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Abstract 

The paper is concerned with the design of steel frames under gravity loads by geometric and 

material nonlinear analysis, also referred to as “inelastic analysis” in Appendix 1 of the 

ANSI/AISC360-10 Specification. In this approach, the strength of a structural frame is 

determined by system analysis in lieu of checking member resistances to the specific provisions 

of the Specification for tension, compression, flexural members etc., provided a comparable or 

higher level of structural reliability by the analysis. In this paper the reliability of steel frames is 

evaluated by performing Monte Carlo simulations for a series of 2D low-to-mid-rise moment 

resisting frames, including regular and irregular configurations. The analyses treat the material 

properties, initial geometric imperfections, residual stresses and loads as random variables and 

suggest suitable system resistance factors for different system reliability levels. Member cross-

sections are selected in a way to provide different system failure modes such as sway instability 

and/or member failure. In designing by inelastic analysis, the system resistance factor (𝜑𝑠) is 

applied to the frame strength determined by analysis, and provided the reduced system strength 

exceeds the loads, the design is deemed adequate, requiring no further check of individual 

member resistance.  The procedure is more efficient than current procedures based on elastic 

analysis and provides the designer with a greater understanding of the behavior of the frame. It 

promotes a more holistic approach and greater innovation in structural design and is likely to 

become increasingly used by structural engineers as commercial software packages increasingly 

make geometric and material nonlinear analyses available. 

 

1. Introduction 
In conventional steel design procedure the members such as beams, columns and connections are 
isolated from the structural system and designed individually based on an LRFD (Load 
Resistance Factor Design) format: 
 

𝜑𝑅𝑛𝑖 ≥  𝛾𝑖𝑄𝑛𝑖                                                                  (1) 

 

in which 𝑅𝑛𝑖  is the ith member capacity calculated based on steel design code and 𝑄𝑛𝑖  is the load 

applied to the corresponding member. In this approach, the interaction between the structural 

                                                 
1
 Post Graduate Research Student, The University of Sydney, <Shabnam.shayan@sydney.edu.au> 

2
 Professor, Head of School,  The University of Sydney, <kim.rasmussen@sydney.edu.au> 

3
 Senior Lecturer, The University of Sydney, <hao.zhang@sydney.edu.au> 

242



 

system and its members is only reflected through the use of effective length factor (k). However, 

this component-based approach cannot accurately capture the influence of the inelastic 

redistribution of internal forces. On the other hand, the interaction between the members, 

specially in a large structural system, is too complex to be represented by the simple effective 

length factor (Chen and Kim 1997). Thus, this design methodology may not accurately predict 

the ultimate load-carrying capacity of structural systems or the frame failure modes. There are 

strong economic and safety reasons to develop a practical method that can account for 

compatibility between the members and the whole system.   

 
As an alternative, “advanced” second order inelastic analysis (or in European terminology 
“GMNIA, Geometric and Material Non-linear with Imperfections Analysis”) represents a new 
method in which analysis and design is integrated together in a single step.  The proposed system 
strength check has the LRFD type format:  
 

𝜑𝑠𝑅𝑛 ≥  𝛾𝑖𝑄𝑛𝑖                                                                (2)    

  

in which 𝑅𝑛  is the nominal system strength predicted by inelastic analysis and 𝜑𝑠 is the system 

resistance factor determined by reliability assessment. It is worth to mention that although Eq. 2 

has the same format as LRFD, it follows a different philosophy as it is based on system 

performance. Since member failures are directly incorporated into advanced analysis, there is no 

need for separate member/section capacity check based on a design specification.  

 
Advanced analysis is now permitted by several steel structure design codes (AS4100 1998; 
AISC360-10 2100; Eurocode 3 2005). With the rapid development of computer software there is 
no longer a barrier to use this type of analysis in practical applications. A great attention has been 
devoted to the research on advanced analysis of steel structures over the past 20 years (Ziemian 
1990; Liew, White et al. 1993; Chen and Kim 1997). Fig. 1 schematically shows that among all 
analysis methods, advanced analysis can accurately predict the behavior and ultimate load 
carrying capacity of a structural system, taking into account system effects explicitly such as 
load redistribution subsequent to first yielding.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
By using advanced analysis the system failure mode becomes apparent and it is possible to 
consider the consequences of failure in the design process. Ziemian, et al. (1992) analysed a 

Figure 1: Structural analysis methods 
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series of two-bay, two-story planar frames and a 22-story, 3D frame and showed that design by 
advanced analysis could save about 12% of steel weight compared to design by LRFD 
specification. The main problem is that the Specifications require the reliability of the system to 
be considered but do not explain how this may be achieved. On the other hand if advanced 
analysis is used to determine the ultimate strength of the whole system, the main difficulty is to 
assign an appropriate system resistance factor ( 𝜑𝑠 ) which accounts for the main factors 
influencing the reliability of the frame. This paper is part of the research effort to determine the 
appropriate system resistance factors for different types of structural systems. In the present 
paper only gravity loads were considered. 
 

2. Methodology 

The procedures of developing a system reliability-based design format for steel frames can be 

summarized in five essential steps as follows: 

 

 

(1) A series of low-to-mid-rise steel frames are chosen. Every frame is first designed based on 

(AS4100 1998) as a starting point.   

