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Abstract 

The analysis and design of bracing systems for complex frame geometries can prove to be an 

arduous task given current methods. AISC’s Appendix 6 from the 2010 Specification for 

Structural Steel Buildings affords engineers a means for determining brace strength and stiffness 

requirements, but only for the most basic cases. This paper aims to shed some light on common 

aspects of certain bracing systems that lie well outside the scope of Appendix 6 as well as 

explain why the corresponding structures can be unduly penalized by Specification equations 

that were never derived for such use. Subsequently, a practical computational tool is proposed 

that can be used to accurately assess bracing demands while removing the interpretations needed 

by design engineers to “fit” their frames into the limited scope of AISC Appendix 6. The 

software tool is described in detail and several benchmark cases are presented to provide 

validation. Individual beams and complete framing systems are evaluated via the proposed 

software and compared to refined test simulations. Finally, recommendations are articulated 

governing the use of this new software as a means to accurately and safely assess bracing 

demands in complex bracing configurations. 

 

1. Introduction 

Metal buildings are structures that utilize extreme weight efficiency to provide large, open floor 

space at a relatively inexpensive price. Metal buildings are designed to the limits of applicable 

codes and standards in order to optimize their economy while still meeting safety standards and 

client objectives. Thus, locations in the standards where conservatism is abundant can unduly 

influence the steel system costs. Fig. 1 shows a rendering of a one-bay, two-frame segment of a 

typical metal building. 

 

The American Institute of Steel Construction’s Specification for Structural Steel Buildings 

(2010b) Appendix 6 – “Stability Bracing for Columns and Beams” provides simplified 

techniques for designing lateral and torsional braces required for stability. However, there are a 

number of specific attributes of metal building systems that are outside of the scope of Appendix 

6. A number of these attributes are: 
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 Metal building frames make extensive use of web-tapered members. AISC’s Appendix 6 

only considers prismatic members. 

 The bracing stiffnesses provided are assumed to be equal at each brace per Appendix 6. 

This is often not achieved in practice due to variations in girt or purlin size and in bracing 

diagonal lengths and angles of inclination.  

 Appendix 6 assumes uniform spacing of braces. However, metal building frames 

generally have unequal spacing of the girts/purlins as well as diagonal braces.  

 Knee joints and other joints may not provide rigid restraint against twisting and lateral 

movement at the rafter and column ends, yet the AISC equations are based on the 

assumption of rigid bracing at the member ends. 

 Warping and lateral bending restraint from joints is not considered, and continuity with 

more lightly-loaded adjacent member segments addressed only to a limited extent. 

 The combined action of diaphragms and discrete flange braces may contribute 

significantly to the stability of critical segments. AISC does not offer any guidance for 

assessing the stiffness provided to the system by multiple bracing types. 

 AISC’s Appendix 6 targets the design of the braces for a single upper-bound estimate of 

the stiffness and strength requirements. However, some economy may be gained by 

recognizing that the bracing stiffness and strength demands often reduce very sharply as 

one moves away from a critical bracing location. 

 

 
Figure 1: Two representative clear-span metal building frames  

 

Although it is believed that many of the above attributes result in conservative designs, engineers 

are left to interpret and adapt the current AISC codified equations well beyond the intent of the 

Specification to design bracing for their buildings. This could lead to inadequate designs and, in 

extreme situations, to adverse effects on life-safety. 
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Lastly, the AISC Specification Appendix 6 provisions estimate the maximum brace strength and 

stiffness demands throughout a given member generally assuming constant brace spacing and 

constant brace stiffness. However, this method is not practical for members with a large number 

of brace points along their length. When considering the sample frames shown in Fig. 1, several 

questions may come to mind: 

1. Are the bracing requirements at the knee influenced significantly by the loading, cross-

section geometry or arrangement of bracing at the ridge? 

2. What constitutes a support point? That is, at what locations is the out-of-plane movement 

of the frame sufficiently restrained? Do any locations of attachment of the panel or rod 

bracing provide this restraint?  

3. How do the rafters interact with the columns and vice versa with respect to the bracing 

demands? 

 

In general, all the members and their bracing components work together as a system in structural 

frames such as that shown in Fig. 1. Therefore, the central question addressed in this paper is: 

What are the overall physical bracing strength and stiffness demands required to develop the 

required strength of the structure? 

 

2. Toward a Comprehensive Bracing Tool 

Due to the complex and interrelated nature of the attributes discussed above, this paper focuses 

on the development of a comprehensive computational bracing analysis tool for the direct 

assessment of stability bracing requirements. Any such tool would need to be robust enough to 

include consideration of all of the above items, yet remain simple enough for use in practice. The 

following is a summary of why such an analysis tool is required for bracing design in metal 

building structures. 

 

The current AISC Specification equations for stability bracing are derived from solutions of the 

elastic eigenvalue buckling of members and their bracing systems. However, the nominal 

flexural strength of columns and rafters of metal building frames is usually controlled by 

inelastic lateral-torsional buckling, once the frames are in their final constructed configuration. 

The Appendix 6 equations address this (for LRFD of beam bracing) by a three-staged 

approximation: 

1) Replacing the elastic critical moment Mcr by the design strength Mn, thus implicitly 

estimating the bracing demands, as the elastic or inelastic strength limit Mn is 

approached, by the normalized behavior of the system as the elastic buckling load is 

approached, then  

2) Replacing Mn by the required strength Mu, which is generally smaller than Mn for a 

properly designed beam. This is based on the implicit approximation that the partial 

bracing stiffness demands can be estimated conservatively by this manipulation. 

