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Abstract 

The objective of this paper is to demonstrate how element (e.g. flange) local slenderness may be 

used to predict element strain capacity, and in turn, the element strain capacity may be used to 

predict member rotational capacity in structural steel members. Member plastic hinge rotation 

capacity has an important role in the design of steel structures, and while implicit understanding 

of the rotation capacity has sufficed in the past, as inelastic direct analysis methods are adopted 

in conventional as well as seismic design more explicit treatments are needed. It is hypothesized 

that the member rotation capacity, for rotations limited by local buckling, may be determined 

based on comparing the strain demands based on the distance to the neutral axis, against the 

strain capacity determined as a function of the element local slenderness. To test this hypothesis 

a comprehensive series of material and geometric shell finite element collapse analysis are 

performed in ABAQUS on component elements (plates) and structural steel members. The finite 

element analysis confirms the hypothesis, and also demonstrates the importance of additional 

factors, such as depth-to-length (shear-to-moment) in predicting the rotational capacity. The 

analyses are compared to existing code provisions for both conventional and seismic design and 

recommendations for potential improvements are made.  

 

 

1. Introduction 

In design of hot-rolled (structural) steel structures, classification of structural members for local 

buckling is a common approach in most current design codes such as AISC (2010a) and 

Eurocode 3 (EC3 2005). Classifications are generally considered to connect member strength or 

ductility capacity to element characteristics such as width-to-thickness ratio and boundary 

conditions (stiffened or unstiffened elements). Both of these element characteristics can be 

interpreted as member local slenderness by considering proper plate buckling coefficients (Seif 

and Schafer 2010). In Chapter B of the AISC specification, sections are classified as containing 

compact, noncompact, and/or slender elements (AISC 2010a). For each classification, a different 

design method or provision is presented to account for element slenderness in determination of 
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the member strength. These classifications are considered for members subjected to axial 

compression, flexure, or combined flexure and axial compression (i.e., beam-columns). 

 

On the other hand, another section classification scheme is set forth in the AISC Seismic 

Provisions (AISC 2010b) which addresses the ductility capacity of the section in terms of axial 

or rotational ductility. In this classification, the sections are classified as “highly ductile” or 

“moderately ductile” members. Seismic Force Resisting Systems (SFRS) determine the ductility 

demands of the members considered to provide ductility for the system. Generally, a more 

ductile SFRS would impose more ductility demands on the members and therefore members 

should fulfill the requirement of “highly ductile” members. 

 

Appendix 1 of the AISC specification (AISC 2010a) lets designers use inelastic methods in 

analysis and design of non-seismic controlled structures. As a requirement for the use of the 

inelastic analysis methods, the structural members must have a certain amount of ductility at the 

point of plastic hinges. Although ductility demands at the plastic hinges could be determined 

precisely by means of plastic analyses, instead the code requires the engineer to provide a 

minimum required rotation capacity (Rcap=3) for the section, where Rcap is a dimensionless 

parameter used to show the rotation ductility of the section (see Section 4). This is established by 

using “compact” cross-sectional elements along with some additional modifications, and 

providing more closely spaced lateral bracing. Thus, the relation between cross-sectional or 

member characteristics and the ductility capacity is not explicitly discussed. 

 

In seismic analysis, or the design and rehabilitation of structures, determination of the member 

ductility as a function of the cross-section characteristics is essential. This information is needed 

for both modeling parameters and acceptance criteria, as discussed in FEMA-356 (FEMA 2000) 

and ASCE-41-06 (ASCE 2007). Currently, both the modeling parameters and acceptance criteria 

for plastic deformations are connected to either beam flange width-to-thickness or web depth-to-

thickness ratios and a linear interpolation is adopted for values in-between. 

 

Almost all current design codes consider a step-wise approach in classification of sections that 

may result in nonoptimal design of steel members for both strength and ductility demands. While 

an inherent continuous change in structural capacity in terms of strength or ductility is 

anticipated by changing the member slenderness, design codes provide essentially lower-bound 

solutions over specific classification regimes, and ignore the reserve capacities between the 

classification limits. As a general motivation, improving current code-based approaches and 

making cross-section and member characteristics more explicit in the determination of member 

capacity (strength or ductility) would be potentially beneficial and could culminate in more 

realistic and optimized steel structures. 

 

Another related issue on the local buckling limits of the current code is that the interaction 

between the elements, such as flanges and web, are not considered explicitly in all cases. A 

detailed study on element interaction showed that the code limitations could be modified to 

consider the interaction between the section elements more precisely (Seif and Schafer 2010). 

