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Abstract 

This paper reports the results of an analytical, numerical and experimental investigation 

dealing with I-section steel members acted by a combination of major-axis bending and axial 

(“beams subjected to tension”), which is relatively rare in practice and, therefore, has received 

little attention in the past. In particular, there are no guidelines for the design against buckling 

ultimate limit states of such members (only their cross-section resistance is checked). This 

means that the axial tension favorable effect on lateral-torsional buckling/failure is neglected, 

leading to over-conservative designs − indeed, a beam subjected to axial tension is 

currently designed against lateral-torsional failure as a “pure beam”. In order acquire scientific 

knowledge and provide design guidance on this topic, the lateral-torsional stability, failure and 

design of hot-rolled steel I-beams with fork-type end supports and acted by simple transverse 

loadings (mostly applied end moments) and various axial tension values are addressed in this 

work. After developing and validating an analytical expression to calculate critical buckling 

moments of beams under uniform bending and axial tension, beam finite element buckling 

results are presented for the non-uniform bending cases. Then, two full-scale tests involving 

a narrow and a wide flange beam under eccentric tension are described and their results are 

used to develop finite element models, subsequently employed to perform a parametric study 

aimed at gathering a fairly extensive ultimate strength/moment data bank. Finally, this data 

bank is used to assess the merits of a design approach proposed here for beams subjected to 

tension and collapsing in lateral-torsional modes − this design approach, which consists of 

slightly modifying the current procedure prescribed in Eurocode 3 to design beams against 

lateral-torsional failures, is shown to provide ultimate moment estimates that correlate very 

well with the values obtained from the numerical simulations. 
 
 
1. Introduction 

In recent years, the technical and scientific community dealing with steel structures has 

devoted a considerable effort to the development of efficient (safe and economic) procedures 

and formulae (interaction equations) for the design and safety checking of steel members 

(i) subjected to different combinations of internal forces and moments and (ii) susceptible to 

global instability phenomena, namely flexural buckling (members under compression) and/or 

lateral-torsional buckling (open-section members under major-axis bending). Moreover, the 

vast majority of the existing studies concern I-section members, by far the most widely used 

in the steel construction industry. This fact is reflected in the very large number of “fine-

tuned” expressions (interaction equations), intended for the design and safety checking of I-

section members, appearing in the current steel design codes. For instance, the latest version of 
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Eurocode 3 (CEN 2005) contains a plethora of rather elaborate (and also fairly complex) 

formulae and equations aimed at the design of narrow-flange (I) and wide-flange (H) cross-

sections and members subjected to arbitrary internal forces and moment diagrams − the 

interested reader can find the background of most of these formulae and equations in the 

ECCS (European Convention for Constructional Steelwork) report stemming from the activity 

of its Technical Committee on Stability (TC8) and co-authored by Boissonnade et al. (2006). 
 
However, quite surprisingly (in view of what was mentioned in the previous paragraph), 

virtually no information can currently be found concerning the structural response and design 

of I-section members subjected to major-axis bending and tension (i.e., beams under tension), 

namely on how the presence of tension affects (improves) the beam lateral-torsional buckling 

behavior. Indeed, the rather complete literature search carried out by the authors bore no fruits 

and, moreover, no information was obtained from several world-wide recognized experts on 

lateral-torsional buckling that were contacted very recently. The sole exception to the above 

situation is the previous (pre-norm) version of Eurocode 3 (CEN 1992), which included 

provisions concerning the safety checking of beams under tension. Such provisions, whose 

existence provided the motivation for the study reported in this work, are based on an 

“effective (reduced) bending moment” concept − however, once more, no trace of background 

information concerning these provisions could be found. Of course, part of the explanation 

for the “information void” on this problem is due to the fact that (i) beams under tension 

occur seldom in practice and (ii) neglecting the tension effects leads to conservative ultimate 

strength estimates against lateral-torsional failures (the member is designed or safety checked 

as a “pure beam”). Nevertheless, it is important to investigate the behavior, collapse and 

design of beams susceptible to lateral-torsional buckling and subjected to tension, namely to 

acquire information on how conservative are the ultimate strength predictions that neglect the 

tension effects. The objective of this paper is precisely to contribute to such an investigation, 

by bridging the lack of scientific information and technical guidance concerning the lateral-

torsional stability, behavior/failure and design of beams under tension. It deals specifically 

with (doubly symmetric) hot-rolled steel I-section beams exhibiting “fork-type” end supports 

and subjected to simple transverse loadings (e.g., applied end moments) and not affected by 

local buckling phenomena − beams with a compact cross-section (class 1 or 2 cross-section, 

according to the Eurocode 3 nomenclature) that can reach its plastic resistance. 
 
Initially, the paper presents the derivation and validation, through the comparison with beam 

finite element results, of an analytical expression that provides critical buckling moments 

associated with the lateral-torsional stability (bifurcation) of uniformly bent beams subjected 

to tension. Then, the analytical study is (numerically) extended to beams under non-uniform 

bending (mostly stemming from unequal applied end moments) − several beam finite element 

results concerning the beneficial influence of axial tension on the lateral-torsional stability 

are presented and discussed in some detail. Next, the paper describes the experimental set-

up, procedure and obtained results concerning two full-scale tests, involving a narrow and 

a wide flange beam subjected to eccentric axial tension, that were performed (i) to acquire in-

depth knowledge about the problem under consideration and (ii) to provide the means to 

develop and validate beam and shell finite element models, in the software FINELG (2012), to 

subsequently perform an extensive parametric study. This parametric study, carried out in 

order to assemble a fairly large ultimate strength/moment data bank, involves more than 2000 

numerical simulations concerning beams with various cross-section shapes, lengths, yield 

stresses, acting bending moment diagrams and axial tension levels. This data bank is then 

used to assess the merits of a design approach proposed in this work for beams subjected to 

tension and collapsing in lateral-torsional modes − this design approach, which consists of a 
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slight modification of the current procedure prescribed in Eurocode 3 to design beams against 

lateral-torsional failures, is shown to provide ultimate moment estimates that correlate very 

well with the values obtained from the FINELG numerical simulations. 
 
 
2. Lateral Torsional Stability 

This section addresses the influence of tension on the lateral-torsional stability/buckling 

behavior of simply supported (“fork-type” supports − free warping and flexural rotations) 

doubly-symmetric I-section beams subjected to major-axis bending − i.e., to assess how the 

presence of an axial tension Nt changes/increases the critical buckling moment Mcr. Of course, 

it is assumed that Nt is such that the beam cross-section resistance (under bending moment 

and axial force) is not reached prior to the occurrence instability (bifurcation) − otherwise, 

if Nt is large enough, the beam collapse stems exclusively from plasticity effects. The first 

step consists of the analytical derivation and numerical validation, through ABAQUS beam 

finite element analyses (BFEA), of an expression providing critical moments of uniformly 

bent beams acted by tension. Next, a numerical investigation, again carried out by means of 

ABAQUS BFEA and aimed at assessing the effect of tension on the critical moment of beams 

acted by several non-uniform bending diagrams, is presented and discussed. 
 

2.1 Beams under Uniform Bending − Analytical Study 

Consider the beam depicted in Fig. 1(a), which is subjected to uniform major-axis bending 

(My) and tension (Nt) − x is the longitudinal axis and the y and z are the cross-section major 

and minor centroidal axes. Fig. 1(b) shows the beam adjacent equilibrium configuration 

associated with the occurrence of lateral-torsional buckling − the deformed configuration 

axes ζ-η-ξ correspond to their initial (undeformed) counterparts x-y-z. 
 