Furthermore, where applicable (i.e., only for nodal lateral beam bracing), the 

Specification allows the use of Lq in place of Lb, where Lq is taken as the unbraced length 

that reduces Mn to Mu. This completes the approximations in the AISC bracing 

equations for the partial bracing stiffness demands.  
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3) Lastly, for cases involving partial bracing, the AISC equations assume that the strength 

requirement for partial bracing is estimated sufficiently simply by using Mu in the 

equations for the strength requirement (along with the use of Lq). This appears to be an 

acceptable approximation for practical partial bracing cases approaching full bracing, but 

it can break down for weak partial bracing, where the amplification of the initial 

imperfection displacements may become substantial.  

 

The various factors listed above may render the bracing system design over-conservative by as 

much as 10x that required based on inelastic load-deflection solutions when applied to typical 

metal building frames (Sharma 2010). A portion of the conservatism observed by Sharma (2010) 

may be due to the approximations detailed above; however, a larger portion is likely due to the 

fact that many of the metal building system attributes are not addressed explicitly by the AISC 

equations.  

 

Tran (2009) showed that the AISC procedure for calculating the strength for columns works very 

well using the inelastic column stiffness reduction factor, τa. He performed “exact” inelastic 

eigenvalue buckling analyses for the column shown in Fig. 3 (exact in the sense that the solution 

is based on τa in a fashion such that the eigenvalue for a given bracing stiffness gives the column 

inelastic, or elastic, design strength Pn) and having the following attributes: 

 Prismatic, nodal-laterally braced W14x90 column 

 Fy = 50 ksi 

 Five equal unbraced lengths, Lb = Lby = 15 ft 

 Equal brace stiffness,  = 20 kips/in. 

 Constant axial load, P 

 

A comparison of the inelastic eigenvalue buckling analysis results with the AISC Direct Analysis 

Method solution for the column maximum strength as well as distributed plasticity simulation 

analysis results is shown in Fig. 4, where DM, InE, and DP represent the Direct Analysis Method 

result, the inelastic eigenvalue buckling solution, and the distributed plasticity simulation, 

respectively. 

 

                                                                            
          Figure 3 – Sample column              Figure 4 – Comparison of analysis results 

 

One can observe from Fig. 4 that all of these solutions produce similar results, and all suggest 

that a bracing stiffness significantly less than the AISC Appendix 6 requirement is sufficient to 
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develop the full-bracing resistance for this column example.  Tran (2009) showed that for this 

problem, the use of a nodal bracing stiffness equal to the ideal bracing stiffness, labeled as i = 

20 kips/inch in Fig. 4, resulted in brace strength demands only slightly larger than 2 % in 

distributed plasticity simulation studies.  

 

Although the solution by the DM is reasonably accurate, this method (often thought of as a 

reasonable approximation of the results from a rigorous distributed plasticity simulation analysis 

or a physical test, and thus providing the best design assessment for stability requirements) may 

not be a feasible option for assessing stability bracing demands in problems like this due to the 

following fact: With the DM, as well as with the simulation analysis, an appropriate magnitude 

and pattern of the initial geometric imperfections must be imposed on the member to estimate the 

maximum strength demand on a given brace in question. This means that one must consider 

geometric imperfections in a manner similar to the way that load combinations are considered in 

general strength design. For each specific brace, an imperfection needs to be identified that 

produces the maximum demand on that brace. Although procedures have been identified by 

Sharma (2010) and others to determine the “critical” imperfection for a given brace, these 

procedures are relatively complex and in general may require a number of trials to truly identify 

the critical imperfection. Of equal importance is that these procedures would generally need to 

be executed for each brace within the structural system. This level of effort can be tolerated for 

research studies; however, it is not practical for ordinary design.  

 

In contrast, the “exact” inelastic eigenvalue buckling analysis gives similar results to the DM or 

DP solutions with much less computational effort. However, one should note that an eigenvalue 

buckling analysis only provides the designer with an estimate of the required bracing stiffness 

and the overall system strength. As has been discussed extensively (see, Yura (2001) for 

example), to be effective, a brace must provide sufficient stiffness and strength to resist the loads 

imparted to it by the braced member. Fortunately, Sharma (2010) and Tran (2009) have shown 

through numerous finite element simulations that the brace force is usually in the range of 2 to 

3% of the effective flange force for nodal bracing cases approaching full bracing. In fact, 2% is 

often enough to allow the frame to reach 95% of its rigidly-braced capacity. Therefore, one can 

combine the brace stiffness requirement from an inelastic eigenvalue buckling analysis with say, 

a 2 to 4% brace strength rule (for frames not specifically required to sustain large inelastic 

cyclical loadings) for a complete determination of the bracing requirements. 

 

Creation of a new computational bracing analysis tool is needed because no current structural 

analysis software provides the specific necessary elements or combination of analysis methods to 

produce the type of solutions illustrated in Fig. 4 for general member and/or frame geometries 

and general bracing arrangements. The targeted bracing analysis tool must be able to address 

such aspects as warping and out-of-plane bending restraint, roof and wall “shear panel” (i.e., 

relative) bracing combined with nodal torsional bracing, combined effects of axial and flexural 

loading, unequal brace spacing, web taper, and steps in the cross-section geometry. The 

computational tool needs to be able to solve for the in-plane elastic and/or inelastic state of a 

member or frame at a given design load level, or at an envelope of all the maximum internal 

forces based on a range of design loadings, and then determine the ideal bracing stiffness 

demands (i.e., the required ideal bracing stiffness) to sufficiently stabilize the structure in this 

elastic/inelastic state.  
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For speed and efficiency, the bracing tool also must be able to obtain the above solutions with 

minimal computational effort (i.e., a minimum number of degrees of freedom). As depicted in 

Fig. 5, the webs of the members in the targeted computational tool are modeled using plane 

stress elements for the initial planar load-deflection analysis and shell elements for the 

subsequent 3D inelastic eigenvalue buckling analysis. However, the flanges are modeled using 

beam elements.  