 

In recent years, a new deformation-based design approach termed the Continuous Strength 

Method (CSM) has been proposed to determine the resistance of compact and non-compact 
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stainless steel structural members based on the deformation capacity of cross-section elements. 

Recently, CSM has been extended to other materials and various cross-sections composed of flat 

plates (Gardner and Nethercot 2004a, Ashraf et al. 2006a, Ashraf et. al. 2008). CSM does not 

follow the conventional cross-section classification approach, instead the member capacity is 

determined based on the strain capacity of the elements that comprise the section. Element strain 

capacity is a continuous function of element local slenderness. (Gardner 2007). Although an 

elastic-perfectly-plastic material model is traditionally used to classify cross-section elements, 

more realistic material models including strain hardening are considered in CSM (Gardner et. al. 

2011).  

 

For locally slender sections the concept of connecting cross-sectional slenderness to strain 

capacity has also been successfully implemented in the context of the inelastic bending reserve 

capacity of cold-formed steel members, and adopted in the Direct Strength Method (DSM) 

(Shifferaw and Schafer 2012). 

 

In this paper, a method complementary to CSM and DSM is proposed to calculate the strain 

capacity of cross-section elements based on local slenderness and connect the strain capacity to 

the rotation capacity of structural steel members. Accordingly, a continuous relationship between 

the rotation capacity of the members and the slenderness of the cross-sectional elements is 

achieved. To connect the element slenderness to strain capacity a comprehensive series of 

material and geometric shell finite element collapse analysis are performed in ABAQUS on 

component elements (plates) and the results are used to formulate the member rotation capacity. 

The results of I-shaped and box-shaped sections are compared to existing code provisions for 

both conventional and seismic design requirements and recommendations for potential 

improvements and future research are made.  

 

2. Proposed Method  

The proposed method to connect local slenderness to rotation capacity of the member has three 

main steps: (1) determine the element slenderness; (2) determine the strain capacity of the 

elements; (3) determine the member ductility based on the strain capacity. As shown in Fig.1, for 

box-shaped and I-shaped beams, the flange is assumed to be under uniform compression and it is 

also assumed that the member rotational ductility is controlled by the compression flange rather 

than instabilities in the web. These basic steps are elaborated in the following. 

 

M

M

 

M

M

 
(a) (b) 

Figure 1: Structural members under bending moment (M): (a) Box-Shaped Section; (b) I-shaped Section. 
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2.1. Element slenderness 

Element slenderness, lλ , is a dimensionless parameter used to determine the elastic buckling load 

of plates, for a plate under longitudinal loading with yield stress, Fy and buckling stress Fcrl: 

 

 λl =
Fy

Fcrl

=
b

t

Fy (12)(1−ν 2 )

π 2Ek
 (1) 

 
2

l

y
crl

)(

F
F

λ
=  (2) 

 

where b, is the width of the plate perpendicular to the direction of loading; t, is the thickness of 

the plate; E, is the Young’s modulus; and ν, is the Poisson’s ratio. The plate buckling coefficient, 

k, in Eq. 1 is a function of applied stress (i.e. uniform compression, bending, etc.), edge support 

conditions (i.e. free, simple, or clamped) and the plate length-to-width ratio. The plate buckling 

coefficient, k, is depicted in Fig.2 for a plate with different boundary conditions under uniform 

compression.  

 
a/b 

 

Figure 2: Plate buckling coefficient, k, as a function of normalized plate length (a/b) for different boundary 

conditions, m=number of buckled half-waves along the length of the plate. (ss: simply supported; fix: fixed 

supported or clamped; free: free edge or no support) (Yu and Schafer 2007) 

 

For full members the boundary conditions along the edges of the elements that comprise the 

section are not ideal. Thus, in such cases the plate buckling coefficient, k, is also a function of the 

geometry of the attached elements. As an alternative, cross-section local buckling analysis may 

be used to determine Fcrl directly, instead of using the isolated plate solutions. Shell finite 

element solutions or more efficient plate finite strip solutions may be utilized to efficiently find 

Fcrl and hence λl for nearly any member. (see, e.g., Seif and Schafer 2010). 