(a)  (b) 

Figure 1: Beam subjected to major-axis bending My and axial tension Nt: (a) general view and (b) 

deformed configuration associated with the occurrence of lateral torsional buckling 
 
Following the derivations presented in the classical monographs by Chen & Atsuta (1977) 

and Trahair (1993) for the lateral-torsional stability of beam-columns (i.e., members under 

major-axis bending and axial compression), the equations ensuring adjacent equilibrium for 

members subjected to major-axis bending and axial tension read (note the change in sign of 

the Nt terms and recall that pre-buckling deformations are neglected) 
 
 

 
 
 
where v and φ are the minor-axis bending displacements and torsional rotations, respectively. 

In order to obtain the critical buckling moment, it is necessary to solve the eigenfunction 

problem defined by Eqs. (1) and (2). Following the approach adopted by Culver (1966) to 

obtain analytical solution for beam-columns subjected to bending, it can be shown that the 

beam buckling mode is expressed by the sinusoidal functions 

        EIz v
IV

 + Nt v′′+My φ ′′=0 
 

EIw φ IV − (GIt + Nt r0
2
)φ ′′ + My v′′=0  

(1) 
 

(2) 
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satisfying all the problem boundary conditions, it is possible to obtain the expression 
 
 

 

 
 
which provides the critical buckling moment of a member subjected to bending and tension. 

In this expression, (i) Mcr (0) denotes the critical buckling moment of the “pure beam” 

(member under uniform bending only), and (ii) Pcr.z and Pcr.φ are given by 
 
 

 

 
 
 

and their values correspond to the symmetric of the minor-axis flexural and torsion buckling 

loads of the “pure column” (member under uniform compression only). Eq. (5) confirms 

(and quantifies, for the particular case under consideration) the beneficial effect of tension 

on the member lateral-torsional buckling moment − i.e., the additional bending and torsional 

stiffness values, stemming from the presence of Nt, lead to a Mcr increase. 
 
In order to provide validation for the derived analytical expression, Fig. 2 depicts the 

variation of the critical bucking moment increase [Mcr (Nt) /Mcr (0)] with the ratio Nt /My, for an 

IPE 300 beam with length L=10 m − the results shown are obtained with Eq. (5) (solid line) 

and ABAQUS BFE buckling analyses (dashed line). It is observed that (i) there is a virtually 

perfect agreement between the analytical a numerical values, and (ii) the critical moment 

increase grows exponentially with applied tension level − for Nt /My larger than 9.6, lateral-

torsional buckling no longer occurs (the whole beam is under tension). 
 

 
Figure 2: Variation of the critical buckling moment increase Mcr (Nt) /Mcr (0) with Nt (IPE 300 + L=10 m) 

v(x) = A1 sin (π/L x) 
 

φ(x) = A2 sin (π/L x) 

(3) 
 

(4) 

 

(5) 

               

 

    

(6) 
 
 

(7) 
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2.2 Beams under Non-Uniform Bending − Numerical Investigation 

ABAQUS BFEA analyses are employed to determine the critical buckling moments of beams 

(i) built from four hot-rolled profiles (IPE300, IPE500, HEB300, HEB500), (ii) with lengths 

comprised between 0.5 and 25 m, (iii) subjected to the bending moment diagrams stemming 

from the loadings depicted in Fig. 3 (unequal end moments or uniformly distributed load 

applied along the centroid/shear centre axis) and (iv) acted by tension values such 

thatβ=Nt /My=0; 0.5; 0.75; 1.0; 1.5; 2.0 (My is the maximum applied bending moment) − 

the transverse and axial loads are applied proportionally. 
 

 

Applied end moments such that: 

ψ=1.0; 0.5; 0; − 0.5; − 1.0 

(ψ=1.0 − uniform bending) 

 

Uniformly distributed load p applied 

along the shear centre axis 

Figure 3: Transverse loadings considered in the numerical lateral-torsional buckling analyses. 
 
Due to space limitations, only a representative sample of the numerical critical buckling 

moments obtained is presented in this work − the interested reader can find the full set of 

results (qualitatively similar to those displayed here) in Tomás (2013). Fig. 4 concerns 

IPE300 beams subjected to the bending moment diagram associated with ψ=0 and provides 

the variations of the critical moment increase [Mcr (Nt) /Mcr (0)] with the ratio β=Nt /My 

(relating the applied tension and maximum bending moment values) for span lengths varying 

from L=0.5 m to L=15 m. On the other hand, Fig. 5 concerns HEB300 beams with length 

L=10 m and provides curves the Mcr (Nt) /Mcr (0) vs. β for all the bending moment diagrams 

considered in this work. Finally, Fig. 6 concerns L=15 m beams with various cross-sections 
 

 
Figure 4: Variation of Mcr (Nt) /Mcr (0) with β for 0.5 m ≤ L ≤ 15 m (IPE300 beams + ψ=0) 
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Figure 5: Variation of Mcr (Nt) /Mcr (0) with β for various moment diagrams (HEB300 beams + L=10 m) 

 

 
Figure 6: Variation of Mcr (Nt) /Mcr (0) with β for different cross sections (L=15m + ψ=0) 

 
acted by one end moment (ψ=0) and shows additional Mcr (Nt) /Mcr (0) vs. β   curves. The 

observation of the results presented in these three figures, as well as those not shown here 

but reported by Tomás (2013), prompts the following comments: 

(i) Naturally, the critical moment increase always grows with β, i.e., the amount of tension 

acting on the beam. Note that, eventually, the Mcr (Nt) /Mcr (0) vs. β curves would tend 

to infinity as β approaches the “limit tension value” − the value ensuring that no beam 

cross-section is acted by compressive stresses. Note, however, that a Nt value established 

a priori, corresponding to the application of transverse loading on a “pre-tensioned” 

beam, never precludes the occurrence of elastic lateral-torsional buckling (for any Nt). 
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(ii) The three sets of Mcr (Nt) /Mcr (0) vs. β curves, corresponding to the variation of either the 

beam length (Fig. 4), bending moment diagram (Fig. 5) or cross-section shape (Fig. 6), 

exhibit qualitatively similar trends, which means that it can be argued that the three 

above factors are equally relevant. 

(iii) Fig. 4 shows that, logically, the importance of the tension effects grows with the beam 

length, i.e., as the beam becomes more prone to lateral-torsional instability. 

(iv) Fig. 5 makes it possible to assess how the (beneficial) tension effects vary with the 

bending moment diagram shape
3
. The key factor is the shape of the axial force diagram 

acting on the whole beam compression flange, combining the constant tensile value Nt 

with varying compressive values due to the bending moments. It is observed that this 

combination leads to tension effects that are (iv1) highest for the ψ=0 triangular diagram 

(“least compressed” compression flange) (iv2) lowest for theψ=1 uniform diagram 

(“most compressed” compressed flange). It is interesting to note that the curve associated 

with the uniformly distributed load falls, somewhat surprisingly, in between those 

concerning the ψ= − 0.5 and ψ=0.5 diagrams. 

(v) Finally, Fig. 6 provides clear evidence that the relevance of the tension effects grows 

considerably with the web height. On the other hand, no conclusion can be drawn about 

the influence of the flange width, which seems to depend also on the web height. 
 
It is worth noting that the numerical investigation just reported made it possible to gather a 

critical buckling moment data bank comprising about 1000 values. They will be used later, in 

section 5, addressing the development of a design procedure for beams subjected to tension.  
 