 
Figure 5 – Discretization scheme for the member 

 

One additional significant problem that occurs for the above type of model is that, for I-section 

members having non-compact or slender webs, the eigenvalue buckling solutions are commonly 

dominated by web local buckling modes. However, it is well known that these types of I-section 

member webs generally exhibit a stable post-buckling response. That is, the web local buckling 

behavior tends to have a secondary effect on the overall member flexural and lateral-torsional 

response, and hence on the member bracing demands. Therefore, for an eigenvalue buckling 

analysis to provide an efficient solution, something must be done to parse the inconsequential 

web buckling modes from the general solution. This is accomplished by using multiple elements 

through the web depth to determine the web stiffness, but effectively using only one element 

through the web depth to determine the web’s geometric stiffness properties. Thus, with four-

node shell elements, the membrane and bending stiffness of the web is captured accurately, but 

the modeled web is unable to locally buckle due to the lack of internal web nodes (essentially 

restricting buckling to the web/flange juncture). Prior simulations in Abaqus (Simulia 2011) have 

shown that modifying the web in a similar manner yields elastic eigenvalue buckling results that 

are similar to those from load-deflection solutions. 

 

The application of the above computational tool can provide a direction for engineers to better 

assess their bracing requirements and therefore, provide efficient, safe building designs. 

 

3. Eigenvalue Buckling Solutions using SINBAD 

A new software package referred to as the System for INelastic Bracing Analysis and Design 

(SINBAD) has been developed to address the need for a comprehensive bracing tool as described 

above. This section describes SINBAD’s implementation and how this software may be used to 

provide a more efficient and accurate assessment of stiffness demands for flange bracing than 

possible using the AISC Specification Appendix 6 equations. 

 

3.1 Software Overview 

SINBAD is in essence a stand-alone, special purpose finite element program that performs 3D 

eigenvalue buckling analyses based on the elastic or inelastic state of a planar structure caused 
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by the application of in-plane loads. The solutions from SINBAD may be used to either 

determine member or framing system out-of-plane buckling capacities or to determine ideal 

stiffnesses of the corresponding out-of-plane bracing system. The in-plane inelastic analysis 

capabilities of SINBAD involve a complete spread of plasticity (or plastic zone) analysis of the 

structure including any appropriate in-plane geometric imperfections as well as specified 

member nominal residual stresses. SINBAD is written in Matlab (MathWorks 2011) and 

includes both an analysis engine and a graphical user interface (GUI).  

 

SINBAD has two distinct modules: members and frames. The members module is used 

exclusively to assess the bracing requirements for individual members. For example, one can 

analyze a given physical beam or column segment for analysis as an isolated member. That is, 

the member module is only useful to model one member. In the frame module, SINBAD 

provides the ability to assess the bracing requirements for an entire framing system. The frame 

can have any generalized geometry but must have no more than two exterior columns and two 

rafters (one on each side of a ridge location). The input to SINBAD may be accomplished either 

by a set of Microsoft Excel worksheet forms or via a general application program interface.  

 

3.2 FEA Modeling 

The following sub-sections describe some of the individual components that comprise SINBAD. 

The inelastic buckling analysis solutions in SINBAD are conducted generally in two steps: 

1. The 2D (planar) elastic/inelastic state of the structure is calculated given a prescribed 

loading condition, and 

2. A 3D eigenvalue buckling analysis is performed based on the stress state determined in 

Step 1. 

 

By limiting the stress determination to a planar solution, significant analysis time savings are 

realized relative to the requirements for a general 3D simulation such as that conducted in 

Abaqus. After the state of stress is determined, the program must “upgrade” the model to its 3D 

counterpart in order to assess the out-of-plane stability of the system in question. Details about 

how this solution is achieved efficiently are provided in the following sections. 

 

3.2.1 Flange Elements 

All flanges and stiffeners are modeled in SINBAD using 2-node cubic Hermitian beam elements 

with one additional internal axial degree of freedom, providing for a linear variation in the 

interpolated strains along the member length for both axial and bending deformations (White 

1985). For the planar solution, there are a total of 7 degrees of freedom: two translations and one 

out-of-plane rotation at each end plus an additional axial degree of freedom at the middle of the 

element. The interior axial degree of freedom is removed via static condensation (see McGuire, 

et al. 2000, for example) to leave a total of 6 global degrees of freedom. For the 3D model, a 

total of 13 degrees of freedom are used for the beam element: three translations and three 

rotations at the member ends plus one additional axial degree of freedom at the middle of the 

element. Again, static condensation is performed to render 12 global degrees of freedom. 

 

To track the spread of plasticity through the beam element, White (1985) proposed a fiber model 

that subdivides each element into a predefined grid. 12 fibers are used through half the width of 

the flange (bf/2) and 2 fibers through the thickness of the flange (tf). It is only necessary to model 
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the grid over one-half of the flange width since the planar solution is symmetric about the plane 

of the structure. Tracking the spread of yielding throughout the element is performed on an “as 

needed” basis. That is, the fiber grid is only created when the global element has detected 

yielding. This reduces the memory requirements and substantially increases the computation 

speed. For brevity, the reader is referred to White (1985) for a further discussion and step-by-

step implementation of this second-order inelastic element. 