 

AISC traditionally has employed constant values for the plate buckling coefficient based on the 

element type (i.e. stiffened or unstiffened), stress type (axial or flexural compression) and cross-

sectional shape (rolled or built-up I-shape, box-shape, HSS, etc.). Notably, these values are not 

explicitly provided in AISC specifications. However, Seif and Schafer (2010) back-calculated 

the assumed plate buckling coefficients utilized in the AISC Speciation, and these results are 

summarized in Table 1. The results of Table 1 are employed in Section 5 to compare the results 

developed herein to the code ductility limits. 
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Table 1: AISC width-to-thickness ratio and back calculated plate buckling coefficients (k) 

Description
1,2,3

 Index
1,2

 Width-to-thickness 

ratio 
1,2

 

Buckling
3
 

coefficient 

Limiting 

Slenderness 

Example
1
 

  b/t k 
lλ 4

  

Flexure in flanges of rolled I-shaped 

sections and channels 

 

λr yFE0.1  1.1 1.0 

 

λp yFE38.0  1.1 0.38 

λmd yFE38.0  1.1 0.38 

λhd 

 
yFE30.0  1.1 0.30 

Uniform compression in flanges of 

rolled I-shaped sections, plates 

projecting from rolled 

I-shaped sections; outstanding legs of 

pairs of angles in continuous contact and 

flanges of channels 

 

λr yFE56.0  0.70 0.70  

λp - - - 

λmd yFE38.0  0.70 0.48 

λhd 

 
yFE30.0  0.70 0.38 

Uniform compression in flanges of 

rectangular box and hollow 

structural sections of uniform thickness 

subject to bending or compression; 

flange cover plates and diaphragm plates 

between lines of fasteners or welds. 

(Applicable to columns in SMF systems 

and box sections used as beams or 

columns)  

λr yFE4.1  4.43 0.70 

 

λp yFE12.1  4.43 0.56 

λmd yFE12.1  4.43 0.56 

λhd yFE60.0  4.43 0.30 

 1. AISC-360-10 (AISC 2010a) 

 2. AISC-341-10 (AISC 2010b) 

 3. Seif and Schafer (2010) 

 4. ν is assumed to be 0.3 in calculating λ 
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Figure 3: Plate behavior under applied load or displacement 

 

 

2.2. Strain capacity of the elements 

Strain capacity, εm, is the maximum compressive strain that can be applied to a ductile plate 

under compression before buckling. As shown in Fig. 3, the strain capacity of a ductile plate can 

be calculated by dividing the maximum plate displacement, δm (at peak load), by the length of 

the plate L as calculated in Eq. 3 and normalized to the yield strain, as shown in Eq. 4.  
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 Lmm δε =  (3) 

 ym εεβ =  (4) 

 

where, β is the normalized strain capacity. It should be noted that the strain capacity could also 

be defined based on the ultimate displacement applied to the plate (δu). This approach would 

result in larger values for strain capacity. However, defining δu is complex for slender elements 

and potentially introduces other limit states (fracture). Accordingly, the strain capacity in this 

study may be conservative in some circumstances. 

 

2.3. Member ductility based on the strain capacity 

Connection of element strain capacity to member rotation capacity implies that each plane 

section along the length of the member remains perpendicular to the axial axis of the member, 

and each plane sections remains plane, i.e. Euler-Bernoulli beam theory. A detailed analytical 

formulation for connecting element strain capacity to the rotational ductility of flexural 

remembers is presented in Section 4. While the method is applicable to beam-columns, 

development of the method to beam-columns is under way. 

   

3. Ductility of Cross-Section Elements 

To determine the ductility of cross-section elements as a function of element slenderness, a 

comprehensive series of material and geometric shell finite element nonlinear collapse analyses 

were performed in ABAQUS (ABAQUS 2009) to obtain the nonlinear behavior of the plate 

under applied displacement and to calculate the strain capacity, according to the method 

discussed in Section 2.2.  

 

3.1 Parametric numerical analyses  

Parameters considered in the element deformation capacity study are are: (1) plate thickness, t ; 

(2) plate width, b; (3) plate buckling coefficient, k; and (4) yield stress, Fy. Each set of parametric 

analyses were performed based on specific ranges/assumptions for these parameters.  