 

3. Behaviour and Ultimate Strength −−−− Experimental/Numerical Investigation 

This section addresses a limited experimental investigation (only two full-scale tests are 

reported) on the behavior and ultimate strength of beams subjected to tension. Besides 

acquiring deeper knowledge about the structural response of these members, this study aims 

at gathering information intended to develop accurate and reliable numerical (finite element) 

models. These numerical models will be subsequently employed to carry out parametric 

studies to assemble a fairly large ultimate strength data bank (see section 4), intended to assess 

the merits of the design developed in section 5. 
 
After describing the experimental set-up and procedure, including all the measurements, the 

paper presents and discusses the test results. Finally, the development of the finite element 

models is addressed − these models are validated by means of the comparison between 

the test results reported and the corresponding numerical simulations. 
 
3.1 Experimental Set-Up and Procedure 

Figs. 7(a)-(b) provide an overall picture of experimental set-up and a detailed view of the 

beam end support conditions, which combine (i) “fork-type conditions”, with respect to 

major and minor-axis bending, with (ii) warping restraint of the end cross-sections (the 

beam “extends” beyond the cross-sections where the end supports are deemed materialized). 

The two beams tested had length L=4.00 m (due to space constraints, the effective beam “free 

length” was L=3.36 m) and were linked at both ends (symmetrically) to rigid secondary 

systems conceived to ensure a smooth application of eccentric tension (minor-axis 

eccentricity causing major-axis bending) − see Fig. 8. The tests involved (i) an IPE 200 beam 

loaded with a 0.25 m eccentricity, and (ii) a HEA 160 beam loaded with a 0.5 m eccentricity. 

                                                
3
 Note that the curves provide critical buckling moment percentage increases (not the values). 
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 (a) (b) 

Figure 7: Experimental set-up (a) overall view and (b) detail of the end supports 

 

 
Figure 8: Procedure associated with the application of the eccentric tensile load 

 
Prior to the performance of each test, (i) tensile coupon tests were carried out, in order to 

assess the real steel material behavior, (ii) the residual stress distribution and magnitude were 

quantified, by dividing (cutting) the profile into several strips and measuring their individual 

elongations, and (iii) the specimen initial geometrical imperfections (global and local) 

were assessed − this was done my measuring, at 10 cm intervals along the specimen length, 

vertical displacements at three upper flange points (web-flange corner and flange free ends) 

and lateral displacements at three web points (mid-height and web-flange corners). 
 
When performing a test, the first steps consisted of (i) welding vertical rigid profiles to the 

specimen ends (see Fig. 7(a)), which prevent warping and make it possible to apply the 

eccentric tensile loads, (ii) positioning the specimen in between two pairs of end support 

cylindrical hinges, one resting on the supporting cross-bar and the other leaning vertically 

against a short RHS cantilever (see Fig. 7(b)
4
, making sure that symmetry with respect to the 

mid cross-section is kept, i.e., that the outstand segments extending beyond each hinge are 

equal (see Fig. 7(a), and (iii) placing the hydraulic jacks, which are mounted on secondary 

structural systems, in such a way that the required tension eccentricity is guaranteed (see 

Fig. 8). The second steps concern the placement of the measuring devices at the mid-span and 

end cross-sections. In view of the expected specimen three-dimensional behavior, a complex 

displacement transducer system was devised to enable the measurement of two pairs of mid-

span cross-section transverse displacements (two vertical and two lateral) − Fig. 9(a) makes it 

possible to visualize this displacement transducer system. Moreover, inclinometers were 

attached to the vertical rigid profiles welded to the specimen ends, in order to measure the 

major-axis flexural rotations on the supports, as illustrated in Fig. 9(b). During the test, the 

above measurement devices recorded values at 0.5 second intervals, thus providing a fairly 

                                                
4
 This support arrangement ensures free major/minor flexural rotations. Moreover, two pairs of short (rigid) steel 

plates were placed laterally near each support (see Fig. 7(b)), to limit the end section minor flexural rotations. 
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(a)       (b) 

Figure 9: (a) Mid-span displacement sensor system at and (b) inclinometer measuring support flexural rotations 
 
nice continuous displacement/rotation output. Concerning the loading, a two-stage 

strategy was adopted: (i) large load increments in the elastic range and (ii) much smaller 

increments after the (expected) onset of yielding, detected by closely monitoring the tensile 

load level provided by loads cells also at 0.5 second intervals. The specimens were tested 

up to failure, which means that experimental ultimate loads were obtained. 

 

3.2 Test Results 

Each specimen tested was previously characterized, by determining its (i) Young’s modulus 

(E), yield stress (fy), ultimate stress (fu) and ultimate extension (εu), (ii) longitudinal normal 

residual stress distribution (iii) global and local initial geometrical imperfections. Due to space 

limitations, only an illustrative sample of this characterization is provided in Figs. 10 and 

11(a)-(b). They concern the IPE200 specimen and show (i) the steel constitutive law (stress-

strain curve), (ii) the longitudinal normal residual stress distribution and (ii) the initial vertical 

displacement longitudinal profiles concerning the three top flange points identified 

earlier, respectively. A detailed account of all this information can be found in Tomás (2013). 
 
The results obtained during the performance of each test consist of (i) experimental evidence 

concerning the occurrence of lateral-torsional buckling in beams acted by tension (Figs. 
 

 
Figure 10: IPE200 specimen steel stress-strain curve (constitutive law) 
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 (a) (b) 

Figure 11: IPE200 specimen (a) longitudinal normal residual stress distribution and (c) initial vertical 

displacement longitudinal profiles of the three top flange points 

 

      
 (a) (b) 

Figure 12: Deformed configurations at the brink of collapse for specimens (a) IPE200 and HEA160 

 

  
 (a) (b) 

Figure 12: Specimen IPE200 equilibrium paths relating the applied load to (a) the end section flexural 

rotations θy and (b) mid-span torsional rotation θx 
 
The results obtained during the performance of each test consist of (i) experimental evidence 

concerning the occurrence of lateral-torsional buckling in beams acted by tension (Figs. 

12(a)-(b) display the deformed configurations of the IPE200 and HEA160 specimens at the 

brink of collapse), (ii) equilibrium paths relating the applied load with various measured 

displacements and/or rotations (Figs. 13(a)-(b) show the IPE200 specimen equilibrium paths 
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concerning the end cross-section flexural rotation θy and mid-span torsional rotation θx) and 

(iii) experimental failure loads: 269.2 kN (IPE200) and 150.0 kN (HEA160). 
 

3.3 Numerical Simulations 

The experimental results were also employed to develop, calibrate and validate a shell finite 

element model able to handle realistic material constitutive laws, end support conditions, load 

application procedures, initial geometrical imperfections and residual stresses. This was 

done using the non-linear finite FEM software FINELG (2012), which was originally developed 

by Ville de Goyet (1989), at the University of Liège, and has been continuously updated by 

several researchers at that university and also at the Greisch Design Office. In the context of this 

work, this software was used mainly to perform elastic buckling, elastic-plastic first-order and 

elastic-plastic second-order analyses. The experimental set-up was entirely modeled with fine 

meshes of 4-node shell elements based on Kirchhoff’s bending theory, thus ensuring that 

the beam “real end support conditions” and “surroundings” are adequately simulated. Figs. 

13 and 14(a)-(b) concern the IPE200 specimen test and provide (i) an overall view of the 

experimental set-up discretization, (ii) the shape of the initial geometrical imperfections 

included in the analysis and (iii) the numerical simulation of the load application system. 
 

