
 

Proceedings of the 
Annual Stability Conference 

Structural Stability Research Council 
St. Louis, Missouri, April 16-20, 2013 

 
 
 
 

Finite prism elastic buckling analysis and application in steel foam sandwich 
members  

 
Z. Li1, S. Szyniszewski 2 

 
 
Abstract 
The objective of this research is to develop a layer-wise finite prism method for studying the 
elastic buckling of steel foam sandwich members. Foamed steel, literally steel with internal 
voids, enables lightweight and stiff components. Steel foam sandwich panels (steel face sheets 
and low-density, highly porous foam core) exhibit higher bending rigidity and plate buckling 
strength in comparison to slender, steel plates with the same weight. Analytical sandwich plate 
buckling solutions are not applicable to buckling analysis of cold-formed sandwich members 
with interaction between local and global buckling modes. Finite element analysis (either solid 
3D or shell representation) provides the most reliable solution; however, its use is complicated, 
computationally expensive, and not practical for engineers. The proposed layer-wise finite prism 
solution is an alternative, easy-to-use tool, which builds upon the shape functions available in the 
literature, and is verified against eigenbuckling finite element solutions implemented in LS-
DYNA software. Future research is needed to incorporate the elastic buckling solutions in the 
direct strength design of sandwich panel members. 
 

1. Introduction 
Foamed steel intentionally introduces internal voids in steel, e.g. Figure 1. A number of 
manufacturing methods are used to introduce the voids from powder metallurgy and sintering of 
hollow spheres to gasification (Ashby 2000). Steel foams are largely still under development, 
e.g. (Kremer, Liszkiewicz, and Adkins 2004); however steel foam sandwich panels have been 
utilized in a demonstration project as a parking garage slab (Hipke 2011) while mass production 
of aluminum foam sandwich panels already exists (Banhart and Seeliger, 2008). In general, 
metal foams have high effective bending stiffness and energy absorption. In addition, metal 
foams have improved thermal conductivity (Neugebauer et al. 2005), enhanced fire resistance 
(Coquard, Rochais, and Baillis 2010), better noise attenuation (Ashby 2000; Bao and Han 2009), 
and provide improved electromagnetic and radiation shielding (Losito, Barletta, and Dimiccoli 
2010; Xu, Bourham, and Rabiei 2010) when compared with solid metals. A review of 
applications of metal foams can be found in Smith et al. (2012). 
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Figure 1: Steel hollow sphere foam 18% relative density: a) interior foam morphology, b) contact 
between spheres, c) sphere walls are not fully dense. 

 
Steel foam sandwich panels (steel face sheets on top and bottom with a low-density, highly 
porous foam core in-between the faces) exhibit higher bending rigidity and plate buckling 
strength when compared to slender, steel plates with the same weight. However, when studying 
the buckling behavior of steel foam sandwich panels, the shear deformations of low-density core 
need to be properly accounted and the composite action between core and face sheets needs to be 
considered (Kardomateas 2010; Allen 1993; Plantema 1966; Szyniszewski, Smith, Hajjar, et al. 
2012). Moreover, the steel foam sandwich panels can cold-formed into members, such as a box, 
an angle or a channel, that have an enormous potential for civil structural applications.  The 
member stability requires the consideration of the interaction between local and global buckling 
modes (or even distortional buckling modes for lipped channels). The high-fidelity finite element 
method employing brick or shell elements is frequently required for elastic buckling analysis of 
sandwich members even though analytical solutions exist for limited cases, such as a simply 
supported plate. 
 
The objective of this study is to develop a layer-wise finite prism method (in essence a sandwich 
analogy to finite strip method in (Cheung and Tham 1997; Schafer and Ádány 2006; Li and 
Schafer 2010), which can perform the buckling analysis of steel foam sandwich members. The 
derivation of the finite prism method follows directly from (Cheung and Tham 1997) but with 
the extension of the end boundary conditions following the author’s work in (Li and Schafer 
2009; Li and Schafer 2010). The validations against the continuum finite element solutions in 
LS-DYNA (Hallquist 2006) are provided. Also, applications of the developed finite prism 
method to the analysis of the steel foam sandwich panels and members are given. 
 