 

Right Edge

Bottom Edge

Plate thickness=t

Top Edge

X

Y

Point BPoint A

Left Edge

L

b

Shell Elements

(S4R)

δδδδA
x

Dx

Dy

 
Figure 4: Parameters of the numerical model 

 

As shown in Fig. 4, the studied plates were considered to be rectangular and were uniformly and 

finely meshed. As large strains were anticipated for stocky elements, a finite-strain shell element 

“S4R” suitable for large-strain analysis was selected. As shown in Table 2, four types of 

boundary conditions including both stiffened and unstiffened elements with simple and clamped 

boundary conditions were assumed. Moreover, three material types with different yield stress 
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were used to complete the parametric analysis. To study the sensitivity of the results to width of 

plate, the analyses were repeated for two other b values as described in Table 2. While the 

element slenderness (λl) was considered to be between 0.25 and 1.1, the plate thickness was 

calculated for each model in accordance with the formula in the last row of Table 2.  
 

Table 2: Values of the parameters in the numerical models 

Parameter description value 

L Plate length along x direction 250;  125, 250, 375 mm (for sensitivity analysis on b) 

b Plate length along y direction 50;    25, 50, 75 mm (for sensitivity analysis on b) 

Dx=Dy Element size in x, y directions 2.5;   1.25, 2.5 , 3.75 mm (for sensitivity analysis on b) 

lλ  Slenderness 0.25~1.1 

k Plate buckling coefficient 

Stiffened - Clamped Top and Bot. edge: k=6.97 

Stiffened - Simple Top and Bot. edge: k=4.0 

Unstiffened - Clamped Top edge and Free Bot. edge : k=1.227 

Unstiffened - Simple Top edge and Free Bot. edge : k=0.425 

Fy Yield stress 

Material 1: F
y
= 235 (N/mm

2
)  

Material 2: F
y
= 275 (N/mm

2
)  

Material 3: F
y
= 355 (N/mm

2
)  

t Plate thickness )Ek()1)(12(F
b

t
22

y
l

πν
λ

−=  

 

 

For each type of plate, the assumed mathematical definition of all edge boundary conditions and 

constraints are provided in Table 3. 

 

 
Table 3: Boundary conditions and constraints 

Plate type Top and Bottom B.C. 
Mathematical Definition 

Left edge Point A
1,3

 Right edge Point B
2
 Top edge Bottom edge 

Stiffened 
Clamped-Clamped uz=0 uy=0 ux=uz=0 uy=0 uz=0;θx=0 uz=0;θx=0 

Simple-Simple uz=0 uy=0 ux=uz=0 uy=0 uz=0 uz=0 

Unstiffened 
Clamped-Free uz=0 - ux=uz=0 - uy=uz=0;θx=0 - 

Simple-Free uz=0 - ux=uz=0 - uy=uz=0 - 

 1. Left edge is constrained to Point A in x direction 

 2. Right edge is constrained to Point B in x direction 

 3. Displacement δx is applied to Point A 
 

3.2 Geometric imperfections 

To achieved realistic results, implementation of a proper geometric imperfection is necessary, 

especially in stocky regimes where the imperfection has an effect on both strength and strain 

capacity beyond the yield strain. The geometric imperfection is composed of an imperfection 

distribution and an imperfection amplitude/magnitude. If statistical data on actual imperfections 

is unavailable then more mathematical approaches are typically adopted. 
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Here the imperfection distribution is set to the 1
st
 eigen-mode of the plate. The imperfection 

amplitude is commonly determined as a function of plate thickness (Zeinoddini and Schafer 

2012). This method provides acceptable results in plates of small thicknesses and in cold-form 

steel design; but it can lead to unreasonably large imperfections in thicker plates. Several 

imperfection models have been proposed by Dawson and Walker (1972) which are amenable to 

estimating imperfection amplitude (
0ω ) of plates, even in stocky regimes: 

 

                                      Type-1: αω =t0       (5) 

 Type-2: l0
5.0

cry0 tor)(t βλωσσβω ==  (6) 

                                      Type-3: 
2
l0cry0 tor)(t γλωσσγω ==  (7) 

 

where, 
0ω is the imperfection amplitude, t is the plate thickness, and ( γβα ,, ) are real constants 

used to calibrate the various models. A summary of previous research on local geometric 

imperfections for stainless steel sections (Ashraf et. al. 2006b) demonstrates that Type 1, 2 or 3 

imperfection models are the most common in the literature. 

 

The expressions of Eq. (6) and (7) also may be written in an alternative form. Considering the 

definition of local slenderness:  

 

 C
t

b

Ek

)1)(12(F

t

b
2

2
y

l =
−

=
π

υ
λ  (8) 

 
Ek

)1)(12(F
C

2

2
y

π

υ−
=  (9) 

 

and then substituting into the preceding:  

 

                                      Type-1: αω =t0  (10) 

                                      Type-2: Cb
t

b
Ct 00 βωβω =⇒=  (11) 

                                      Type-3: 
22

0
2

0 )
t

b
(Ct)

t

b
C(t γωγω =⇒=  (12) 

 

Thus, according to Eq. 10, t0ω in Type-1 has constant value for all values of the plate width, b. 