 
Figure 13: Overall view of the experimental set-up discretization concerning the IPE200 specimen 

 

  

 (a) (b) 

Figure 14: (a) Initial geometrical imperfections (amplified) and (b) load application system models (IPE200) 
 
The developed numerical model was then employed to perform elastic buckling and elastic-

plastic geometrically non-linear numerical analyses of the two specimens tested. Table 1 

makes it possible to compare the numerical and experimental ultimate moments Mu obtained 

− moreover, the table also provides the (i) analytical cross-section plastic moments Mpl (under 

pure bending), (ii) FINELG beam critical moments Mcr (analyzed in the experimental set-up 
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context − Fig. 15 displays half of the critical (lateral-torsional) buckling mode shape 

obtained for the IPE200 specimen) and (iii) beam slenderness values, calculated on the basis 

of the presented Mpl and Mcr values − note that both beam are fairly stocky. 
 

Table 1: Analytical, numerical and experimental results concerning the two specimens tested 

 Numerical Experimental  

Mpl [kNm]  
 

Mcr [kNm]  Mu [kNm] Mu [kNm] 

IPE 200 70.6 0.90 86.5 62.98 67.3 

HEA 160 75.3 0.66 179 76.9 75 

 

 
Figure 15: Half of the critical (lateral-torsional) buckling mode provided by FINELG for the IPE200 specimen 

 
The numerical and experimental ultimate moments are found to correlate quite well − indeed, 

the numerical simulations either underestimate by 6% (IPE200 specimen) or overestimate by 

2% (HEA160 specimen) the experimental values. Moreover, Fig. 16 shows the IPE200 

specimen deformed configuration at collapse, provided by the FINELG analysis − note the 

qualitative and quantitative similarity with its experimental counterpart, shown in Fig. 12(a). 
 

 

Figure 16: Deformed configuration at collapse obtained with FINELG for the IPE200 specimen 
 
Finally, Figs. 17(a)-(b) compare the experimental equilibrium paths shown in Figs. 12(a)-(b), 

relating the applied load to the end section flexural rotations and mid-span torsional rotation, 

with the corresponding numerical simulations. First of all, note that, as mentioned earlier, the 

numerical and experimental ultimate loads/moments practically coincide (2% difference). 

Concerning the end section flexural rotations and mid-span torsional rotation, there is a 
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 (a) (b) 

Figure 17: Experimental and numerical equilibrium paths concerning the IPE200 specimen and relating 

the applied load with the (a) end-section flexural rotations θy and (b) mid-span torsional rotation θx 
 
virtually perfect coincidence in the elastic regime, beyond which the numerical model is a bit 

stiffer and, therefore, underestimates the θy and θx values. A possible explanation for the 

discrepancies observed between the numerical and experimental equilibrium paths resides 

in the fact that the three-dimensional nature of the beam deformed configurations may be the 

source of erroneous measurements. Indeed, it was observed that the accuracy of the transducer 

measurements decreased considerably when the point under consideration exhibited various 

displacement components. Although some corrections were made, on the basis of geometry 

considerations, they gradually become less as the beam deformation increases, rendering 

almost inevitable the underestimation of the measured displacements and rotations. 
 
On the basis of the comparisons between the test results obtained and the corresponding 

numerical simulations, most of which were not presented here and can be found in Tomás 

(2013), it seems fair to conclude that the numerical (shell finite element) model developed 

provides reasonably accurate results and, thus, can be adequately used to validate the finite 

element beam model employed perform the parametric study addressed in the next section. 
 
 

4. Ultimate Strength Data Bank−−−− Numerical Simulations 

The beam and shell finite element models just developed is now employed to perform about 

2000 geometrically and materially non-linear analyses of beams under tension containing 

initial geometrical imperfections and residual stresses (these analyses are often identified 

by the acronym GMNIA). The parametric studies carried out comprise beams exhibiting 

several slenderness values, stemming from (i) 8 span lengths (between 0.5 and 25 m), (ii) 

two yield stresses (fy=355; 460 MPa − the steel material behavior modeled is depicted in 

Fig. 18 and corresponds to the usual elastic-perfectly plastic constitutively with a marginal 

strain-hardening occurring for very large strains) and (iii) four cross-section shapes (IPE300, 

IPE500, HEB300, HEB500). The beams are subjected to (i) five bending moment diagrams 

(ψ=1; 0.5, 0, − 0.5, − 1) and (ii) six tension levels, corresponding to β=Nt /My ratios equal to 

0; 0.5; 0.75; 1.0; 1.5; 2.0 − a total of over 2000 numerical simulations were carried out. Finally, 

the beams contain (i) longitudinal normal residual stresses with the parabolic pattern depicted 

in Fig. 19(a) (values expressed as percentages of fy=235 MPa), and (ii) global sinusoidal 

initial geometrical imperfections that combine minor-axis flexure and torsion, and exhibit the 

amplitude (mid-span value) given in Fig. 19(b) − these shapes and values were recently 

proposed by Boissonnade & Somja (2012). The non-linear analyses were carried out in 
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Figure 18: Constitutive law adopted to model the steel material behavior (Boissonnade & Somja 2012) 

 

   
 (a) (b) 

Figure 19: (a) Residual stresses and (b) global initial geometrical imperfections considered in the numerical 

analyses performed in the context of the parametric study (Boissonnade & Somja 2012) 
 
FINELG and the beams were discretized into standard 3D beam finite elements based on 

Vlasov’s theory for open-section thin-walled members
5
. 

 
Due to space limitations, only a small (but representative) fraction of the results obtained 

from the above parametric study can be shown in this paper, namely in Figs. 20-22 and 

Annex A (tabular form − Tables A1-A4) − they concern the results obtained for (i) L=15 m 

S355 IPE300, (ii) L=5 m S460 IPE500, (iii) L=10 m S355 HEB300 and (iv) L=3.5 m S355 

HEB500 beams, all subjected to the various bending moment diagrams. Again, a detailed 

report of the whole set of determined results can be found in Tomás (2013). The results 

displayed in Figs. 20 and 21 concern the influence of the axial tension level on the ultimate 

strength of IPE300 and HEB300 beams made of S460 steel, exhibiting various lengths, 

comprised between L=0.5 m and L=15 m, and subjected to several bending moment 

diagrams, all stemming from applied end moments. Both figures provide the variation of the 

ultimate moment Mu, normalized with respect to the cross-section plastic bending resistance 

Mpl (calculated for pure bending on the basis of fy), with the loading ratio β=Nt /My − the 

values between parentheses, given above or below each point (beam analyzed) provide the Mu 

percentage increase due to axial tension: [Mu (β) − Mu (0)] /Mu (0). While Fig. 20 focuses on the 

combined effect of β and the beam length (under uniform bending), Fig. 21 addresses the 

                                                
5
 For validation purposes, the results obtained from FINELG beam and shell finite element analyses were compared 

− the latter were based on the model validated against the experimental results (see section 3). Provided that 

the beam length is long enough to preclude local buckling effects, a virtually perfect match was found. 
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Figure 20: Variation of Mu/Mpl with β and the beam length (S460 steel IPE300 beams under uniform bending) 

 

 
Figure 21: Variation of Mu/Mpl with β and the bending moment diagram (L=15 m S355 steel HEB300 beams) 
 
joint influence of β and the bending moment diagram (for a L=15 m beam). It is worth noting 

that the negative and underlined positive values in Figs. 20 and 21 correspond to beams 

whose collapse is governed by the cross-section resistance, which naturally decreases with β6
. 