Although effective width approach can be used with simply supported sandwich plates 
(Szyniszewski, Smith, Hajjar, et al. 2012; Szyniszewski, Smith, Zeinoddini, et al. 2012) and box 
tubes, analytical solutions for elastic buckling of sandwich panels with other non simply-simply 
supported boundary conditions. Thus, direct strength approach, employing finite prism method 
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for the calculation of elastic buckling modes, can facilitate efficient and general design 
procedures for sandwich members of any cross-sectional shape, and undergoing complex, 
interactive buckling modes. 
 
2. Finite strip method and application to steel foam members 
Finite strip method is a variant of finite element method. In finite strip method, the element shape 
functions use classic, polynomial shape functions in transverse directions, but trigonometric 
functions in the longitudinal direction. The method uses general shape function for the cross 
section deformations, and longitudinal fields are represented through the trigonometric shape 
functions. Figure 2 highlights the element (i.e., strip) concept in finite strip method and the 
degree of freedoms in implementation of CUFSM (Li and Schafer 2010). 
 

 
Figure 2 Coordinates, degree of freedom and loading of a typical strip in CUFSM (Li and 
Schafer 2010) (note, the location of the degree of freedom in illustration is for S-S m=1) 

Finite strip method follows the Kirchhoff thin plate theory and the general displacement fields of 
a strip can be expressed as  

 𝛿 = 𝑓 𝑥 𝑌! (𝑦)!
!!!   (1) 

where the displacement fields are summed for each longitudinal term m, up to q. The transverse 
shape function f(x) is a function of transverse shape functions and nodal displacement. The 
longitudinal shape functions Y[m] are specially selected to represent the specified boundary 
condition (Li and Schafer 2009; Bradford and Azhari 1995) as follows: 
simple-simple (S-S), 

€ 

Y[m] = sin mπy /a( )  (2) 
clamped-clamped (C-C), 

€ 

Y[m] = sin mπy /a( ) sin πy /a( )  (3) 
simple-clamped (S-C), 

€ 

Y[m] = sin (m +1)πy /a[ ] + m +1/m( ) sin mπy /a( )  (4) 
clamped-free (C-F), 

€ 

Y[m] = 1− cos (m −1/2)πy /a[ ]   (5) 
clamped-guided (C-G), 

€ 

Y[m] = sin (m −1/2)πy /a[ ] sin πy / 2 /a( ) (6) 
 
The finite strip method is extremely powerful for the elastic buckling analysis of thin-walled 
members. When combined with the extensions of constrained finite strip method, the method is 
able to separate the complex buckling modes that are commonly categorized for thin-walled 
members as local, distortional, and global modes.  
 
The finite strip method implemented in CUFSM (Li and Schafer 2010) has been used to 
investigate potential strength and serviceability implications of steel foam utilized in a thin-
walled channel structural member in Moradi, Arwade, and Schafer (2013). The local, 
distortional, and global buckling of a prototypical cold-formed steel channel using steel foam is 
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examined by finite strip method. For steel foam member studied in Moradi, Arwade, and Schafer 
(2013), the width to thickness ratio of the web is greater than 10 for which shear deformations 
are assumed to be negligible.  
 
Although finite strip method is powerful for the member stability analysis, it lacks the ability to 
handle the sandwich sections. The analysis of the sandwich panel sections can be accomplished 
with either a layer-wise finite strip method, accounting for shear through the thickness (important 
in soft material such steel foam) or with a finite prism method using continuum mechanics. In 
this paper, the finite prism method is developed and validated in order to facilitate fast and 
efficient buckling analysis of steel foam sandwich panels and members. 
 