This model gives large imperfection values in stocky plates, which does not seem reasonable. 

Based on Eq. 11, 0ω  in Type-2 is actually a function of the plate width, b, and b0ω  is constant 

for all values of the plate thicknesses. For Type-3, as per Eq. 12, t0ω  is a function of both the 

plate thickness and the plate width. This model gives the most reasonable imperfection amplitude 

function, especially for low values of tb , where smaller imperfections are expected. The 

comparison between the imperfection amplitude functions is schematically illustrated in Fig.5. 
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000 tbCtβω =
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ω =

00 Cbβω =

)( 00

2

0 tbbCγω =

 
Type-1 (α method) Type-2 (β method) Type-3 (γ method)  

 
          a) Constant thickness t0 and variable b              b) Constant width b0 and variable t         

 

Figure 5: 0ω vs tb  for all imperfection amplitude functions  

 

Dawson and Walker (1972) indirectly calculated 2.0=γ  by fitting a resistance function to 

available test results. However, more reasonable values for the imperfection coefficient have 

been presented for both structural steel and structural stainless steel by direct measurements. 

Gardner and Nethercot (2004b) recommend 023.0=γ  for stainless steel tubes and Gardner et. al. 

(2010) proposed average value of 066.0=γ  for both cold-formed and hot-rolled steel tubes. 

While structural steel members are considered in this study, the imperfection amplitude value 

was assumed to be calculated by Type-3 of imperfection function and 066.0=γ . In the future, a 

statistical treatment of γ, and comparison of the model error against available test data is needed. 

 

3.3 Material models 

To study the effect of the material model on the element strain capacity, three material models 

were considered: (1) elastic-perfectly-plastic; (2) bi-linear stain-hardening (Gardner et. al. 2011); 

and (3) multi-linear stain-hardening model (Galambos 2000), as shown in Fig. 6. 

 

 

Fy

εεεεy εεεεu εεεε
εεεεst

Es

Fu

σσσσ

Est

(Fy+ Fu)/2

(c)σσσσ

Fy

εεεεy εεεεu

Fu

αEs

εεεε

Es

(b)

εεεε

Es

Fy

εεεεy εεεεu

σσσσ (a)

 
Figure 6: Material models: (a) elastic-perfectly-plastic model; (b) bi-linear stain-hardening model; (c) multi-linear 

stain-hardening model. 

 

Where three material properties were considered in the parametric study, all required parameters 

are presented in Table 4. Material nonlinearities were accounted through classical metal 

plasticity theory based on von Mises yield criterion and isotropic hardening rule. The 
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engineering stress-strain values ( engeng ,εσ ) were converted to true stress-strain values 

(σ True,εTrue
) by the following equation (ABAQUS 2009),  

 

 εTrue = ln(1+εeng )  (13) 

 σ True = σ eng(1+εeng ) (14) 

 

 
Table 4: Material properties (Gioncu and Mazzolani 2002). 

Material Fy Fu ε
st
 ε

u
 Es Est ν α 

 N/mm2 N/mm2 mm/mm mm/mm N/mm2 N/mm2 - - 

Material-1 235 360 0.014 0.14 203000 5500 0.3 0.07 

Material-2 275 430 0.015 0.12 203000 4800 0.3 0.07 
Material-3 355 510 0.017 0.11 203000 4250 0.3 0.07 

 

 

3.4 Results and formulation 

The plate strain capacity was determined as a function of plate slenderness using the nonlinear 

shell finite element model and the results are provided in Fig. 7 for the three different material 

models. Each figure includes the results of 12 combinations of plate boundary conditions and 

material properties. As shown in the figures and summarized in Table 5, for the slenderness 

values larger than a specific limit, the plates did not show ductile behavior and buckling took 

place before yielding. However, for slenderness values less than this limit, ductile behavior was 

developed and can be assumed to be a function of plate slenderness. The plate strain capacity is 

connected to the plate slenderness by providing a quadratic exponential regression and the results 

are summarized in Table 5 for different material models. The results are compared to Gardner et 

al.’s (2011) relationship ( 2.3
pycsm 4.0 λεε = ) presented for strain capacity of steel members, 

where csmε  is the CSM limiting strain (strain capacity in Continuous Strength Method) and pλ  is 

the plate slenderness. Although Gardner’s relationship is valid only for 15ym ≤εε , it is used 

here for larger values of ym εε  for comparison purposes.  