The observation of the numerical results displayed in these figures, as well as those not shown 

here but reported by Tomás (2013), makes it possible to draw the following conclusions: 

(i) First of all, as expected, the presence of axial tension is completely different in the 

stocky and slender beams, in the sense that their collapse is governed by plasticity and 

                                                
6
 The Mu values provided in Tables A1-A4 are those that effectively correspond to the limit points obtained from 

the FINELG non-linear analyses, which take into account the small strain-hardening depicted in Fig. 18. 

However, the Mu values displayed in Fig. 20 are limited by the cross-section resistance determined analytically, 

which is given in Tables A1-A4 (see the MN,Rk values) and neglects any strain hardening. 
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instability effects, respectively. In the former (e.g., the L=0.5; 1.0 m beams in Fig. 20), 

axial tension leads to an ultimate moment decrease, stemming exclusively from the 

drop in cross-section resistance. In the latter (e.g., the L=8; 10; 15 m beams in Fig. 20), 

axial tension leads to an ultimate moment increase, which grows with β and stems 

from the improved lateral-torsional buckling resistance. 

(ii) The comparison between the Mu /Mpl vs. β curves concerning the (ii1) L=8; 10; 15 m and 

(ii2) L=3.5; 5 m beams show different trends, even if all these curves have positive slopes 

throughout the whole β range considered. While in the former Mu /Mpl grows with β at 

an always increasing rate (upward curvature), which becomes percentage-wise more 

relevant as L increases, the latter exhibit points of inflexion, i.e., the curvature changes 

from upward to downward at a given β  value that seems to increase with L. These 

different trends reflect the contradicting influence of axial tension on the lateral-

torsional buckling and cross-section resistances: the latter becomes progressively more 

relevant as β increases and L decreases. This assertion is fully confirmed by looking at 

the Mu /Mpl vs. β curve concerning the L=2 m beam, which exhibits very little growth 

and ends up merging with their L=0.5; 1.0 m beam counterparts for β=2.0 − it would 

start descending for larger β values, whenever collapse would start being governed 

by plasticity in the beam mid-span region. 

(iii) Naturally, the Mu /Mpl percentage growth with β is considerably larger for the longer 

(more slender) beams − e.g., for L=15 m and β=2.0, Mu /Mpl increases by almost 85%. 
(for L=3.5 m this same increase is just about 27%). 

(iv) Concerning the influence of the bending moment diagram shape on the axial tension 

benefit, shown in Fig. 21 for the L=15 m S355 steel HEB300 beams, the first important 

observation is that only the ψ=1 and ψ=0.5 (marginally) curves (i.e., those leading 

to more relevant lateral-torsional buckling effects) are not limited by the descending 

curve associated the mid-span cross-section full yielding up to β=2.0 − indeed, the ψ=0 

and ψ= − 0.5 curves merge into this curve at lower (decreasing) β values and following 

an “almost horizontal” segment. Finally the ψ= − 1 curve decreases monotonically 

with ψ, thus meaning that the beam collapse is always governed by the mid-span 

cross-section resistance. 

(v) Quantitatively speaking, the highest Mu percentage increases due to the presence of axial 

tension occur for the beams acted by the ψ=0.5 bending moment diagram − they 

are slightly larger than their ψ=0 and ψ=1 diagram counterparts (in this order). 
 
Next, Fig. 22 shows how Mu /Mpl varies with the beam slenderness λLT=(Mpl,Rk /Mcr)

0.5
, 

calculated taking into account the axial tension, for various combination of beam length, 

cross-section shape and steel grade. This figure clearly shows that the net effect of the 

presence of an increasing axial tension is to move the Mu /Mpl vs. λLT “beam points” (i) to the 

left (lateral-torsional slenderness decrease) and (ii) upwards (ultimate moment increase), thus 

reflecting the double influence of Nt. Moreover, it can also be observed in this figure that the 

whole set of points, corresponding to various beams and β values (including β=0), remain 

nicely “aligned” along a “design-like” curve. The design approach for beams subjected to 

tension that is proposed in the next section takes advantage of this feature. Moreover, this 

design approach it will be validated against the extensive ultimate moment data bank obtained 

by means of the parametric study that was just (partially) reported. 
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Figure 22: Variation of Mu /Mpl with the beam slenderness λλλλLT 

 

 

5. Proposed Design Approach 

As mentioned earlier, Eurocode 3 (EC3 − CEN 2005) currently lacks design guidance for 

beams susceptible to lateral-torsional buckling and subjected to tension
7
 − moreover, this 

topic has also very seldom been addressed in the literature. This means that EC3 completely 

neglects the beneficial influence of axial tension on the beam ultimate strength, thus leading 

to overly conservative designs. Indeed, a beam subjected to axial tension is designed against 

lateral-torsional instability ultimate limit states as “pure beam” (i.e., only major-axis bending 

is taken into account), and the (detrimental) influence of axial tension is only felt through the 

cross-section resistance. The aim of the design approach proposed in this work is to change the 

above situation, by incorporating the axial tension effects in the ultimate moment prediction 

prescribed by EC3 for compact
8
 hot-rolled steel beams (the so-called “special method”

9
). 

The proposed design approach is based on the current EC3 methodology, which stipulates 

that the ultimate moment of (compact) beams subjected to axial tension is the least of two 

values: (i) the cross-section reduced plastic moment and (ii) the beam bending resistance 

against a failure stemming from lateral-torsional buckling. While the former is determined 

through classical strength of materials concepts, the latter is obtained by means of a 

procedure based of the use of “beam strength curves”. This procedure involves the following 

steps (the EC3 nomenclature is adopted): 

(i) Determine the beam lateral-torsional slenderness λLT=(Mpl,Rk /Mcr)
0.5

, where Mpl,Rk is the 

cross-section plastic moment (bending resistance) and Mcr is the beam critical buckling 

moment, which obviously depends on the acting major-axis bending moment diagram. 

(ii) On the basis of λLT, use the appropriate buckling curve (depends on the cross-section 

geometry and fabrication process − curve b for all the profiles considered in this work) 

to obtain the reduction factor χLT. 

                                                
7
 Although no investigation was carried on this matter, the authors believe that such design guidance is also 

missing in the vast majority of the current steel structures codes. 
8
 Class 1 or Class 2, according to the EC3 nomenclature. 

9
 Method applicable only to hot-rolled and “equivalent welded” beams − any other beam must designed by means 

of the so-called “general method”, which is more conservative. 
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(iii) Further modify/increase the reduction factor obtained in the previous step, by 

means of the relation χLT.mod =χLT /f, where f ≤ 1.0 is a parameter that depends on the 

bending moment diagram and beam slenderness λLT −it supposedly reflects the influence 

of the spread of plasticity taking place prior to the beam collapse. 

(iv) Evaluate the beam bending resistance against from lateral-torsional buckling failure, 

which is termed Mb,Rd and given by Mb,Rd=χLT.mod × Mpl,Rk. 
 
The proposed design approach consists of merely incorporating the axial tension beneficial 

effects into the above procedure. This is done exclusively through the value of the critical 

buckling moment used to determine the beam slenderness, while keeping all the remaining 

steps unchanged − in particular, Mpl,Rk still remains the cross-section pure bending resistance 

(i.e., does not account for the presence of axial tension). In other words, Mcr≡Mcr (0) is 

replaced by Mcr (Nt,Ed), where Nt,Ed is the acting axial tension, which implies a λLT decrease 

and, therefore, also larger χLT.mod and Mb,Rd values. It is worth noting that the calculation of 

Mcr (Nt,Ed) must be done by means of a numerical beam buckling analysis (e.g., using beam 

finite elements) − in the future, the authors plan to develop analytical expressions and/or other 

design aids that will render the performance of this task easier and more straightforward. 