3. Finite prism method 
Similarly to the finite strip method, the essential idea of finite prism method is to reduce a three-
dimensional problem to a two-dimensional one with the displacement functions as  

 𝛿 = 𝑓 𝑥, 𝑧 𝑌! (𝑦)!
!!!   (7) 

where the displacement fields are summed for each longitudinal term m, up to q; f(x,z) is a 
function of nodal displacements and shape functions in x-z plane that can be easily formed 
through an isoparametric element. Note, in essence, the finite strip method follows the same 
strategy but further reduces to a shell formulation by following the Kirchhoff thin plate theory 
(see Schafer and Ádány 2006; Li and Schafer 2010). The finite prism method is best suitable for 
the sections with varying thickness or holes as well as the sandwich panels that consist of 
different materials, for which the shear deformations and composite actions can be correctly 
modeled with continuum mechanics.  
 
In the finite prism, each cross section, such as the lipped channel in Figure 2, is discretized 
through the section using quadrilateral mesh. This results in a typical element in a finite prism 
that is depicted in Figure 3, along with the degrees of freedom (u, v, and w displacements). More 
specifically, for each node line, the nodal displacements for longitudinal term m are [u[m] v[m] 
w[m]]T as shown in (Figure 3, for nodal line i). Note, in Figure 3，the illustration depicts a four-
node linear interpolation of an isoparametric element while the interpolation can be quadratic (8 
or 9 nodes) or cubic (12 nodes). Also, the local and global coordinates are the same. Along the 
longitudinal Y direction, the shape functions Y[m] are specially selected to represent the specified 
boundary conditions as given in Eq’s. (2)-(6). 
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Figure 3 A typical finite prism element: (a) coordinates and degree of freedom at nodal line i; (b) 

isoparametric mapping in X-Z plane 

Hence the general displacement u, v, and w can be explicitly expressed as functions of nodal 
displacements and shape functions: 

 𝑢 = 𝑁!𝑢![!]!
!!! 𝑌!

!
!!!   (8) 

 𝑣 = 𝑁!𝑣![!]𝑌[!]!!
!!!

!
!!!   (9) 

 𝑤 = 𝑁!𝑤![!]!
!!! 𝑌!

!
!!!   (10) 

where Ni is the isoparametric shape function for nodal line i and depends on the number of nodal 
lines in each prism. For instance, if the interpolation is linear as shown in Figure 3, the number 
of nodal line n is 4, and Ni can be expressed in terms of the natural coordinate ξ and η as: 

𝑁! = (1+ 𝜉𝜉!)(1+ 𝜂𝜂!)/4 

where, 𝜉! and 𝜂! are natural coordinates at nodal line i. 
 
Therefore, the coordinate can be also interpolated through the same shape functions in terms of 
the nodal coordinates: 

 𝑥 = 𝑁!!
!!! 𝑥!   𝑎𝑛𝑑  𝑧 = 𝑁!!

!!! 𝑧!  (11) 

where xi and zi are the coordinates of nodal line i in the prism. Thus, the derivative of the shape 
function Ni with respect to x and z can be readily obtained:  

 
!!!
!"
!!!
!"

= !
!

!"
!"

− !"
!"

− !"
!"

!"
!"

!!!
!"
!!!
!"

  (12) 

where, |J| is the Jocabian determinant 

𝐽 =
𝜕𝑥
𝜕𝜉
𝜕𝑧
𝜕𝜂 −

𝜕𝑧
𝜕𝜉
𝜕𝑥
𝜕𝜂 

Z 

Y 

X 

[Ui[m], Vi[m], Wi[m]] 

Z 

X 

η 

ξ 

η 

ξ -1 

-1 

+1 

+1 

(a) (b) 

658



 

For the three-dimensional solid, the strain-displacement relationship can be expressed by the 
Green-Lagrangian strain tensor as  

 𝜀!" =
!
!
(𝑢!,! + 𝑢!,!)+

!
!
𝑢!,!𝑢!,!  (13) 

For the elastic buckling analysis, the elastic stiffness matrix can be derived using the internal 
strain energy formed by the linear strains while second order strains form the basis of the 
geometric stiffness matrix. 
 
