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Abstract 
In this paper, the case of beam-columns with linear varying web is studied. It is the purpose of 
this paper to: (i) review recent proposals by the authors that are in line with the Eurocodes 
principles for the stability verification of web-tapered columns and beams; (ii) carry out FEM 
numerical simulations covering several combinations of bending moment about strong axis, My, 
and axial force, N, and levels of taper; (iii) compare results to a) existing rules in EC3-1-1 
(General Method); b) application of the interaction formulae for verification of beam-columns by 
adapting it with the previously developed rules for tapered beams and columns. Finally, (iv) to 
discuss of the possible approaches for the stability verification of portal frames with tapered 
members. 
 
 
1. Introduction 
Tapered steel members are commonly used over prismatic members because of their structural 
efficiency: by optimizing cross section utilization, significant material can be saved. However, if 
proper rules and guidance are not developed for these types of members, safety verification will 
lead to an over prediction of the material to be used. EC3 provides several methodologies for the 
stability verification of members and frames. Regarding non-uniform members in general, with 
tapered cross-section, irregular distribution of restraints, non-linear axis, castellated, etc., the 
following possibilities are provided in the code: 
• Verification by a full nonlinear analysis which for the time being is not the preferred 

alternative due to its complexity; 
• The General Method in EC3-1-1 (CEN, 2005) which couples the elastic stability resistance 

with the cross sectional resistance (subject to second order effects, if relevant). This method 
has been shown to not be adequate at all times, even for prismatic members (Greiner and 
Ofner, 2005; Simões da Silva et al., 2010); 

• On the other hand, the interaction formulae in EC3-1-1 are only applicable to prismatic 
members. 

Even when applying the possible methodologies, several difficulties are noted, such as: 
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• The magnitude and shape of global and local imperfections to consider in a full nonlinear 
analysis or even in a second order analysis; 

• The buckling curves were specifically calibrated for prismatic members, relying on the 
relationship between the web height and the flange width. In a tapered member this 
relationship varies along the member and there are no guidelines on which location to 
consider. This may lead to a wide range of results, either unsafe or over-safe; 

• Definition of the cross-section class when it varies along the member (e.g. due to loading); 
As a result, safety verification is likely to be too conservative by designer´s choice, not 
accounting for the advantages and structural efficiency that non-uniform members provide.  
This paper aims at discussing possible approaches that could be adopted in order to achieve a 
competitive design for non-uniform members and giving answer for some of the above-
mentioned problems, with focus on linearly web-tapered beam-columns. The paper is mainly 
divided in three parts: 
Section 2: Isolated beams and beam-columns stability verification – recent solutions proposed by 

the authors; 
Section 3: Isolated beam-column stability verification – the proposals presented in Section 1 are 

applied to the case of beam-columns by adapting the Interaction Formulae of EC3-1-1 
for prismatic members. A possible adaptation of the General Method is also analyzed; 

Section 4: Safety verification of steel structures with focus on frames composed of tapered 
members, in line with EC3-1-1. Some of the possibilities of structural analysis are 
presented and combined with member verification as presented in the previous 
sections. 

 
2. Stability verification of web-tapered columns and beams – Ayrton-Perry procedures 
The methodology for the stability verification of web-tapered beam-columns to be presented in 
Section 3 is based on analytically based proposals regarding flexural buckling of tapered 
columns and lateral-torsional buckling of tapered beams. More details may be found in Marques 
et al. (2012c) and Marques et al. (2012b), respectively. For this, Ayrton-Perry analytical models 
were built based on a linear interaction between the first order forces and second order bending 
moment utilizations, leading to a maximum utilization (and, consequently, to the ultimate load 
factor) at a certain location, denoted as the second order failure location. In these models, 
eigenmode conform imperfections were considered for the second order forces, leading to 
similar equations as those presented in EC3-1-1 for the stability verification of prismatic 
columns. As a result, as long as a second order failure location is known and an additional 
imperfection factor is considered to account for the non-uniformity either of the loading or of the 
cross section, the verification may be performed analogously to the rules for prismatic columns. 
Similarly, the model for tapered beams is also consistent with recently proposed design models 
for the stability verification of prismatic beams (Taras, 2010), which were also developed on the 
basis of Ayrton-Perry formulation. 
Recent investigations have shown that this second order failure location and additional 
imperfection factor may be replaced in some of the terms by an “over-strength” factor φ which 
accounts for the relation between the ultimate resistance multiplier of the second order location, 
αult,k(xc