 

3.2.2 Web Elements 

The web shell elements are created through the combination of a QM6 element for plane stress 

and a PBMITC element for plate bending.  

 

The QM6 is created by starting with the general four-node isoparametric quadrilateral element 

(Q4) and then making the following two modifications: 

1. To prevent shear locking, bending deformation modes are included by adding 

incompatible modes to the element’s displacement field. This reduces the element’s 

tendency to be overly stiff when displaying bending-type deformations and creates the 

commonly known Q6 element (Cook 2002). 

2. The determinant of the Jacobian is evaluated only at the middle of the element. This 

modification allows the Q6 element to represent constant stress (or shear) states for 

shapes other than rectangles and thus, the element is able to pass all patch tests and is 

renamed the QM6 element. 

 

The PBMITC element is a four-node mixed interpolation of tensorial components element 

originally derived by Bathe and Dvorkin (1985). The inclusion of the mixed interpolation 

removes shear locking of the element while avoiding spurious zero-energy modes.  

 

After combination of the QM6 and the PBMITC elements, an additional “null” drilling degree of 

freedom is included at nodes that are attached to the beam elements to accommodate the three 

rotational nodal dofs of the 3D frame element; only two rotational dofs are required at the other 

shell nodes. 

 

An important aspect of SINBAD focuses on a formulation of the geometric stiffness for the web 

shell finite elements such that web local buckling modes are not considered in the 3D eigenvalue 

buckling solutions. As discussed in Section 2, due to the nature of the web being stable in its 

post-buckled state plus the fact that the brace demands are usually driven by lateral bending of 

the flanges, removing the local web modes provides a substantial improvement in the efficiency 

in the solution algorithm while focusing on solving for the member or frame out-of-plane 

buckling. As shown in Fig. 6, the following solution scheme is proposed to eliminate the 

handling of local web buckling modes: 

1. Determine the stress at the Gauss points within each web “sub-element” from the in-

plane analysis (in Fig. 6, 16 Gauss points, each with three stress measures). 

2. Use Gauss quadrature within each sub-element to integrate over the volume of each 

“super-element,” composed of all the sub-elements through the depth of the web, to 

obtain a single geometric stiffness for each web super-element. 

 

365



 

WEB “SUB-

ELEMENT” (TYP.)

WEB “SUPER-

ELEMENT”

GAUSS POINT 

(TYP.)

 
Figure 6: Web sub-elements for calculation of the geometric stiffness matrix 

 

This process ultimately arrives at a solution that approximates the effect of “condensing” out the 

geometric stiffness terms associated with the internal web sub-element nodal dofs and leaving 

just the corner nodes of the “super-element” for the global 3D buckling solution. The global 

buckling solution is effectively limited to the movements associated only with the “super-

element” corner nodes. 

 

3.2.3 Bracing Elements 

There are three distinct types of bracing (as termed by AISC 2010b), and any general 

combination of these types is addressed by SINBAD: 

1. Nodal (discrete grounded) bracing 

2. Relative (shear panel) bracing 

3. Nodal torsional bracing 

 

When implementing nodal bracing, SINBAD simply includes a grounded spring stiffness 

directly in the global stiffness matrix at the out-of-plane translational degree of freedom 

associated with the brace location. For relative bracing, SINBAD models the bracing as a “shear” 

spring by incorporating a basic 2x2 element stiffness matrix that resists the relative out-of-plane 

movement of two connected points. Lastly, nodal torsional bracing is modeled in a manner 

similar to the nodal relative bracing with the added step that the program must first divide the 

user input torsional bracing stiffness (in units of force x length/radian) by the web-depth squared 

to determine an equivalent shear spring stiffness. It is also important to note here that these 

spring elements are only required for the out-of-plane buckling solution. Since the 2D, nonlinear 

solution only deals with deflections in-plane, the degrees of freedom associated with the out-of-

plane movement at the braces (or springs) is not activated and thus, not required in the planar 

global stiffness matrix. 
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3.3 Material Description 

The material model employed in SINBAD considers that the steel remains elastic at modulus E 

up to the yield stress Fy (and yield strain εy), exhibits a yield plateau with a minimal hardening at 

a small modulus Et (used for numerical purposes) from εy up to εst = 10εy, and then experiences 

strain hardening at Est above εst. The tangent modulus is taken E/100 within the yield plateau of 

the material stress strain curve. It should be noted that this stiffness value is approximately equal 

to the bounding stiffness exhibited by typical structural steels upon cyclic loading of the material 

(see White 1988, for example). SINBAD uses E = 29,000 ksi for the steel elastic modulus and Est 

= 900 ksi for the steel strain-hardening modulus.  