 
5.1 Assessment of the Proposed Ultimate Moment Estimates 

The assessment of the quality of the ultimate moment estimates provided by the proposed 

modification of the current EC3 design rules is based on the results of the numerical 

simulations partially reported in section 4 and shown in Tables A1-A4 − the full set of results 

can be found in Tomás (2013). These results consist of, for each combination of beam 

geometry (cross-section and length), steel grade, bending moment diagram and β value, 

the beam (i) critical moment Mcr (accounting for the axial tension) (ii) plastic moment Mpl,Rk, 

(iii) reduced (by the axial tension) plastic bending resistance MN,Rk, (iv) numerical ultimate 

moment Mu (v) lateral-torsional slenderness λLT (based on Mcr and Mpl,Rk), (vi) reduction 

factor χLT.mod (obtained with the EC3 curve b), (vii) predicted ultimate moment Mb,Rd (for a 

lateral-torsional failure) and (viii) numerical-to-estimated moment ratio RM=Mu /Mu.est, 

where Mu.est is the lower between MN,Rk and Mb,Rd − whenever Mu.est=MN,Rk, the value of RM 

reflects the cross-section over-strength due to the small strain-hardening included in the 

steel constitutive law modeled in this work. 
 
Before comparing the obtained numerical and estimated ultimate moments, it should be 

pointed out that this comparison concerns exclusively the beams whose collapse does not 

correspond to exhausting the beam mid-span cross-section resistance, i.e., beams failing in 

lateral-torsional modes occurring prior to the attainment of MN,Rk − indeed, the proposed 

design approach only concern the latter. Figs. 23 to 25 concern the various columns analyzed 

under bending moment diagrams defined by ψ=1, ψ=0 and ψ= − 1, respectively, and make 

it possible to compare the numerical ultimate moments with their predictions provided by the 

proposed design approach − use of the EC3 design curve b with a lateral-torsional slenderness 

modified through the inclusion of the critical buckling dependence on Nt. The observation of 

these three figures prompts the following remarks: 

(i) First of all, it is worth noting that the length of the EC3 design curve b horizontal 

plateau depends on the bending moment diagram acting on the beam − indeed, this 

plateau length increases from 0.4 (ψ=1) to 0.70 (ψ=0) and 0.80 (ψ= − 1). 

(ii) Then, it is impossible not to notice the remarkable closeness between the numerical 

ultimate moments and their predictions provided by the proposed design approach. 

Indeed, in the three figures the numerical values are virtually aligned on top the design 
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Figure 23: Comparison between the Mu /Mpl,Rk (numerical) and Mb,Rd /Mpl,Rk (proposed design approach) for ψ=1 

 

 

Figure 34: Comparison between the Mu /Mpl,Rk (numerical) and Mb,Rd /Mpl,Rk (proposed design approach) for ψ=0 
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Figure 25: Comparison between the Mu /Mpl,Rk (numerical) and Mb,Rd /Mpl,Rk (proposed design approach) for ψ= − 1 
 

 curve − it is only possible to detect a very slight underestimation in the high slenderness 

range (it grows with λLT), particularly for ψ=1 (heavier lateral-torsional buckling effects). 

(iii) However, it is equally impossible not to notice the few striking exceptions to the very 

general rule put forward in the previous item. They all concern the same beam: an 

L=25 m S460 steel HEB500 beam. The explanation for these discrepancies lies in the 

fact that, for most loadings (i.e., whenever the mid-span cross-section resistance does not 

govern), this beam collapses at extremely high deformation levels (e.g., torsional 

rotations above 90°), associated to ultimate moments that are clearly underestimated by 

the design curve, particularly for ψ=0. If the ultimate moments were linked to 

“acceptable deformation levels” (instead of actual equilibrium path limit points) their 

values would drop and end up much closer to the design curve. For instance, if the 

(perfectly logical) torsional rotation limit of 15° was adopted as a beam ultimate limit 

state, all the Mu /Mpl,Rk values associated with the beam under consideration would be 

no more than about 12% above the EC3 design curve b (value for ψ =0 and β=1). 

(iv) Table 2 provides the averages, standard deviations and maximum/minimum values of 

the ratio RM=Mu /Mu.est corresponding to Figs. 23-25 and for the various axial tension 
 

Table 2: Averages, standard deviations and maximum/minimum value of the ratio RM 

 Average St. Dev. Max Min 

β =0 1.08 0.06 1.17 0.98 

β =0.5 1.04 0.09 1.11 0.97 

β =0.75 1.07 0.10 1.16 0.94 

β =1 1.05 0.12 1.09 0.95 

β =1.5 1.02 0.08 1.08 0.96 

β =2 1.02 0.04 1.08 0.93 
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 levels (excluding the 13 L=25 m S460 steel HEB500 beam ultimate moments). These 

indicators reflect the excellent quality of the ultimate moment estimates − indeed, the 

overwhelming majority of them are safe and extremely accurate. It is still worth noticing 

that the least accurate estimations (higher average and standard deviation) concern β=1. 

 

In view of what was mentioned above, it seems fair to conclude that the proposed design 

approach for beams subjected to torsion provides excellent estimates of all the numerical 

ultimate moments obtained in this work (associated with lateral-torsional collapse modes) 

and, therefore, can be considered as a very promising candidate for inclusion in a future 

version of Eurocode 3 − of course, additional parametric and reliability studies are needed 

before this goal can be achieved. The only foreseeable hurdle for designers is the lack of 

an easy and user-friendly way to calculate critical buckling moment in the presence of axial 

tension − as mentioned earlier, the authors plan to work on the removal of this hurdle through 

the development of analytical expressions and/or other design aids to calculate Mcr (Nt,Ed). 

 
5.2 Axial Tension Beneficial Influence 

In order to assess the beneficial influence of the presence of axial tension on the beam ultimate 

strength/moment, let us begin by considering a L=8.0 m S355 steel IPE500 beam subjected to 

uniform bending and six axial tension levels (β values). Table 3 shows the corresponding 

λLT, χLT.mod and Mb,Rd values, and also the Mb,Rd percentage increases with respect to the “pure 

bending” value (∆Mb,Rd). Fig. 26 provides a pictorial representation of the various Mb,Rd and 

∆Mb,Rd values − it is very clear that how an increase in axial leading causes a slenderness 

drop and the corresponding ultimate moment increase.In order to assess the beneficial 

influence of the presence of axial tension on the beam ultimate  

 

Finally, Table 4 provides the averages, standard deviations and maximum/minimum values 

of the percentage ultimate moment increases (∆Mb,Rd) due to axial tension corresponding to 

Figs. 23-25 and excluding again the 13 L=25 m S460 steel HEB500 beam ultimate moments. 

It is observed that all the above axial tension benefit indicators increase with β, with the sole 

exception of the minimum value − it remains constant and very small, because it always 

corresponds to a slenderness located very close to the end of the design curve plateau. 
 