II) and the first order location, αult,k(xc
I), such that if the φ-factor is determined, the 

verification is always based on xc
I. φ is given by 
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In Eq. (2), αcr is the critical load multiplier. xc

I is such that the first order utilization, i.e. NEd/NRk 
or My,Ed/My,Rk is the highest along the member. It is recommended that at least 10 locations along 
the member are considered to find xc

I, as also proposed by Greiner et al. (2010). The verification 
procedures, calibrated φ-factors and second order failure locations are described in Table 1 for 
web-tapered columns and Table 2 to Table 4 for web-tapered beams. γh=hmax/hmin and 
γw=W,el,max/W,el,min are the taper ratios concerning the maximum and minimum height or elastic 
bending modulus and ψ is the ratio between the maximum and minimum bending moment for 
linear bending moment distributions and UDL regards uniformly distributed loading cases. A 
practical limit of γh≤4 and γw≤6.5 is established for application of Table 2. In addition, it should 
be noticed that new imperfection factors for welded cross sections were also proposed leading to 
more accurate levels of resistance than the ones given in the code (i.e., even for prismatic 
members) (Marques et al. 2012c).  
Finally, these proposals yield differences of 10% relatively to the established numerical models. 
The procedure was then shown to be adequate for non-uniform bending moment distributions.  
On the other hand, application of the General Method in EC3-1-1 with one of the most common 
buckling curves of EC3-1-1 may lead to differences of 40% on the safe side. Unsafe results up to 
25% were also achieved, clearly showing a great range of uncertainty relatively to the proposed 
methodologies.  
 

Table 1: Proposed verification procedures for web-tapered I-section columns – φ approach 
 Out-of-plane flexural buckling In-plane flexural buckling 
αult,k(xc

 I) NRk(xc,N
 I)/NEd(xc,N

 I) – for NEd=const. is the smallest cross section 
αcr Numerically or from literature 

≈Ncr,z,hmin/NEd (approximately the Euler 
load of an equivalent column with the 

smallest cross section) 

Numerically or from literature 
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Table 2: Proposed verification procedure for web-tapered I-section beams – xc,lim
II and φ combined approach 

  Lateral-torsional buckling 
αult,k(xc

 I)  My,Rk(xc,M
 I)/My,Ed(xc,M

 I) – 
the minimum along the beam, e.g. 10 sections 

αcr  Numerically e.g. or by expressions for Mcr from literature, see Section 5.2.4. 
The multiplier αcr shall afterwards be obtained with respect to the applied load. 
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Table 3: Calculation of xc,lim,M

II/L for lateral-torsional buckling of tapered I-beams 
For ψ ( ) ( )( )

( ) ( )103.012.0/,1214.110

0106.0006.0025.007.018.075.0

lim,

22

−−=−+≥<

≥−−−+−−

h
II
chw

h

LxandIf γγγψψ

γψψψψ

 
For UDL ( ) ( ) 5.0103.010035.05.0 22 ≤−−−+ hh γγ  

 
Table 4: Calculation of φ for lateral-torsional buckling of tapered I-beams 
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3. Stability verification of web-tapered beam-columns - existing and possible approaches 
3.1 Interaction formulae in EC3-1-1 
The interaction formulae of clause 6.3.3 for the stability verification of prismatic beam-columns 
are presented in Eq. (3) and (4) for uniaxial bending and class 1, 2 or 3 cross sections. 
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in which NEd and My,Ed are the design values of the compression force and the maximum 
moment about the yy axis along the member. The interaction factors kyy and kzy may be 
determined either by Annex A (Method 1) or Annex B (Method 2) of the same code. Finally, 
besides the verification of Eq. (3) and (4), an additional cross section check is required at the 
extremes of the member. 
The adaptation of the interaction formulae to the verification of tapered member naturally leads 
to some questions as there is not an analytical background specifically developed for the tapered 
beam-column case as it was performed for prismatic members. Nevertheless, an adjustment can 
be fairly easily analyzed especially when considering Method 2. 
In a tapered beam-column the following verifications shall be performed: 
• Out-of-plane stability verification; 
• In-plane stability verification; 
• Cross section verification at the most heavily loaded cross section, i.e., with the highest first 