 
Table 5: Strain Capacity 

Material Model Strain Capacity, ym εεβ =  Limit 

elastic-Perfectly-Plastic 8.715.1814.10
2

e
+−

ll
λλ

 72.0≥
l

λ  

bi-linear strain-hardening 05.881.1748.9
2

e
+−

ll
λλ

 76.0≥
l

λ  

multi-linear strain-hardening 12.754.1364.5
2

e
+−

ll
λλ

 77.0≥
l

λ  

 

To study the sensitivity of the results to the width of the plate a set of analyses was done for 

different values of the plate width as shown in Fig. 8. Accordingly, it is revealed that the results 

are not significantly related to the width of the plates, and λl is the key parameter. 
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Figure 7: Element strain capacity for different material models 
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Figure 8: Sensitivity analysis on plate width, b  

 

4. Member Ductility 

Member ductility is the ability of member to undergo plastic deformation in terms of axial or 

rotational deformation without considerable degradation in the capacity. This study is primarily 
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focused on rotation capacity of structural steel members. Rotation capacity of the member has 

different definitions depending on its context and use for structural analysis or design. A 

common definition adopted in ASCE41-06 (ASCE 2007) and AISC documents (AISC 2010b) is 

to define the end rotation based on the chord rotation as shown in Fig. 9(a). The plastic hinge 

moment-rotation behavior is defined in Fig. 9(b) with more details, where yM  is the beam 

moment at first yielding, yp ZFM =  is the theoretical plastic moment, Z  is the plastic modulus, 

mM  is the maximum mobilized moment (including strain hardening), yθ  is the beam plastic 

rotation at first yielding, pθ  is the beam elastic rotation at the level of plastic moment, prθ  is the 

beam plastic rotation at the plastic moment, mθ  is the beam plastic rotation at mM , and uθ  is the 

maximum beam rotation capacity including strength degradation to the level of the plastic 

moment. 
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Figure 9: Definition of the beam rotation 

 

It should be noted that other definitions also exist for plastic rotation based on the tangential 

rotations as discussed in Gardner et.al (2010). Accordingly, the plastic rotation of a simply 

supported beam at the midpoint is assumed to be the sum of the beam rotations at the beam ends 

( CA θθ + ). Although the results of this approach are almost similar to the chord-rotation method 

for large plastic rotations, the result of rotation at the plastic moment ( pθ ) can be considerably 

different. It may be theoretically shown that pθ  calculated by the tangential definition is 1.5 

times larger than pθ  obtained by the chord-rotation method. Therefore, these differences must be 

considered in comparison of the results of different studies. 

 

4.1 Rotation at the plastic moment, pθ   

By assuming a linear moment distribution in the cantilever beam of Fig. 9(a), as shown in Fig. 

10, and dividing the moment by EI (the flexural rigidity), the deflection of the beam can be 

calculated by implementing the Moment Area Theorem as following: 
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where, B∆  is the beam deflection at a point, 2LLBeam =  is the beam length, s is the distance from 

the point A, )Ls1(M)s(M P −=  is the beam moment distribution, EI/MA  is the area under the 

curvature diagram and BS  is the distance between point B and the centroid of EI/MA . 

Accordingly, pθ  is calculated as following: 
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By substituting 
2

d
SI =  in Eq. 16, where S is the section modulus, and d is the beam depth, pθ  

can be written as, 
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According to the above equation, pθ , is a function of length-to-depth ratio dL , Shape factor, 

FS , and yield strain, yε . 
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Figure 10: Calculating beam elastic rotation at the level of the plastic moment 

 

4.2 Beam rotation at maximum moment, mθ   

Adopting Euler-Bernoulli bending and its basic kinematic assumptions, it is assumed that the 

axial bending strain varies linearly across the beam depth as following, 

 

 yκε −=  (18) 
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where, ε  is axial bending strain, dsd1 θρκ ==  is the beam curvature, ρ  is the radius of the 

bent beam, θd  is an infinitesimal angle of the element, ds is the length of the neutral axis along 

the element, and y is the distance to the neutral axis, as shown in Fig. 11. 
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Figure 11: Bending deformation of an element 
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Figure 12: Beam bending moment distribution and flexural curvature along the length 