 

3.4 Residual Stresses 

Fig. 7 shows the residual stress pattern employed in SINBAD. This is selected as a nominal 

residual stress distribution that provides a close representation of the column inelastic flexural 

and beam inelastic lateral-torsional buckling strength curves from the AISC (2010b) 

Specification. The flange residual stress distribution is the same as that recommended by ECCS 

(1983) for rolled I-section beam members with h/bf > 1.2, and the web residual compression is 

representative of that observed in welded I-section members with noncompact and slender webs 

(Avent and Wells, 1979; Nethercot, 1974). White (2008) discusses a large set of experimental 

data upon which the AISC lateral-torsional and flange local buckling strength curves are based, 

and shows that the influence of the type of I-section (rolled or welded) on the strengths is of 

minor significance given this data. This justifies the use of the single beam lateral-torsional 

buckling or column flexural buckling strength curves in AISC (no distinction in the resistances 

for rolled or welded cross-sections), and thus also may be used as a justification for the use of a 

single nominal residual stress pattern for the flanges as shown in Fig. 7. For I-section members 

with noncompact or slender webs, an interesting result is that the web typically cannot sustain 

substantial stresses in uniform axial compression over most of its depth without experiencing 

local buckling. Therefore, the maximum uniform web compressive residual stress is taken as the 

smaller value of 0.1Fy or the elastic local buckling stress of the web under uniform axial 

compression, Fcrw, assuming simply-supported edge conditions. The web residual tension is 

modeled over a depth of h/8 at the top and bottom of the web such that the residual stress pattern 

in the web is self-equilibrating. Of course, the flange residual stresses shown in Fig. 7 are also 

self-equilibrating. For web-tapered members, the above web residual stresses are calculated at 

the mid-length of each tapered member. This is a simplification of the potential web residual 

stresses in a physical tapered member with a noncompact or slender web, which may in fact vary 

along the member length as a function of the web buckling resistance to the longitudinal residual 

compression.  

 

4. Member Module 

This section highlights the use of SINBAD to assess member bracing stiffness requirements.  

The results from SINBAD are compared to AISC (2010b) and to rigorous load-deflection 

simulations using Abaqus (Simulia 2011). The plots presented show representative member 

strength versus bracing stiffness results, which are commonly referred to as a “knuckle curves”. 

For these types of graphs, one generally plots the bracing stiffness in kips/inch for relative 

bracing and kips x inch/radian for torsional bracing on the abscissa and some measurement of the 

member strength on the ordinate (Mmax/(My) for these plots). Knuckle curves generally exhibit a 

region that may be referred to as the “plateau.” The plateau is the portion of the knuckle curve 

367



 

where the strength of the fully-braced member has been reached and further increases in the 

bracing stiffness do not provide any significant additional member capacity. 
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Figure 7: Residual stress pattern for flanges (left) and web (right) 

 

4.1 Qualification of Simulations Using Abaqus 

As mentioned above, Abaqus (Simulia 2011) is selected as the benchmark to assess SINBAD’s 

ability to predict accurate bracing stiffness demands. Due to the complexity of the stability 

bracing systems in metal building frames combined with the wide range of factors that can influ-

ence the bracing response (as discussed in the introduction), a large number of member and 

frame tests is needed to develop meaningful (and generalizable) bracing data. Simulation pro-

vides the only economical approach to generate this data. Furthermore, stability bracing force de-

mands generally are sensitive to the pattern of the geometric imperfections. Therefore, evaluating 

maximum required bracing forces for design generally necessitates the calculation of the critical 

geometric imperfection. Forcing initial geometric imperfections on physical members that cause 

the largest demands on the bracing system in an experimental test may prove difficult.  However, 

critical geometric imperfections can be generated with relative ease for simulation studies. Vali-

dation of simulation methods against experimental test data for members on which detailed phys-

ical geometric imperfection and residual stress measurements have been documented provides an 

important validation of the simulation models. These simulation models can then be applied to 

provide detailed assessment of the true maximum design bracing strength and stiffness demands. 

 

The Abaqus simulations discussed in this paper use the same residual stress pattern as described 

for SINBAD. Also, since load-deflection analyses are driven by initial imperfections, patterns of 

initial imperfections were selected within allowable erection tolerances specified in AISC’s Code 

of Standard Practice (2010a) and the Metal Building Systems Manual (MBMA 2006). The nature 

of selecting and implementing the necessary initial imperfections is beyond the scope of this 

paper. The reader is referred to Tran (2009), Sharma (2010), Kim (2010), and Bishop (2013) for 

a more complete discussion of the process necessary to select the critical initial imperfections. 
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4.2 Example 1: W16x26 with Relative Bracing under Uniform Moment 

Fig. 8 shows the results for a W16x26 loaded under uniform moment with three equally-spaced 

unbraced lengths, each with Lb = 4 ft. There are four relative braces, all of equal stiffness, along 

the compression flange of the member. The above unbraced length places this section in the 

inelastic buckling region for this cross-section profile. All the end conditions for these example 

cases are ideally simply-supported, flexurally and torsionally. That is, hinges and rollers are 

assumed for the in-plane end conditions and “fork” end conditions (out-of-plane flexure and 

warping of the flanges unrestrained) are assumed for the out-of-plane buckling analysis. 

 

 
Figure 8: Example 1; W16x26, uniform moment, 4 relative braces, Lb = 4 ft  

 

In Fig. 8 legend (and all subsequent legends in this section), the following nomenclature is used: 

 

 “βAISC” is the stiffness requirement obtained from AISC Appendix 6 for either relative 

bracing via Equation 1 or torsional bracing via Equation 2. Note that these equations have 

been rewritten to incorporate a refined estimate of the bracing stiffness based on the 

Commentary to Appendix 6 (AISC 2010b). 
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where  = 1/ = 1/0.75 = 1.33 for LRFD, Lb = spacing between the brace points, assumed 

constant in the development of Eq. 2, Mr = required flexural strength in the beam from the 

LRFD load combinations, ho = distance between flange centroids, Cb = equivalent uniform 

moment factor for a given unbraced length, based on flange stresses for non-prismatic 

members (ad hoc extension), Cd = double curvature factor, CtR = flange load height factor for 
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relative bracing, CtT = flange load height factor for torsional bracing, nT = number of 

intermediate nodal torsional brace points within the member length between the rigid “end” 

brace locations, where both twisting and lateral movement of the beam are prevented,  Pef.eff  

= effective flange buckling load = 
2
EIf.eff / Lb

2
, E = steel modulus of elasticity = 29,000 ksi, 

If.eff = Iyc for doubly-symmetric sections or (
ytyc I

c

t
I  )/2

 

for singly-symmetric sections, c = 

distance between cross section centroid and compression flange centroid, t = distance 

between cross-section centroid and tension flange centroid, Iyc = lateral moment of inertia of 

the compression flange, and Iyt = lateral moment of inertia of the tension flange. 