order utilization. 
In the following, a possible approach for each of these verifications is discussed and results are 
analyzed further in Section 3.4 for tapered beam-columns failing in out-of-plane buckling (Eq. 
(4)) or cross section failure.  
Firstly, regarding cross-section verification, the first order failure location of tapered beam-
columns varies with varying levels of axial force relatively to the applied bending moment 
leading to different utilizations – see Figure 1. As a result, and also as referred for the case of 
tapered beams, cross section verification should be performed in a sufficient number of locations 
in order to find the cross section with the highest first order utilization. 
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(a) Interaction cross section resistance curve (b) First order (plastic) utilization 

Figure 1: First order failure location with varying axial force relatively to the bending moment 
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Secondly, regarding member verification, Eq. (3) and (4) must be adapted: 
• Cross section properties to consider: according to the methodologies presented in Section, the 

quantities NEd/(χyNRk), NEd/(χzNRk) or My,Ed/(χLTMy,Rk) are constant along the locations of the 
column or beam, respectively. As a result, it is irrelevant which location is chosen and is here 
recommended (for simplicity reasons) the consideration of the first order failure location of 
the axial force acting alone (xc,N

I) for the utilization term regarding axial force; and the first 
order failure location of the bending moment acting alone (xc,M

I) for the utilization term 
regarding the bending moment; 

• Adaptation of the interaction factors, kyy and kzy. Only Method 2 is considered for a 
straightforward application/adaptation of the interaction formulae to the case of tapered beam-
columns and further validation. Because I-sections are susceptible to torsional deformations, 
according to Method 2, the interaction factors to be considered are summarized in Table 5. 
Finally, regarding the equivalent uniform moment factors Cm,y and Cm,LT, Table B.3 of EC3-1-
1 can be adopted provided that the diagram to be considered is the bending moment first order 
utilization diagram instead of the bending moment diagram itself, see Table 6. 

 
Table 5: Possible interaction factors for web-tapered beam-columns according to Method 2 
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Table 6: Adaptation of the equivalent uniform moment factors Cm for prismatic members 

Moment utilization diagram Range Cmy and CmLT 

ε(Ms)

ε(Mh)
ε(Mh)ψε

L/2

αs=ε(Ms)/ε(Mh)
 

0≤αs≤1 -1 ≤ ψε ≤ 1 0.2 + 0.8 αs ≥ 0.4 

-1≤αs<0 
0 ≤ ψε ≤ 1 0.1 - 0.8 αs ≥ 0.4 

-1 ≤ ψε < 0 0.1(1-ψε) - 0.8 αs ≥ 0.4 

ε(Ms)
ε(Mh)

ε(Mh)ψε

L/2

αs=ε(Mh)/ε(Ms)
 

0≤αs≤1 -1 ≤ ψε ≤ 1 0.95 + 0.05 αh 

-1≤αs<0 
0 ≤ ψε ≤ 1 0.95 + 0.05 αh 

-1 ≤ ψε < 0 0.95 + 0.05 αh(1+2 ψε) 
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Finally, it should be mentioned that such adaptation of the interaction formulae leads to a similar 
level of reliability as for prismatic members for the analyzed cases – unrestrained beam-columns 
subject to axial force and major axis bending and failing in out-of-plane buckling. This occurs 
not only because the utilization ratios for axial force and for bending moment determined from 
the rules provided in Section 3 present a closer level of safety when compared to the prismatic 
cases; but also because for determination of Cm factors, a direct equivalency of the tapered to a 
prismatic member is done by considering the utilization of the applied bending moment with the 
resistant bending moment. 
 