3.1 Elastic stiffness matrix 
By substituting the general displacements (u, v, and w) of the Eq’s. (8)-(10) into Eq. (13), the 
strain vector can be obtained as 

 {𝜀} = [𝜀! 𝜀!      𝜀! 𝛾!"      𝛾!" 𝛾!"]! = 𝐵![!]𝑢![!]!
!!!

!
!!!   (14) 

where Bi[m] is the strain matrix for nodal line i for longitudinal term m that can be explicitly 
expressed by the derivative of the shape functions as 

 𝐵![!] =

!!!
!"
𝑌[!] 0 0
0 𝑁!𝑌[!]!! 0

0 0 !!!
!"
𝑌[!]

𝑁!𝑌[!]! !!!
!"
𝑌[!]! 0

0 !!!
!"
𝑌[!]! 𝑁!𝑌[!]!

!!!
!"
𝑌[!] 0 !!!

!"
𝑌[!]

  (15) 

where !!!
!"

 and !!!
!"
   are the derivatives of Ni with respect to x and z given in Eq. (12). 

 
For orthotropic linear elastic material the compliance matrix S takes the symmetric form, 

 𝑆 =

!
!!

− !!"
!!

− !!"
!!

− !!"
!!

!
!!

− !!"
!!

− !!"
!!

− !!"
!!

!
!!

0

0

!
!!"

0 0

0 !
!!"

0

0 0 !
!!"

  (16) 

where, Ex, Ey, and Ez are the three Young’s moduli along axes, Gxy, Gyz, and Gzx are the three 
shear moduli, and vxy, vyz, and vzx are the Poisson’s ratios. Note, for isotropic materials, the 
compliance matrix can be further simplified by equating Young’s modulus and Poisson’s ratio in 
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all three directions. Therefore, the stiffness matrix C in constitutive law will be the reverse of the 
compliance matrix S and the stresses are related to the strains as 

 {𝜎} = 𝜎! 𝜎!      𝜎! 𝜏!"      𝜏!" 𝜏!" ! = 𝐶{𝜖}  (17) 

The internal strain energy of a prism can then be formulated as  
𝑈 = !

!
{𝜀}!{𝜎}! 𝑑𝑉 = !

!
𝑢[!]! 𝐵[!]! 𝐶𝐵[!]! 𝑑𝑉 𝑢[!]

!
!!!

!
!!! = !

!
𝑢[!]! 𝑘!

[!"]𝑢[!]
!
!!!

!
!!!  

  (18) 

where the B[m] is the strain matrix of all the nodal lines in the prism, i.e., Eq. (15) is a submatrix 
of B[m] for nodal line i, and u[m] is the displacements of all the nodal lines in the prism. The 
elastic stiffness matrix corresponding to longitudinal terms m and n is 𝑘!

[!"] that can be readily 
integrated from: 

 𝑘!
[!"] = 𝐵[!]! 𝐶𝐵[!]! 𝑑𝑉 = 𝐵[!]! 𝐶𝐵[!] 𝐽 𝑑𝜉𝑑𝜂𝑑𝑦  (19) 

Through the integration, every element inside stiffness 𝑘!
[!"] can be separated into two basic 

integrals: a two-dimensional isoparametric element type integral in X-Z plane that need 
numerical integration techniques such as Gaussian quadrature and a closed formed integral of 
trigonometric functions the same as in (Li and Schafer 2010; Li and Schafer 2009). For instance, 
the linear interpolation in this implementation, 2x2 Gaussian points provides reasonably accurate 
solution of the stiffness matrix. 
 
Finally, the full elastic matrix ke can be expressed as 

 𝑘! = 𝑘!
[!"]