Table 3: Ultimate moment predictions for the L=8.0 m S355 steel IPE500 beam under uniform bending 

β  λLT χLT.mod Mb.Rd [kNm]  ∆Mb.Rd [kNm] 

0 1.683 0.357 278.1 − 

0.5 1.575 0.396 308.9 30.8% 

0.75 1.509 0.423 329.9 51.8% 

1 1.464 0.443 345.1 67% 

1.5 1.350 0.498 387.8 109.7% 

2 1.231 0.562 437.8 159.7% 

 
Table 4: Averages, standard deviations and maximum/minimum values of ∆Mb,Rd 

β  Average St. Dev. Max Min 

β =0.5 12.6% 7.6% 33% 0.94% 

β =0.75 17.3% 10.7% 45% 0.94% 

β =1 25.2% 16.7% 71% 0.94% 

β =1.5 38.8% 28.3% 117% 0.94% 

β =2 52.8% 42.5% 183% 0.94% 
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Figure 26: Pictorial representation of the ultimate moment predictions − L=8.0 m S355 steel IPE500 beam (ψ=1) 

 
Conclusion 

This paper reported the results of an analytical, numerical and experimental investigation on 

the lateral-torsional stability, failure and design of hot-rolled steel I-section beams with fork-

type end supports and acted by simple transverse loadings (mostly applied end moments) and 

various axial tension values. Initially, the derivation and validation of an analytical expression 

providing critical buckling moments of uniformly bent beams subjected to tension was 

presented. Then, this analytical finding was followed by a numerical study on the beneficial 

influence of axial tension on beams under non-uniform bending, namely caused by unequal 

applied end moments or a uniformly distributed load − several beam finite element results 

were presented and discussed in some detail. Next, the paper addressed the performance of 

two experimental tests, carried out at the University of Fribourg and aimed at determining the 

behavior and ultimate strength of a narrow and a wide flange beams subjected to eccentric 

axial tension. The experimental set-up and procedure were described, and the main results 

obtained (initial imperfection and residual stress measurements, and beam equilibrium paths) 

were displayed and briefly commented. These results were also used to develop and validate 

FINELG beam and shell finite element models that were subsequently employed to perform 

an extensive parametric study that (i) involved more than 2000 numerical simulations, 

concerning beams with various cross-section shapes, lengths, yield stresses, acting bending 

moment diagrams and axial tension levels, and (ii) was carried to gather a fairly large ultimate 

strength/moment data bank. Finally, these data were then used to assess the merits of a design 

approach proposed for beams subjected to tension and collapsing in lateral-torsional modes 

− this design approach consists of slightly modifying the current procedure prescribed in 

Eurocode 3 to design beams against lateral-torsional failures (through the incorporation of the 

axial tension influence on the critical buckling moment that is used to evaluate the beam 

slenderness). The ultimate moment estimates provided by proposed design approach were 
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shown to correlate extremely well with the values obtained from the numerical simulations, 

thus making it a very promising candidate for inclusion in a future version of Eurocode 3. 

Lastly, the paper closed with a quick assessment of the beneficial influence of axial tension 

on the ultimate strength/moment of beams failing in lateral-torsional modes − as expected, it 

was found that this influence can be quite significant and, thus, neglecting it (as is currently 

done in practically all steel structures codes) will certainly lead to over-conservative designs. 
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ANNEX A 

Table A1: Numerical and design results concerning the L=15 m S355 steel IPE300 beams 

ψ ψ ψ ψ =1         

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm] Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 30.405 223.2 223.181 32.968 2.709 0.155 34.7 0.95 

0.5 35.186 223.2 221.960 36.325 2.519 0.178 39.6 0.92 

0.75 38.636 223.2 220.204 42.700 2.403 0.193 43.1 0.99 

1 40.843 223.2 218.448 46.104 2.338 0.203 45.3 1.02 

1.5 47.522 223.2 213.051 56.078 2.167 0.232 51.8 1.08 

2 55.415 223.2 206.296 60.584 2.007 0.266 59.3 1.02 

ψ ψ ψ ψ =0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 39.960 223.2 223.181 44.456 2.363 0.199 44.4 1.00 

0.5 48.157 223.2 221.960 51.639 2.153 0.235 52.5 0.98 

0.75 53.904 223.2 220.204 56.490 2.035 0.259 57.9 0.98 

1 58.076 223.2 218.448 61.703 1.960 0.277 61.7 1.00 

1.5 69.939 223.2 213.051 72.956 1.786 0.324 72.2 1.01 

2 84.086 223.2 206.296 89.21 1.629 0.376 83.9 1.06 

ψ ψ ψ ψ =0        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 54.493 223.2 223.181 49.911 2.024 0.262 58.4 0.85 

0.5 67.394 223.2 221.960 62.863 1.820 0.314 70.0 0.90 

0.75 73.550 223.2 220.204 74.669 1.742 0.337 75.3 0.99 

1 81.871 223.2 218.448 82.793 1.651 0.368 82.1 1.01 

1.5 98.148 223.2 213.051 124.357 1.508 0.424 94.6 1.31 

2 116.957 223.2 206.296 151.009 1.381 0.505 112.7 1.34 

ψ ψ ψ ψ = −−−− 0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 73.169 223.2 223.181 68.029 1.746 0.336 75.0 0.91 

0.5 88.004 223.2 221.960 85.189 1.592 0.390 87.0 0.98 

0.75 93.846 223.2 220.204 99.200 1.542 0.410 91.4 1.09 

1 103.558 223.2 218.448 114.230 1.468 0.449 100.3 1.14 

1.5 121.178 223.2 213.051 132.896 1.357 0.527 117.6 1.13 

2 142.143 223.2 206.296 156.140 1.253 0.609 135.8 1.15 

ψ ψ ψ ψ = −−−− 1        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 80.019 223.2 223.181 83.864 1.670 0.361 80.6 1.04 

0.5 89.342 223.2 221.960 87.300 1.581 0.394 88.0 0.99 

0.75 95.376 223.2 220.204 97.100 1.530 0.415 92.6 1.05 

1 100.443 223.2 218.448 97.604 1.491 0.435 97.1 1.00 

1.5 113.825 223.2 213.051 112.552 1.400 0.500 111.7 1.01 

2 130.202 223.2 206.296 132.897 1.309 0.574 128.0 1.04 
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Table A2: Numerical and design results concerning the L=5 m S460 steel IPE500 beams 

ψ ψ ψ ψ =1         

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 552.7 1009.7 1009.7 464.0 1.352 0.497 501.6 0.93 

0.5 622.3 1009.7 996.5 524.3 1.274 0.538 542.9 0.97 

0.75 681.7 1009.7 978.5 560.5 1.217 0.569 575.0 0.97 

1 710.0 1009.7 960.5 602.1 1.192 0.584 589.2 1.02 

1.5 824.3 1009.7 910.3 706.5 1.107 0.634 640.6 1.10 

2 979.0 1009.7 854.2 790.0 1.016 0.690 696.8 1.13 

ψ ψ ψ ψ =0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 729.6 1009.7 1009.7 607.0 1.176 0.625 630.7 0.96 

0.5 853.5 1009.7 996.5 710.6 1.088 0.687 693.3 1.02 

0.75 978.3 1009.7 978.5 775.8 1.016 0.737 744.4 1.04 

1 1022.2 1009.7 960.5 247.3 0.994 0.753 760.0 0.33 

1.5 1264.6 1009.7 910.3 268.8 0.894 0.821 828.9 0.32 

2 1638.9 1009.7 854.2 279.2 0.785 0.888 896.9 0.31 

ψ ψ ψ ψ =0        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1019.4 1009.7 1009.7 664.7 0.995 0.809 816.9 0.81 

0.5 1249.5 1009.7 996.5 721.5 0.899 0.884 892.6 0.81 

0.75 1383.4 1009.7 978.5 748.8 0.854 0.916 925.2 0.81 

1 1580.9 1009.7 960.5 793.6 0.799 0.953 962.6 0.82 

1.5 2084.3 1009.7 910.3 836.6 0.696 0.902 910.3 0.92 

2 2901.6 1009.7 854.2 871.0 0.590 0.846 854.2 1.02 

ψ ψ ψ ψ = −−−− 0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1425.7 1009.7 1009.7 677.9 0.842 0.951 960.0 0.71 