 

 “Simulation” refers to the member maximum strength obtained from the test simulations 

conducted using Abaqus.  

 

 “SINBAD” refers to the member inelastic, out-of-plane buckling strength from SINBAD 

based on a given ideal bracing stiffness. In this paper, ideal bracing stiffness is defined as 

the stiffness required to brace a perfectly straight member such that a particular out-of-

plane buckling resistance is achieved. Due to the fact that physical columns and beams 

have inherent geometric imperfections, immediately upon application of load, the initial 

deflections present in the member begin to be amplified (Timoshenko and Gere 1961). 

This amplification of the initial imperfections impacts the brace force demands, since 

brace point displacement times the bracing stiffness (assumed to remain elastic) generates 

the brace forces. Therefore, one finds that while theoretically it is possible to provide the 

ideal stiffness for a given member assuming the member is perfectly straight, practically, 

one must often provide some multiple of that value in an effort to keep the brace forces 

(and brace strength design requirements) manageable for real members where initial 

imperfections are unavoidable. It is common in the literature to use a multiple of 2/ 

where the resistance factor = 0.75 on the ideal bracing stiffness in order to limit the 

amplification of brace point movement and the resulting brace forces (Yura 2001). 

 

 “βReq” is a “SINBAD” generated curve in which the abscissa is scaled by the larger of 3/ 

times the result determined from an elastic eigenvalue buckling analysis or 2/ times the 

result determined from an inelastic eigenvalue buckling analysis at a given strength level. 

The coefficients 2/  and 3/ are needed as discussed above and to parallel the approach 

taken in AISC Appendix 6 of scaling the ideal bracing stiffness to determine a required 

design bracing stiffness, where  is the resistance factor taken equal to 0.75 (AISC 

2010b). The justification of this curve is detailed below.  
 

The first item of note from Fig. 8 is the difference in the strength of the member reached when 

full bracing is provided; i.e., the plateau strength comparisons from the SINBAD, simulation, 

and AISC results. In this case, SINBAD reaches a strength limit at Mmax/(My) = 0.96, Abaqus 

suggests Mmax/(My) = 1.05 and the AISC equations suggest Mmax/(My) = 1.1. The following is a 

discussion on why this variance in the capacity for rigid bracing occurs. 

 

The main difference between the results from a general eigenvalue buckling analysis (SINBAD 

in this case) and the AISC Specification is due to the lateral movement of the compression 

flange. The inelastic eigenvalue buckling analysis is based on the state of the structure associated 
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with in-plane deformations. That is, the member is assumed to displace solely in-plane until the 

critical buckling load is reached. At this point, the member then displaces laterally out-of-plane 

an undetermined amount. Conversely, the AISC design curves are a fit to experimental data. 

Therefore, due to the imperfect nature of the initial geometry in real test specimens, lateral 

movement of the compression flange initiates immediately with the onset of load. This lateral 

movement increases as the load increases, exacerbating the compression on one side of the 

compression flange and relieving compression on the other. Therefore, a potentially higher load 

may be reached in certain cases in experimental tests when compared to an eigenvalue buckling 

analysis. The ASCE-WRC Plastic Design Guide (ASCE 1971) discusses this phenomenon in 

detail and documents these observations for compact-web sections with relatively close brace 

spacing subjected to uniform moment. 

 

One key source of differences between the results from the simulation results from Abaqus and 

the AISC Specification is due to the initial conditions; i.e., the magnitude and location of initial 

imperfections and the magnitude and distribution of residual stresses. The residual stresses, as 

discussed in Part 3, are representative of those determined from Avent and Wells (1979) and 

Nethercot (1974). However, many experiments on which the design curves are based did not 

have their residual stresses recorded. Also, as was alluded to earlier yet the details were omitted, 

the initial imperfections determination may not be as unfavorable as those employed in the 

simulation. Due to the current erection tolerances specified by AISC (2010a) and MBMA 

(2006), it is common to take some combination of these tolerances to create a “worst case 

scenario” for the pattern of initial imperfections. Where one might suggest that a procedure that 

invokes the worst possible pattern is overly conservative, it may be difficult to justify a more 

unconservative pattern. Statistically, it is improbable for an experimental specimen to have the 

worst case imperfection pattern as well as the worst-case residual stress pattern. Therefore, the 

imperfections and residual stresses used in the simulation will often be higher than those realized 

in experiments, leading to a solution predicting less capacity. In addition, for the uniform 

inelastic bending case, the representation of the member response as a continuum is a clear 

idealization of the physical response generally observed from experiments (ASCE 1971). 