3.2 Generalized slenderness procedure for out-of-plane stability verification 
For application of the general method of clause 6.3.4 of EC3-1-1, the following steps are taken 
(Figure 2): 
 

αult,k

χ    χLT

χop = 
Minimum (χ, χLT)

χop = 
Interpolated (χ, χLT)
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calculations
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Figure 2: Application of the General Method to non-uniform members 

 
Relatively to this, the following comments can be made: 
• It was shown in Simões da Silva et al. (2010) that the consideration in-plane local 

imperfections in the multiplier αult,k for the out-of-plane flexural buckling verification of 
columns gives inconsistent results with clause 6.3.1. This definition was adopted in clause 
6.3.4 because the consideration of the cross section resistance load multiplier (with no local 
imperfections) may sometimes lead to unsafe results for the stability verification of beam-
columns, even if the minimum between χz and χLT is considered (Ofner and Greiner, 2005), 
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see Figure 3. A more consistent approach is therefore to consider only resistance effects in the 
definition of αult,k; 

• Although it is not recommended by ECCS TC8 (2006), an interpolation between the reduction 
factors for flexural and lateral-torsional buckling, respectively χz and χLT could solve this 
problem. The question arises on what type of interpolation to consider in order to follow the 
buckling behavior of the beam-column. According to the general method in EC31-1, the 
reduction factor χop shall be calculated with the generalized slenderness opλ  considering the 
imperfection factors for lateral-torsional buckling or flexural buckling, respectively χop,LT and 
χop,zz. However, if this approach is analyzed, it can be right away observed that 

opLTopzzop λλλ == ,,  correspond to different member lengths and therefore, to different 
member behaviours and particularly for the case of tapered members, to different tapering 
angles. EC3-1-1 suggests in addition a linear cross section interpolation. Results provided by 
this alternative are given and discussed in Section 3.4. Even if the interpolation is carried out 
between the real member zzλ and LTλ , it will be shown that a deeper study is needed in order 
to establish a procedure which correctly takes into account the weight between lateral and 
lateral-torsional buckling phenomena. 
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(a) Buckling curve representation (b) Interaction curve representation 

Figure 4: Example of a member which χov is lower than both χz and χLT 

 
3.3 Parametric study 
The parametric study compromises 275 simply supported symmetrically web tapered beam-
columns which will fail in out-of-plane buckling (with or without lateral-torsional buckling). 
More details may be found in Marques et al. (2012a). For the finite element models to be 
compared with the presented procedures, thecommercial finite element package Abaqus, version 
6.10 (Abaqus, 2010) was considered. 
 
3.3 Results and discussion 
Regarding the interaction formulae, in general, the consideration of the analyzed adapted 
approach for tapered beam-columns leads to a resistance level between 80% and 103% of the 
GMNIA resistance, with an average of 93% and a coefficient of variation of CoV=5.66%. In 
Figure 5, to have a common basis, the generalized reduction factors are compared: 
χov

GMNIA=αb
GMNIA/αult,k and χov

interaction=αb
interaction/αult,k, in which αb is the resistance multiplier 
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obtained numerically or by the interaction approach and αult,k is the cross section resistance 
multiplier.  
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Figure 5: Results given by the interaction approach 

 
Figure 6 illustrates 2 examples of application of the General Method. Results are given regarding 
curves a, b and c. GM num and GM CS illustrate the cases in which αult,k is obtained from the 
GMNIA in plane analysis and from the cross section resistance, respectively. Differences 
between the two approaches for the given example can go up to 8%. Focusing now on the level 
of safety given by the general method, from Figure 6 it can also be seen that the safety provided 
by the method may be either too conservative (up to 25%) or too unconservative (up to 20%). 
This is because there is not a clear decision on which curve to adopt. 
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Figure 6: Results of the general method considering different assumptions for αult,k 
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Results of the general method are plotted against numerical results in Figure 7 (flexural buckling 
curve – c). 
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Figure 7: Results of the general method for out-of-plane flexural buckling – curve c 

 
Finally, Figure 8 illustrates numerical results of a beam-column plotted over the buckling curve 
and the M-N interaction curve for analysis of the proposed cross section linear interpolation in 
the code. For comparison, results of the interaction approach are also plotted. When Figure 8(a) 
is analyzed it is noticed that the GM_cs interpolation leads to unsafe levels of resistance. This 
can be confirmed in Figure 8(b). This occurs because a linear interpolation of the cross section 
resistance curve between the reduction factors for flexural and lateral-torsional buckling is a 
simple shift of that curve, not properly accounting for the buckling phenomena. Therefore, more 
thought needs to be given to a proper interpolation procedure. 
 