0.5 1761.0 1009.7 996.5 723.8 0.757 0.987 996.5 0.73 

0.75 2568.5 1009.7 978.5 751.0 0.627 0.969 978.5 0.77 

1 2227.2 1009.7 960.5 783.7 0.673 0.951 960.5 0.82 

1.5 2920.6 1009.7 910.3 828.3 0.588 0.902 910.3 0.91 

2 4044.4 1009.7 854.2 860.6 0.500 0.846 854.2 1.01 

ψ ψ ψ ψ = −−−− 1        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm] Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1505.0 1009.7 1009.7 826.6 0.819 1.000 1009.7 0.82 

0.5 1757.9 1009.7 996.5 834.1 0.758 0.987 996.5 0.84 

0.75 1806.7 1009.7 978.5 870.4 0.748 0.969 978.5 0.89 

1 2104.6 1009.7 960.5 921.1 0.693 0.951 960.5 0.96 

1.5 2605.7 1009.7 910.3 951.1 0.622 0.902 910.3 1.04 

2 3383.9 1009.7 854.2 972.3 0.546 0.846 854.2 1.14 
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Table A3: Numerical and design results concerning the L=10 m S355 steel HEB300 beams 

ψ ψ ψ ψ =1         

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 560.1 664.0 664.049 443.2 1.089 0.645 428.5 1.03 

0.5 618.8 664.0 657.138 507.5 1.036 0.678 450.0 1.13 

0.75 641.7 664.0 647.564 522.2 1.017 0.689 457.6 1.14 

1 688.1 664.0 637.991 585.1 0.982 0.710 471.8 1.24 

1.5 771.0 664.0 610.382 644.4 0.928 0.743 493.6 1.31 

2 871.8 664.0 578.383 798.0 0.873 0.776 515.3 1.55 

ψ ψ ψ ψ =0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 737.6 664.0 664.049 565.3 0.949 0.784 520.5 1.09 

0.5 839.9 664.0 657.138 644.0 0.889 0.824 547.0 1.18 

0.75 899.6 664.0 647.564 665.7 0.859 0.843 559.9 1.19 

1 966.3 664.0 637.991 679.5 0.829 0.862 572.4 1.19 

1.5 1125.3 664.0 610.382 748.8 0.768 0.898 596.2 1.26 

2 1330.4 664.0 578.383 810.4 0.706 0.931 618.3 1.31 

ψ ψ ψ ψ =0        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1016.5 664.0 664.049 665.1 0.808 0.948 629.2 1.06 

0.5 1192.2 664.0 657.138 686.7 0.746 0.985 654.4 1.05 

0.75 1314.9 664.0 647.564 706.6 0.711 0.975 647.6 1.09 

1 1409.8 664.0 637.991 711.6 0.686 0.961 638.0 1.12 

1.5 1683.6 664.0 610.382 767.0 0.628 0.919 610.4 1.26 

2 2036.3 664.0 578.383 825.1 0.571 0.871 578.4 1.43 

ψ ψ ψ ψ = −−−− 0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1388.9 664.0 664.049 689.1 0.691 1.000 664.0 1.04 

0.5 1619.9 664.0 657.138 703.0 0.640 0.990 657.1 1.07 

0.75 1775.0 664.0 647.564 727.0 0.612 0.975 647.6 1.12 

1 1893.5 664.0 637.991 737.5 0.592 0.961 638.0 1.16 

1.5 2232.3 664.0 610.382 777.6 0.545 0.919 610.4 1.27 

2 2671.0 664.0 578.383 825.3 0.499 0.871 578.4 1.43 

ψ ψ ψ ψ = −−−− 1        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1499.81 664.0 664.049 693.862 0.665 1.000 664.0 1.04 

0.5 1662.86 664.0 657.138 713.818 0.632 0.990 657.1 1.09 

0.75 1752.122 664.0 647.564 736.699 0.616 0.975 647.6 1.14 

1 1864.2 664.0 637.991 750.500 0.597 0.961 638.0 1.18 

1.5 2118.51 664.0 610.382 784.947 0.560 0.919 610.4 1.29 

2 2448.68 664.0 578.383 831.789 0.521 0.871 578.4 1.44 
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Table A4: Numerical and design results concerning the L=25 m S355 steel HEB500 beams 

ψ ψ ψ ψ =1         

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 417.5 1709.8 1709.841 421.0 2.024 0.330 564.2 0.75 

0.5 545.5 1709.8 1675.745 597.9 1.770 0.390 666.8 0.90 

0.75 625.2 1709.8 1631.599 653.2 1.654 0.420 718.1 0.91 

1 717.1 1709.8 1587.452 782.0 1.544 0.470 803.6 0.97 

1.5 948.3 1709.8 1472.804 893.6 1.343 0.560 957.5 0.93 

2 1269.3 1709.8 1360.176 1293.8 1.161 0.650 1111.4 1.16 

ψ ψ ψ ψ =0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 427.7 1709.8 1709.841 454.2 1.999 0.410 701.0 0.65 

0.5 561.8 1709.8 1675.745 644.9 1.745 0.520 889.1 0.73 

0.75 669.2 1709.8 1631.599 704.6 1.599 0.570 974.6 0.72 

1 741.8 1709.8 1587.452 843.6 1.518 0.640 1094.3 0.77 

1.5 983.2 1709.8 1472.804 964.0 1.319 0.760 1299.5 0.74 

2 1316.1 1709.8 1360.176 1395.6 1.140 0.860 1470.5 0.95 

ψ ψ ψ ψ =0        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1016.5 664.0 664.049 665.1 0.808 0.948 629.2 1.06 

0.5 1192.2 664.0 657.138 686.7 0.746 0.985 654.4 1.05 

0.75 1314.9 664.0 647.564 706.6 0.711 0.975 647.6 1.09 

1 1409.8 664.0 637.991 711.6 0.686 0.961 638.0 1.12 

1.5 1683.6 664.0 610.382 767.0 0.628 0.919 610.4 1.26 

2 2036.3 664.0 578.383 825.1 0.571 0.871 578.4 1.43 

ψ ψ ψ ψ = −−−− 0.5        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 764.9 1709.8 1709.841 584.4 1.495 0.700 1196.9 0.49 

0.5 1111.3 1709.8 1675.745 837.0 1.240 0.830 1419.2 0.59 

0.75 1364.2 1709.8 1631.599 942.4 1.120 0.870 1487.6 0.63 

1 1529.0 1709.8 1587.452 988.3 1.057 0.930 1590.2 0.62 

1.5 2075.4 1709.8 1472.804 1236.4 0.908 0.861 1472.8 0.84 

2 2871.1 1709.8 1360.176 1243.4 0.772 0.795 1360.2 0.91 

ψ ψ ψ ψ = −−−− 1        

β  [m-1] Mcr [kNm] Mpl.Rk [kNm] MN.Rk [kNm Mu [kNm] λLT χ
LT.mod Mb,Rd [kNm] RM 

0 1120.7 1709.8 1709.841 616.9 1.235 0.770 1316.6 0.47 

0.5 1373.7 1709.8 1675.745 779.3 1.116 0.860 1470.5 0.53 

0.75 1490.2 1709.8 1631.599 861.1 1.071 0.910 1556.0 0.55 

1 1720.6 1709.8 1587.452 913.9 0.997 0.940 1607.3 0.57 

1.5 2217.3 1709.8 1472.804 1058.9 0.878 0.861 1472.8 0.72 

2 2975.0 1709.8 1360.176 1162.1 0.758 0.795 1360.2 0.85 
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