!×!
  (20) 

Given the longitudinal shape functions chosen here, the stiffness matrix of the finite prism 
method developed here shares some similarity as the finite strip method in (Schafer and Ádány 
2006; Li and Schafer 2010). For the simply-simply (S-S) boundary conditions I1 through I5 are 
zero when m≠n leaving only a diagonal set of submatrices in ke. For all other boundary 
conditions ke has non-zero submatrices off the main diagonal and interaction of buckling modes 
of different half-wavelengths occur. 
 
3.2 Geometric stiffness matrix 
The basis of the geometric stiffness matrix is the additional work created by the loading on the 
second order strains. For the current implementation, only the prism’s shortening in the axial 
longitudinal direction is considered, which corresponds to the second order terms associated with 
εy. Hence, the additional work Vp can be written as 

𝑉𝑝 = !
!

𝑁!𝜎!!
!!!!

!"
!"

!
+ !"

!"

!
+ !"

!"

!
𝑑𝑉 =

!
!
𝑢[!]! 𝑁!𝜎!!

!!! 𝐺[!]! 𝐺[!]! 𝑑𝑉 𝑢[!] =
!
!
𝑢[!]! 𝑘!

[!"]𝑢[!]
!
!!!

!
!!!

!
!!!

!
!!!   (21) 
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where σi is the longitudinal stress at nodal line i and G[m] is a matrix of all nodal lines consisting 
the following submatrix of nodal line i as 

 𝐺![!] =
𝑁!𝑌[!]! 0 0
0 𝑁!𝑌[!]!! 0
0 0 𝑁!𝑌[!]!

  (22) 

The geometric stiffness matrix corresponding to longitudinal terms m and n 𝑘!
[!"] can be readily 

integrated from: 

 𝑘!
[!"] = 𝑁!𝜎!!

!!! 𝐺[!]! 𝐺[!]! 𝑑𝑉 = 𝑁!𝜎!!
!!! 𝐺[!]! 𝐺[!] 𝐽 𝑑𝜉𝑑𝜂𝑑𝑦  (23) 

The integration procedure is the same as elastic stiffness matrix, which consists of numerical 
integration and a close-formed integral. Finally, the full elastic matrix ke can be expressed as 

 𝑘! = 𝑘!
[!"]

!×!
  (24) 

3.3 Assembly and stability solution 
For finite prism method, assembly of the local stiffness matrices (ke and kg) into the global 
stiffness matrices (Ke and Kg) are similar to the conventional finite element method except that 
the longitudinal terms complicate the assembly process a bit. There is no coordinate 
transformation needed unlike in the finite strip method. The global stiffness matrices may be 
assembled as an appropriate summation of each prism’s stiffness matrices. 
 
The following elastic buckling problem can be obtained for a given distribution of nodal stresses 
in a member: 

 ΦΛ=Φ ge KK  (25) 

where, Λ  is a diagonal matrix containing the eigenvalues (buckling loads) and Φ  is a fully 
populated matrix corresponding to the eigenmodes (buckling modes) in its columns. 
 
The resulting orthogonality in Ke and Kg for simply supported boundary conditions makes the 
solutions for any m independent. For non simply-supported boundary conditions the 
orthogonality is lost, many longitudinal (m) terms are used. See more details in Li and Schafer 
(2010) and Li and Schafer (2009). 
 
4. Numerical examples 
The studies of plates on both isotropic and steel foam sandwich panels are made to provide 
validations of the finite prism solutions against finite strip/element solutions. Also, a box section 
made of steel foam sandwich panels is chosen for the validation of the member against finite 
element solutions using brick element in LS-DYNA (Hallquist 2006). 
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4.1 Plate studies 
4.1.1 Comparison to finite strip method and classical solutions for isotropic plates 
 
Classical solution of local buckling stress of a plate can be expressed as  

 𝜎!" = 𝑘 !!!
!" !!!!

!
!