0.2

0.4

0.6

0.8

1

0.2 0.7 1.2 1.7

zz curve
LT curve
Euler
GM_cs interpolation
Interaction
GMNIA

χz, χLT, χov

ovLTz λλλ ,,  

0

200

400

600

800

1000

1200

0 1000 2000 3000 4000
NEd [kN]

My,Ed [kNm] GM_cs interpolation
Interaction
GMNIA
cross section
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Figure 8: Results of the analyzed methodologies: HEB300 | γh=2 | Ψ =0.25 | 1)( min =hz xλ  
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4. Structural analysis and safety verification of steel structures according to EC3 
4.1 Introduction 
There are many alternatives to study stability aspects. The designer will choose which method to 
adopt according to the complexity of the problem; the precision of results; the level of safety to 
be achieved or even the simplicity of application of the method to the problem itself. Figure 9 
describes the available possibilities for the analysis of a structure according to EC3-1-1. 
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Figure 9: Methods of analysis 

 
Provided that a second order analysis is required, following EC3-1-1, there are mainly three 
levels of analysis.  
• Level 1: Second order analysis accounting for all the effects and imperfections – global and 

local (clause 5.2.2 a) of EC3-1-1). It becomes only necessary to check the cross-section 
resistance of the member; 

• Level 2: Second order analysis considering only global effects and global geometrical 
imperfections (clause 5.2.2 b) of EC3-1-1). This method is the most commonly used. The 
stability verification of the members according to clauses 6.3.1 to 6.3.3 is carried out 
considering the buckling length of the member as the non-sway buckling length; 

• Level 3: First order analysis of the structure (clause 5.2.2 c) of EC3-1-1). Neither 
imperfections nor second order effects are included in the analysis of the structure and, as a 
result clauses 6.3.1 to 6.3.3 of EC3-1-1 must be verified considering the buckling length of 
the member defined according to the global buckling mode of the structure. 

In Section 4.2, an example of a frame composed of tapered members is given in order to 
illustrate the implementation of the several approaches (or even combination of those, as it may 
appear more practical). 
 
4.2 Stability verification of frames composed of tapered members 
In Section 2, design procedures for respectively flexural buckling of columns and lateral-
torsional buckling of beams were developed for the case of isolated members with fork 

193



 

conditions. However, members in real structures often do not exhibit these idealized boundary 
conditions. Due to this, several procedures exist on how to tackle the problem, either by 
considering all the relevant imperfections in the structural analysis or by extracting the member 
from the real structure by adequate buckling lengths in order to perform its stability verification 
separately from the global structure. These methods are brought into this section for the design of 
structural systems (focus on frames) with tapered members. As a starting point, only straight 
tapered members buckling out-of-plane between points that are braced in both flanges (i.e. in 
which both lateral and torsional deformation is prevented) are considered. Partial bracing is not 
contemplated in this analysis. As a result, for the considered cases, the buckling lengths may be 
assumed to be approximately equal to the member length, i.e., an approximation to fork 
conditions. In summary, in the scope of the present study, some of the possibilities of structural 
analysis and member verification are now presented for the case of frames with tapered 
members, assuming that, as a starting point, isolated member verification procedures are 
provided in the scope of Section 3. 
Consider the simply supported frame of Figure 10, prevented from out-of-plane and torsional 
deformations at the end of each rafter and column.   
 

 
Figure 10: Frame with tapered columns and tapered rafters 

 
Firstly, the definition of the local and global imperfections is analyzed. Assuming elastic global 
analysis and that αcr of the frame is αcr<10, second order analysis needs to be performed. The 
sway imperfections ϕ are obtained from clause 5.3.2 of EC3-1-1. Local imperfections e0 shall be 
obtained from Table 5.1 of EC3-1-1. Because non-uniform members either tapered or with non-
uniform loading do not exactly exhibit a sinusoidal shape for the buckling mode, it is 
questionable whether the local member imperfections should be modeled with a bow shape or 
not and if the given amplitudes in the code can safely be used for members with other shapes 
than prismatic. 
Secondly, 2 methods for the structural analysis of the frame are presented. 
 