 

Next, one may compare the stiffness suggested from βReq versus that suggested by βAISC. One of 

the reasons the AISC prediction is high relative to the results from SINBAD (larger bracing 

stiffness required to achieve a given beam moment resistance) is because the AISC equation for 

the relative bracing stiffness requirement (Eq. 1) ignores the contribution of the member to the 

resistance of brace point movement (Yura 2001). That is, all out-of-plane displacements must be 

resisted by the provided bracing, with no consideration of the member’s own inherent ability to 

resist brace point movement. The two plots from SINBAD (including both the ideal stiffness and 

the scaled ideal stiffness) consider the member’s ability to resist out-of-plane brace movement. 

 

As introduced earlier, βReq is produced by combining the larger of 3/0.75 times the ideal elastic 

bracing requirement from SINBAD or 2/0.75 times the ideal inelastic bracing requirement from 

SINBAD. (For clarity, the bracing stiffness required from an elastic eigenvalue buckling analysis 

using SINBAD is not shown on the plot.) βReq is a reasonable metric since it incorporates values 

of bracing stiffness that would buckle the member elastically (using 3/0.75 times the ideal 

stiffness), yet reduces this scaling of the stiffness requirements to 2/0.75 as the member begins to 

yield. Also, it should be noted that βReq has been calibrated to a large set of results. Therefore, the 
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conservatism realized in this specific case is not necessarily representative of the level of 

conservatism in other cases. 

 

4.3 Example 2: W16x26 with Torsional Bracing under Uniform Moment 

Example 2 is also a W16x26 loaded with uniform moment. However, the member now has 3 

interior torsional braces, all with equal stiffness, in lieu of relative bracing. Again, Lb = 4 ft and 

the member is classified in the inelastic lateral-torsional buckling region. The results for 

Example 2 are shown in Fig. 9. 

 

 
Figure 9: Example 2; W16x26, uniform moment, 3 torsional braces, Lb = 4 ft 

 

When looking at the bracing requirement for a particular load level, say at Mmax/(My) = 0.65, the 

Abaqus simulation suggests that a bracing requirement of 450 kip x in./rad is required at each 

brace. The prediction for the ideal bracing requirement from SINBAD is closer to 200 kip x 

in./rad. However, to keep brace point displacements small to limit the brace force, some multiple 

of the ideal stiffness is required (see the discussion at the beginning of this section). βReq suggests 

that a stiffness closer to 820 kip x in./rad. The requirements from AISC would suggest that 

around 900 kip x in./rad is required. The slight variation between the two requirements at this 

load level is due to the different approximations associated with each of these calculations. 

 

5. Frame Module 

In this section a 90 ft clear-span frame is analyzed via SINBAD and compared to the simulation 

results from Abaqus. Kim (2010) and Sharma (2010) studied this frame in-depth and the reader 

is referred to these theses for a more detailed structure description and presentation of their 

findings. Fig. 10 and Table 1 provide a synopsis of the section properties pertinent to this study 

for various locations along the frame. Specifically, location r1 is of importance in the following 

discussion. The frame is subjected to an applied, uniformly distributed vertical load on the 

horizontal projection of the roof. 
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Figure 10: Elevation view of ninety foot clear-span frame (from Kim 2010) 

 
Table 1: 90’ Clear-span frame geometry (from Sharma 2010) 

 
*For Fy = 55 ksi, the webs are compact for h/tw≤ 86 and they are slender for h/tw ≥ 130. 

 

For this example, the wall panel bracing and all the cable bracing are set to the values provided 

by the design engineer; the torsional bracing stiffness is then varied in the analysis. However, to 

use SINBAD correctly given a provided relative bracing stiffness, one would first need to divide 

the provided stiffness by 2/0.75 or 3/0.75 to perform the analysis. After the analysis is complete, 

the designer would then scale the relative bracing by 2/0.75 or 3/0.75 to bring the relative 

Length Location

d (in) tw (in) h/tw* hc/tw bf (in) tf (in) bf/2tf bf (in) tf (in) bf/2tf

A c1 10.00 7/32 42 36 6.0 1/2 6.0 6.0 3/8 8.0

c2 25.27 112 103

c3 37.49 167 157

c4 40.75 182 172

B 7/32

C r1 40.75 1/4 160 6.0 3/8 8.0 6.0 3/8 8.0

r2 36.31 142

r3 31.88 125

D r3 31.88 3/16 166 6.0 3/8 8.0 6.0 3/8 8.0

r4 27.44 142

r5 23.00 119

E r5 23.00 5/32 142 6.0 3/8 8.0 6.0 3/8 8.0

r6 23.42 145

r7 23.80 148

r8 24.25 150

r9 24.67 153

r10 24.75 154

Web Inside Flange Outside Flange
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bracing stiffness back up to the level provided. This procedure is required since SINBAD 

provides an assessment of the ideal bracing stiffness. 

 

In this analysis, for simplicity, it is assumed that each torsional brace has the same stiffness. As 

such, the knuckle curve corresponding to the torsional bracing stiffness at any point along the 

frame is as shown in Fig. 11. In general, a given ratio of the different bracing stiffnesses can be 

specified, and then all the stiffnesses can be scaled while maintaining this ratio.  

 

 
Figure 11: 90’ clear-span frame knuckle curve 

 

The torsional bracing stiffness requirement at location r1 in the knee region, determined from an 

adaptation of the AISC Appendix 6 provisions, is 32700 kip x in./rad (Sharma 2010). From Fig. 