!
  (26) 

where k is the plate buckling coefficient and is dependent on loading and boundary conditions. E 
and v are Young’s modulus and Poisson’s ratio, t is the plate thickness, and b is the plate width. 
For a 50 mm width, 1 mm thickness plate (thin) and 5 mm thickness plate (thick) under uniaxial 
uniform compression, the plate buckling coefficient is determined by the developed finite prism 
method for two end boundary conditions: simple-simple (S-S) and clamped-clamped (C-C) with 
longitudinal edges simply supported. The finite prism method is compared to conventional finite 
strip solutions by CUFSM (Li and Schafer 2010) and to  theoretical solutions with varying plate 
length L in Figure 4. Note, CUFSM based on Kirchhoff thin plate theory provides the same 
solutions for thin and thick plates. For the thin plate, the results are in excellent agreement with 
theory and finite strip solution. However, finite prism solutions, based on the three-dimensional 
continuum mechanics, show stiffer response that finite strip solution based on plate theory. In 
particular, the difference for the buckling coefficients of C-C is larger than S-S. In addition, for 
thick plate, the finite prism solution captures the shear response in a short plate, unlike the finite 
strip solution. 
 

 
Figure 4 Buckling coefficients of plates using finite prism and finite strip method 

The buckling modes of a plate with L/b =4 are demonstrated in Figure 5 for both finite strip and 
finite prism solutions. The buckling modes in Figure 5 show excellent agreement. 
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(a) Finite strip (b) Finite prism 

Figure 5 Plate buckling modes of finite strip and finite prism: L/b = 4 

 
4.1.2 Sandwich panel plates 

The sandwich panel plate modeled here is based on a solid sheet t=1 mm. 30% of the solid sheet 
was foamed to 18% relative density resulting in a steel face thickness ts= 0.35 mm and steel foam 
core thickness tc = 1.67 mm (Figure 7). The steel has a Young’s modulus Es=203000 MPa and 
Poisson’s ratio vs=0.3 while the steel foam has a Young’s modulus Ec= 450 MPa and Poisson’s 
ratio vc = 0.1. The panel width b are varied from 50 to 200 to investigate a wide range of b/t ratio 
while the aspect ratio L/b keep the same as 4 where L is the length of the panel. Figure 7 
provides a comparison of finite prism and finite element solutions against analytic solutions in 
Allen (1993). In general, the varying of b/t changes the ratio of bending to shear rigidities (Allen 
1993). 

 
Figure 6 Steel foam sandwich panel 

The finite prism solutions of simply supported steel foam sandwich panel show excellent 
agreement with the finite element solutions except of the small plate widths that have extreme 
shear deformation. Finite prism solutions show relatively stiff response for plates with shear 
dominant response as compared to the finite element solutions, but still remain within an 
acceptable tolerance. The buckling modes agree well between finite prism and finite element 
solutions (Figure 7) for a steel foam sandwich plate of 100 mm width. 
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Figure 7  Buckling loads of steel foam sandwich plates of finite element and finite prism 

solutions against analytical solutions. Please note that, r=5 indicates that shear rigidity is only 1/5 
of the bending rigidity; whereas r=0.3 specifies that shear rigidity is approximately 3 times 

greater than the bending rigidity. Kirchhoff plate theory assumes that shear rigidity is infinite, 
and no shear deformations occur, i.e. r=0. 