a) In-plane and out-of-plane member verification procedure exists (Level 2): 

If proper in-plane verification procedure is available, only P-Δ effects and global (ϕ) 
imperfections are required in the frame analysis. The verification is then performed as 
follows: 
1. Out-of-plane verification check (for each member):  
o Determine χz and χLT considering the buckling length equal to the member length; 
o Obtain the second order forces from P-Δ effects and imperfections (ϕ); 
o Perform the out-of-plane check considering the second order forces and either an 

interaction or generalized slenderness approach. 
2. In-plane verification: 
o Determine χy considering the buckling length equal to the member length; 
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o Consider χLT from step no. 1; 
o Obtain the second order forces from P-Δ effects and imperfections (ϕ); 
o Perform the in-plane check considering the second order forces and either an interaction 

or generalized slenderness approach; 
3. Perform a cross section check (considering the calculated second order forces) at a 

sufficient number of sections, e.g. 10 sections per member. 
 
b) Only out-of-plane member verification procedure is provided (Level 1 and Level 3) 

Considering that only out-of-plane member stability may be checked individually, the global 
and local in-plane second order effects and imperfections of the frame need to be accounted 
for in the structural analysis. For this, the second order analysis of the frame must contemplate 
the imperfections of Figure 11. As referred, for this alternative, local member imperfections 
from Table 5.1 of EC3-1-1 shall be proven to be adequate. 

This example illustrates the combination of level 1 and 3 of analysis.  

e0,y
(4)

Lcr,y,global≈Lcolumn
Lcr,z≈Lcolumn (≈LLT)

e0,y
(1)

e0,y
(2)

e0,y
(3)

ϕ ϕ

e0,y
(4)

 
Figure 11: In-plane global and local imperfections 

 
After definition of the local and global in-plane imperfections, the verification of the frame is 
performed as follows: 
1. Out-of-plane verification check (for each member):  
o Determine χz and χLT considering the buckling length equal to the member length; 
o Obtain the second order forces from P-Δ effects and imperfections (ϕ) only; 
o Perform the out-of-plane check considering the second order forces and either an 

interaction or generalized slenderness approach. 
2. In-plane verification: 
o Obtain the second order forces from P-Δ and P-δ effects and imperfections (ϕ and e0,y); 
o To include the torsional effects, reduce My,Rk by χLT My,Rk (to be in line with the 

interaction formula 6.61 of EC3-1-1), considering χLT of each member; 
o Perform a cross section check (considering the calculated second order forces and the 

reduced moment capacity) at a sufficient number of sections, e.g. 10 sections per 
member. 

 
5. Conclusions 
In this paper, the stability verification of web-tapered beam-columns was discussed. 
Firstly, regarding out-of-plane buckling of beam-columns it was seen that the General Method, 
which is the current alternative for the stability verification of such members, not only does not 
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provide clear guidelines of which curve to be considered, but also may lead to a high (and 
random) spread regarding the level of safety. Because of this, based on recent proposals for the 
stability verification of web-tapered columns and beams, simple adaptations of both the 
interaction formulae of clause 6.3.3 and the general method of clause 6.3.4 were analyzed: 
• The interaction formula is applied considering the utilization of the forces NEd/NRk and 

My,Ed/My,Rk at an arbitrary position and the respective reduction factors at the same position. 
For simplicity reasons it is recommended to consider xc,N

I and xc,M
I, respectively. The 

interaction approach leads to results that are mostly on the safe side. Maximum differences of 
20% relatively to the numerical results are achieved; 

• A “modified” General Method is considered such that the generalized slenderness is 
calculated with the cross section resistance load multiplier for αult,k. The interpolation between 
the flexural buckling and lateral-torsional buckling reduction factors calculated with the 
generalized slenderness were analyzed. It was seen that a deeper analysis needs to be carried 
out to provide a proper interpolation procedure considering the stability behavior of the 
member and also to provide limits between the stability and cross section resistance for the 
low slenderness range.  

In the future, adequate verification procedures for the isolated member shall be developed, both 
for in-plane and out-of-plane buckling mode, and further adopted to the stability verification of 
the global structure. 
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