 

Assuming a symmetric section of depth d, the beam curvature can be calculated based on the 

strain of the farthest fiber of the section, 
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d

2ε
κ =  (19) 

 

Therefore, the strain field of the section can be converted to the flexural curvature by considering 

the cross-section geometry. As discussed in Section 3, the strain capacity of the cross-sectional 

elements can be determined by knowing the element slenderness. Assuming a linear moment 

distribution, the maximum moment occurs at the end of the beam (Point A) where the maximum 

strain, mε , and bending curvature, mκ , are anticipated. On the other hand, the flange strain 

equals to yield strain, yε , at the end of the plastic hinge region and beyond the plastic hinge 

region beam is considered to be elastic. By adopting a linear strain distribution within the plastic 

hinge region, the maximum strain of the beam is expressed in Eq. 18 and converted to beam 

curvature in Eq. 19. Both the strain and curvature distribution are also illustrated in Fig. 11. 
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where, PL  is the plastic hinge length and the other parameters are previously defined. To 

account for a more realistic material model, a bi-linear strain hardening model, see Fig.6 (b), is 

considered in the calculations. Due to strain-hardening, the maximum moment at the column 

face is considered to be PMρ  as shown in Fig.11 and the plastic hinge length can be calculated 

as following, 
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where, ρ  is a coefficient for calculating the increase in plastic moment due to strain-hardening. 

By considering a bi-linear hardening behavior, the increase in plastic moment is calculated by 

Gardner et. al (2011) as following,   
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where, csmM  is the maximum moment in the CSM method which corresponds to PMρ  herein,  

EEsh  is the ratio of strain hardening modulus to Young’s modulus that can be assumed to be 
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equal to α  as shown in Fig. 6, ycsm εε  represents the strain capacity coefficient and is replaced 

by β , elpl WW  is the ratio of plastic modulus to elastic modulus and is equivalent to shape factor 

FS . Correspondingly, Eq. 19 is summarized in a more compact form here as follows, 
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Similar to the approach used to calculate the rotation at the plastic moment, pθ , the beam 

rotation at maximum moment, mθ , can be determined by dividing the beam tip displacement, 

calculated by the moment area method, by the beam length ( 2L ) as follows: 
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where, )s(κ  is the flexural curvature as defined in Eq. 19. The integral in the numerator of Eq. 

22 can be replaced by BEI/M SA  as discussed in the previous section. Therefore, the beam 

rotation at the maximum moment, mθ , can be derived as follows, 

 

   







+−+= β

ρ

β

ρ
εθ 2)

S
1)(

S

1
1(

d

L

6

1

FF

ym  (26) 

 

According to Eq. 26, mθ , is a function of length-to-depth ratio dL , Shape factor FS , strain 

capacity coefficient, β  and yield strain, yε . Notably, as the strain capacity coefficient, β , is 

calculated based on the displacement at the maximum plate axial force (see Fig. 3), the obtained 

beam rotation is the rotation corresponding to the maximum mobilized moment. Further recall 

that β may be determined based on the plate element slenderness, λl. 

 

In accordance with the definition of the rotation capacity in Appendix 1 of the AISC 

specification (AISC 2010a), rotation capacity, R, may be defined as follows, 
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Where, mθ  and pθ  are defined in Eq. 17 and Eq. 24, respectively. By substituting the values in 

Eq. 24 the rotation capacity is, 
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As shown in Eq. 28 and Eq. 24, this definition of rotation capacity only depends on strain 

capacity coefficient, β, shape factor, FS , and strain-hardening modulus coefficient α. Again, 

recall that β = f(λl), e.g., per Table 5. 

 

4.3 Sensitivity analysis on beam plastic rotation 

To perform sensitivity analyses on these expressions, the shape factor of all W, M, S, HP and 

HSS sections section in the AISC manual are plotted versus the beam depth and a linear 

regression is established. Correspondingly, the shape factor is assumed to be 1.15 for I-shaped 

beams and 1.25 for box-shaped beams, as shown in Fig.13. 
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Figure 13: Shape factor of W, M, S, HP and HSS sections 

 

The beam rotation at the maximum moment, versus the flange slenderness, for different values of 