 
 

  
(a) Finite prism (b) Finite element  

(color contours denote total displacement) 
Figure 8 Buckling modes of finite prism and finite element for sandwich plate with b = 100 mm 

 
4.2 Member: steel foam sandwich tube 
In the previous sections, the validations were performed for isolated plates and sandwich panels. 
In this section, the study is extended to a square tube section made of the steel foam sandwich 

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

b, mm

N
cr

, N
/m

m

 

 
Analytical
Finite prism
Finite element

r=0.0 

r=0.3 
r=1.0 

r=5.0 

Ratio of bending to shear rigidities: 

664



 

panel with the face and core materials shown in Figure 9. The outer-to-outer dimension is 50×50 
mm. This cross-section is employed in 200 and 800 mm columns, which are simply supported at 
both ends, and subject to axial compression. The stability solutions are obtained from the 
proposed finite prism approach, and for comparison from finite element method employing brick 
elements (Hallquist 2006). The buckling stresses of box tube made of steel foam sandwich 
panels are provided in Table 1, and buckling modes are shown in Figure 10. Both the buckling 
stresses and buckling modes show excellent agreement between finite prism and finite element 
solutions. 

 

 
Figure 9 Box tube made of steel foam sandwich panel: dimension, material and cross section 

mesh 
 

 
Table 1 Buckling stresses of box tubes made form steel foam sandwich panels 

Length (mm) Mode Buckling load (MPa) 
Finite Element Finite Prism 

200 Local 832.4 846.5 
800 Global 355.9 358.9 

 
 

Square steel foam sandwich tube 
Dimension: 
Outer-to-outer dimension:  50 mm 
Steel foam core Thickness (red): 
tc=1.624 mm 
Steel face thickness (yellow):  
ts=0.35 mm 
 
Material:  
Steel: Es=203000 MPa; vs=0.3; 
Steel foam: Ef=3150 MPa; vf=0.01; 

tc! ts!ts!
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(a) finite prism: 200 mm column (c) finite prism: 800 mm column 
 

 

 

(b) finite element: 200 mm column (d) finite element: 800 mm column 

Figure 10 Buckling modes of box tubes of 200 and 800 mm long column 
(color contours denote total displacement) 

 
5. Discussions 
The finite prism method implemented here predicts the elastic buckling loads of sandwich panels 
and thin-walled members made of sandwich panels accurately. The proposed method can be used 
with any cross sections, although demonstration was done only for a rectangular tube. The finite 
prism method significantly reduces computational and modeling cost because it requires fewer 
degrees of freedom, when compared to continuum finite element method. A layer-wise finite 
strip method, accounting for shear deformations through the thickness, may enable further 
reduction in computational time, and warrants future studies. The finite prism method presented 
here is a crucial step toward computationally efficient buckling simulations of sandwich panel 
members.  
 
Application of the finite prism method in Direct Strength Method by incorporation of the 
computed elastic buckling modes renders enormous potential and requires further study. Also, 
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future work is needed to the finite prism method and direct strength approach for sandwich 
members in into the custom version of CUFSM (Li and Schafer 2010). Such custom version will 
provide engineers and researchers an easy-to-use tool for analysis and design of sandwich 
members. 
 
6. Conclusions  
The finite prism method developed and implemented here provides a straightforward method for 
calculation of the buckling load of sandwich plates and sandwich members. The finite prism 
method idealizes a three-dimension problem into a two-dimension formulation with longitudinal 
fields represented by a specially selected trigonometric shape functions, and enables a full three-
dimensional analysis. The longitudinal, end boundary conditions, such as simply supported (S), 
clamped (C), free (F), and guided (G) are incorporated through the specially selected shape 
functions. The finite prism method captures the shear deformation through the thickness, in 
addition to the bending deformation. This is particularly important in sandwich members with 
deformable steel foam core, which may suffer significant shear deformations. In addition, the 
finite prism method can capture the composite interaction between the faces and the core of the 
sandwich panel. 
 
The finite prism solutions were validated against finite element solutions employing brick 
elements in LS-DYNA for both sandwich plates and sandwich members. Although finite prism 
solution shows slightly stiffer response than finite element solution for edge cases of panels with 
extreme shear deformations, the finite prism buckling predictions show excellent agreement for 
the wide spectrum of real-life and practical configurations. The finite prism method is an order to 
magnitude faster than continuum finite element models. The finite prism method is critical for 
enabling the direct strength approach for design of thin-walled sandwich members.  
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