑘!!  
0.01 5.0432 8 5.410 5.420 
0.5 5.0727 7.9 5.442 5.440 
1 5.11 7.9 5.482 5.498 
2 5.2406 7.7 5.622 5.721 
5 6.1209 6.9 6.566 6.967 

10 8.3569 5.9 8.965 9.813 
20 13.8694 4.1 14.878 16.118 
30 19.5937 3.4 21.019 22.593 
35 22.6863 3.1 24.336 25.850 
50 31.6976 2.6 33.952 35.651 

100 62.3161 1.8 66.848 68.424 
120 74.7024 1.6 80.135 81.546 
135 84.4738 1.5 90.617 91.390 
150 93.2204 1.5 99.972 101.234 
157 97.7094 1.4 104.815 105.829 
200 124.6699 1.3 133.736 134.054 
250 156.2851 1.1 167.650 166.878 
300 187.2006 1.3 200.814 199.703 
314 196.4421 1 209.197 208.894 
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A.3 Fixed-Fixed 
 

 
 

Figure A3: Plot of CU-FSM data and the nonlinear regression curve for the fixed-fixed edge support condition.  
 
 

Table A3: CU-FSM results with output from the nonlinear regression for the fixed-fixed edge support condition. 
 

 Bfixed-fixed= 0.0349 R2= 0.9995 
Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr,	  CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM,   
𝑘!,!"!!"#!  

Buckling Coefficient 
from Eq. 7,  

𝑘!!  
0.01 6.4984 6.6 6.970 6.970 
0.5 6.5256 6.6 6.999 6.985 
1 6.5445 6.6 7.019 7.030 
2 6.6192 6.5 7.100 7.205 
5 7.2624 6.1 7.789 8.254 

10 9.0214 5.3 9.676 10.870 
20 14.2523 4.1 15.287 16.964 
30 19.8264 3.4 21.265 23.325 
35 22.883 3.1 24.544 26.537 
50 31.8309 2.6 34.040 36.224 

100 62.3228 1.8 66.846 68.683 
120 74.7301 1.6 80.153 81.689 
135 84.512 1.5 90.645 91.446 
150 93.2205 1.5 99.963 101.205 
157 97.7152 1.4 104.807 105.760 
200 124.6852 1.3 133.734 133.742 
250 156.3013 1.1 167.644 166.285 
300 187.2535 1.3 200.843 198.832 
314 196.4423 1 209.198 207.945 
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A.4 Fixed-Free 
 

 
 

Figure A4: Plot of CU-FSM data and the nonlinear regression curve for the fixed-free edge support condition.  
 
 

Table A4: CU-FSM results with output from the nonlinear regression for the fixed-free edge support condition. 
 

 Bfixed-free= 0.0201 R2= 0.9952 
Curvature 
Parameter, 

Z 

Critical 
Buckling Stress 
(ksi), σcr,	  CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM,   
𝑘!,!"!!"#!  

Buckling Coefficient 
from Eq. 7,  

𝑘!!  
0.01 1.165 16.4 1.277 1.277 
0.5 1.1688 16.4 1.281 1.279 
1 1.1738 16.5 1.287 1.283 
2 1.1901 16.6 1.305 1.302 
5 1.337 17.6 1.466 1.421 

10 1.7616 20.7 1.931 1.746 
20 2.9144 28.7 3.195 2.558 
30 4.0771 35.1 4.469 3.428 
35 4.6601 14 5.108 3.871 
50 5.8174 14.8 6.361 5.209 

100 9.5329 18.9 10.449 9.713 
120 10.8655 20 11.910 11.520 
135 11.9208 21 13.067 12.876 
150 13.1899 22.2 14.458 14.232 
157 13.6911 22.6 15.007 14.865 
200 16.8934 25.1 18.517 18.754 
250 20.8061 27.5 22.806 23.278 
300 24.9831 30.1 27.385 27.803 
314 26.2607 30.8 28.785 29.070 
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A.5 Pin-Free 
 

 
 

Figure A5: Plot of CU-FSM data and the nonlinear regression curve for the pin-free edge support condition.  
 
 

Table A5: CU-FSM results with output from the nonlinear regression for the pin-free edge support condition. 
 

 Bpin-free= 0.1737 R2= 0.9911 
Curvature 
Parameter, 

Z 

Critical Buckling 
Stress (ksi),      
σcr,	  CU-FSM 

Half 
Wavelength 

(in) 

Buckling Coefficient 
from CU-FSM,   
𝑘!,!"!!"#!  

Buckling Coefficient 
from Eq. 7,  

𝑘!!  
0.01 0.38045 345 0.425 0.425 
0.5 0.38001 535 0.425 0.430 
1 0.37986 731 0.424 0.443 
2 0.37989 690 0.424 0.489 
5 0.3798 834 0.424 0.704 

10 0.38076 1097 0.425 1.123 
20 0.38234 1295 0.427 1.996 
30 3.9918 15.2 4.459 2.878 
35 4.2933 15.2 4.796 3.320 
50 5.3421 16.9 5.946 4.646 

100 8.8551 22.5 9.892 9.071 
120 10.1664 24.2 11.357 10.842 
135 11.1874 25.5 12.497 12.171 
150 12.3737 27.1 13.823 13.499 
157 12.8493 27.6 14.354 14.119 
200 15.9141 31 17.778 17.927 
250 19.6685 34.8 21.972 22.355 
300 23.5619 38.6 26.321 26.783 
314 24.7396 39.6 27.444 28.023 
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