Length-to-depth ratio ( dL ) is provided in Fig. 14. According to Eq. 26, mθ  is linearly correlated 

to both dL  and yε , but λl is clearly the key variable.  
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As shown in Fig. 15, the results of the sensitivity analysis on shape factor shows that both mθ  

and R  do not strongly depend on the shape factor for expected ranges. However, increases in the 

shape factor do result in increases in the rotation capacity as shown. 
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5. Comparison of the Results to Code Ductility Limits 

The developed results are compared to the corresponding values in ASCE41-06, AISC-360-10 

and AISC 341-10 for both compressive and flexural members in the following. 
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Figure 16: Axial strain capacity vs. slenderness  

 

5.1 Compressive members 

The axial strain capacity versus slenderness, and several code limits are depicted in Fig 16. The 

code limit values are as tabulated in Table 1. The horizontal line showing ym εε =  verifies that 

the rλ  limit in AISC clearly separates ductile and non-ductile elements. Based on the proposed 

method the compact limit pλ  corresponds to different levels of ductility in I-shaped and box-

shaped sections and the I-shaped sections might have greater strain capacity for the same limit in 

AISC. Moreover, the elastic-perfectly-plastic material model provides more conservative results 

for axial ductility.  
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5.2 Flexural members 

Both mθ  and R  are compared to ASCE41-06, AISC-360-10 and AISC 341-10 in Fig. 17 for I-

shaped beams and in Fig. 18 for box-shaped beams. As provided in the figures, the length-to-

depth ratio is assumed to be 8 as a limit for no decrease in the plastic rotation capacity due to the 

length of the beam (ASCE 2007), yF  is considered to be 2
mm/N355  (see material-3 in Table 

4), and the shape factor is as discussed in Section 4.3. 

 

The results show that the proposed method provides a continuous relationship between the 

element slenderness and the member rotation capacity, compared to the code results, which are 

typically use step-wise limits. As shown in Fig. 17, the results of the method developed here for 

I-shaped beams is in good agreement with the results of both AISC and ASCE41-06 for 

slenderness values less than 0.45; however, the result of ASCE41-06 for slenderness values more 

than 0.45 seems to be unconservative, while no ductility capacity is expected for slenderness 

values near and beyond 0.7. The developed method shows high ductility values for slenderness 

values less than 0.3. Limiting the ductility capacity to an upper limit, as done in the codes, is 

likely justified by the effects of lateral torsional buckling. Notably, the proposed method does not 

consider lateral torsional buckling in calculation of the beam rotation capacity. 

 

Similar to the results for compression members, the ductility limit of compact members in box-

shaped sections does not provide the expected ductility capacities, as shown in Fig. 18. 

Accordingly, it seems that the compact limits in box-members should be treated more cautiously. 

As discussed by Gardner et. al. (2011), even in test results, the rotational ductility of rectangular 

sections is not definite and it was shown that even for small values of slenderness relatively low 

ductility behavior may be observed. 
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Figure 18: Comparison of mθ and R  of box-shaped beams to ASCE41-06 and AISC-360-10 and 341-10 
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6. Conclusions 

 

Local plate slenderness has long been known to be the key parameter for predicting the load 

carrying capacity of slender plates. Herein it is shown the local plate slenderness is also the key 

parameter for determining the strain capacity of stocky plates. It is worth noting that essentially 

all plate conditions, including material properties, boundary conditions, and plate geometry are 

implicitly included in the plate slenderness. A solution is developed for determining the rotation 

capacity of a beam that utilizes this knowledge and predicts the maximum strain capacity of a 

beam to be a function of the flange local plate slenderness. 

 

The derivation assumes Euler-Bernoulli beam theory, ignores lateral-torsional buckling, and 

presumes the flange (not the web) controls the section strain capacity. The role of beam length, 

beam depth, beam shape factor, and the beam material model in determining beam rotation 

capacity is also explicitly developed.  

 

The developed method for determining the elastic and plastic curvature of a beam along its 

length is potentially beneficial for all existing methods for calculating the plastic rotation. 

 

The calculated member rotation capacity of I-shaped beams is in good agreement with both 

AISC and ASCE41-06. However, AISC is a design code, and ASCE41-06 is focused more on 

analysis and sets forth parameters for modeling a plastic hinge as well as acceptance criteria for 

different performance levels. Accordingly, as expected AISC gives a lower bound result, and 

ASCE41 essentially an upper-bound result, as shown. 

 

According to the results for box-section members, the compact limit of AISC might not provide 

the expected member behavior in plastic design. However, more studies including experimental 

investigations are needed to verify the method and to investigate the limits of the box-section 

members more precisely. 
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