11, to reach a distributed load of say, 0.9 klf, the Abaqus model requires approximately 5700 kip 
x in./rad where the required beta from SINBAD suggests 6200 kip x in./rad. The significant 

difference here between the simulation, SINBAD, and the adapted Appendix 6 stiffness 

requirements can be largely attributed to the combination of bracing types present in the framing 

system. As mentioned previously, the AISC equations do not consider the reduction in bracing 

stiffness requirements that may be possible if multiple bracing types are employed 

simultaneously. SINBAD has the capability to include the roof/wall panels as well as any X-

bracing in the framing system, bracing inherently engaged in the physical structure upon out-of-

plane movement, along with the torsional bracing to develop a complete bracing system 

requirement. βReq may slightly under-predict the stiffness requirement from the simulation, yet 

still suggests bracing stiffness levels that are able to allow the frame to reach greater than 95% of 

its intended capacity. 

 

6. Recommendations for Design 

This section provides a summary of the steps necessary to use SINBAD to determine required 

bracing stiffnesses for complex bracing systems. 
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6.1 Design for all Bracing Types 

 Set the elastic modulus for design, E* = 0.9E; required for designs according to AISC’s 

Appendix 1 (2010b). AISC Appendix 1 is invoked for the in-plane analysis to allow the 

use of SINBAD to determine the bracing requirements from an inelastic analysis 

independent of individual Specification section checks.  

 Determine the knuckle curve for the inelastic structure. 

o Set the yield strength for design, Fy* = 0.9Fy; required for designs according to 

Appendix 1. 

o Set all bracing as rigid and iterate the load level until an eigenvalue equal to one 

is reached; this gives the rigidly braced strength. Note: if an eigenvalue ≥ 1 cannot 

be reached, then consider either adding bracing, changing the size and spacing of 

bracing, or increase the section properties of the member that is being braced and 

rerun the analysis. 

o Pick different values of load level (ensuring they are less than the rigid load level) 

and iterate the bracing stiffness until an eigenvalue equal to one is reached. 

o Continue this process until sufficient data points are captured to create the 

inelastic buckling knuckle curve. 

 Determine the knuckle curve for the elastic structure. 

o Start with the minimum load level obtained from the inelastic analysis and iterate 

the bracing stiffness at each load level until an eigenvalue of one is reached. 

o Continue this process until sufficient data points are captured to create the elastic 

buckling knuckle curve. 

 Determine βReq. 

o Each point on the βReq curve is determined by taking the larger of 3/0.75 times the 

elastic stiffness curve or 2/0.75 times the inelastic stiffness curve at each load 

level. 

o Continue this process until βReq has been created and added to the knuckle curve 

plots. 

 To determine the required stiffness for a given load level: Enter the knuckle curve at the 

appropriate load level and move horizontally until intersection with βReq. The value on 

the abscissa will be the required stiffness for the relative or torsional brace. 

 

6.2 Consideration of Bracing Strength Requirements 

Sharma (2010) conducted extensive studies of the bracing strength and stiffness requirements 

using full nonlinear finite element test simulations of complete metal building frames. He 

determined that the strength requirements were rarely more than 4% of the corresponding 

member internal moment for torsional bracing (as long as the bracing stiffness was reasonably 

close to the “knuckle” of the knuckle curve or larger). In fact he found that usually around 2% of 

the internal moment was enough to get the member to within 95% of the member’s capacity. 

Lastly, he noted that the comparable relative bracing limit was around 1%. 

 

In this research, the key concept is to determine the ideal stiffness directly and use a multiple of 

that stiffness as the torsional or relative stiffness requirement. However, if the bracing stiffness is 

too low, then substantial amplification of system geometric imperfections can occur. This can 

lead to excessive brace point movement and correspondingly excessive brace forces. Since brace 
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point movement is directly proportional to the brace force (i.e., the brace strength requirement), 

it is imperative to limit the out-of-plane movement of the brace points. Yura (2001) largely 

championed the procedure necessary to scale the ideal bracing stiffness accordingly in order to 

limit these brace forces. The AISC Specification (2010b) embodies this by using a factor of 2/ 

in the bracing stiffness equations. In this paper, all the suggested recommendations require a 

minimum multiple of the ideal stiffness of 2/ based on the inelastic structure and 3/ based on 

the elastic structure. The computational tool, SINBAD, provides an efficient and rigorous 

calculation of the ideal bracing stiffness values.  

 

A review of the bracing strength requirements associated with the suggested Req values scaled 

from the SINBAD ideal bracing stiffness values, indicates that for cases including both full 

bracing as well as partial bracing (up to certain limits), the percentage of equivalent flange force 

is often under 2% for torsional bracing and is closer to 1% for relative bracing. This evidence 

corroborates the findings by Sharma (2010). 

 

7. Conclusions 

SINBAD incorporates a number of attributes of metal building frames that lie outside the scope 

of AISC’s Appendix 6, namely: 

 Consideration of web-tapered members, 

 Unequal brace stiffness, 

 Unequal brace stiffness, 

 Warping and lateral bending restraint from joints and continuity across brace points, 

 Combination of bracing types, and 

 Reduced demands in non-critical regions. 

 

This paper builds on prior work by Yura (1993, 1995, 1996, 2001), Yura and Helwig (2009), 

Tran (2009), Kim (2010), and Sharma (2010) and aims to present a method that is based on 

sound theory yet is practical for everyday design use. The use of an inelastic eigenvalue buckling 

tool (SINBAD) calibrated to extensive simulation studies provides the engineer with a more 

accurate means with which to incorporate the above attributes into a safe structural design for the 

complex bracing configurations that can occur in general structural steel members as well as 

entire structural systems. 
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