 

(2) Different system resistance factors (𝜑𝑠) between 0.6 and 1 are assumed for each frame and 

the frame is modified to satisfy the limit state equation (Eq. 2) (system-based design).  This can 

be achieved by adjust either the cross-sections or the loads. In the former, for each specific value 

of 𝜑𝑠, new combinations of cross-sections are selected to satisfy the limit state equation while the 

total applied load remains constant (referred to as Method 1 in this paper). The second approach 

is based on changing loads for different value of  𝜑𝑠 to satisfy Eq. 2 while the cross-sections 

remain unchanged (Method 2 in the following discussion).  

 

(3) For all designed frames, Monte Carlo simulations are performed to develop a probabilistic 

model (distribution type, mean and standard deviation) for the system strength, considering the 

randomness in material and geometric properties.  

 

(4) Using the developed statistics for the frame ultimate strength (𝑅 ) in Step 3, and the 

probabilistic models for dead load (𝐺 ) and live load (𝑄 ), the reliability index (β) can be 

determined for all frames by first order reliability analysis (FORM) (Melchers 1999). The 

reliability index relates the structural failure probability by  𝑃𝑓 = Φ(−𝛽) , where 𝑃𝑓  is the 

probability of failure (𝑃(𝑅 − 𝐺 − 𝑄 ≤ 0) and Φ() is the standard normal distribution function.  

Different live to dead load ratios (𝑄𝑛 𝐺𝑛 ) are considered. 

 

(5) For different frames with different failure modes, the relationships of 𝛽 (reliability index) 

versus 𝜑𝑠 (system resistance factor) are plotted and 𝜑𝑠  can be obtained for different levels of 

target reliability. 

 

3. Analytical model 

A series of 2D steel frames, which presents common Australian steel building structures, have 

been selected as a basis for the present study. Fig. 2 shows the geometry, support conditions and 

loading pattern. The design of these frames is controlled by gravity loads, therefore the load 

combination of 1.2𝐺 + 1.5𝑄,  which is based on Australian standard (AS4100 1998), is applied 

to the frames. The total gravity load is applied as Uniform Distribution Load (UDL) along the 
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beam lengths.  The nominal dead and live loads are assumed to have a same magnitude of 

𝑤=25 kN m . These frames are first design based on AS4100 (1998) and member cross-sections 

are presented in Table 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two dimensional second-order inelastic FE models are developed for each frame using the 

commercial finite element (FE) software ABAQUS (2009), accounting for all material and 

geometrical nonlinearities. To model the material nonlinearity, the 2D plastic-zone beam-column 

element is used to trace the spread of plasticity through the cross-section and along the member 

length. Using incremental load deflection response, the element geometry in each load increment 

is updated and the second-order effects can be captured. The material is modeled as elastic-

Figure 2: Layouts for steel framing system 
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perfectly-plastic with elastic modulus (E) equal to 200 GPa and yield strength of 320 MPa. All 

column bases are fully fixed and the joints are modeled as rigid. Residual stress is modeled as 

self-equilibrium initial stress using ECCS model (ECCS 1984) and defined at default cross-

section integration points of ABAQUS. A FORTRAN subroutine is written to implement 

residual stress into finite element models. Initial geometric imperfection is modeled as linear 

superposition of the first six buckling modes. More details about this method and appropriate 

scale factor of each mode can be found in Shayan, et al. (2012). A mesh convergence study is 

performed and one element per 200 mm length is used for all members. All the cross-sections are 

fully compact and the out-of-plane behavior is restrained (2D frames). Thus, local buckling and 

lateral-torsional buckling are not considered in this study.  

 

As mentioned by Galambos (1990) the structural system may not fail when one element fails. 

Perhaps different combinations of element failures may take place to reach the point in which the 

failure of whole structural system happens. So, it is important to consider different system failure 

modes. Beam/beams as well as column/columns can be fully or partially yielded and the 

combination of these failures is considered. If any beams or columns cross-sections are yielded 

more than 75%, they are categorized as fully yielded and they are referred as BFY (beam fully 

yielded) and CFY (column fully yielded) in this study. If the yield ratio in any beams or columns 

is less than 75%, they are categorized as beam partially yielded (BPY) and column partially 

yielded (CPY), respectively. Frame ultimate load is defined as the maximum point of the load-

displacement curve or the point when the storey drift exceeds 5%, whichever comes first.   

 

4. Probabilistic analysis 

Latin Hypercube Sampling (LHS) is conducted to drive the statistical information of the frame 

strengths. Compared to the direct random sampling, LHS requires less samples to achieve similar 

accuracy. In the present study, 350 advanced analyses were performed for each frame using 

randomly generated values for yield stress, elastic modulus, cross-sectional properties, member 

and frame initial geometric imperfections and residual stress, as described in Section 4.1. To 

determine the statistics of frame strength, the frames are loaded with an increasing nominal 

unfactored gravity load (𝐺 + 𝑄) until structural collapse. The dead and live loads are not treated 

as random variables in this stage and randomness in loads will be considered later in finding the 

probability of failures and thereby the reliability index.  

 

4.1 Uncertainties in steel structures 

In construction practice, the steel members are characterized by inherent high variations of 

geometric and material properties. Various sources of uncertainties exist in steel structures and 

can influence the load-carrying capacity of a structure.  The basic random variables considered in 

this study are: yield stress (𝐹𝑦), residual stress, elastic modulus (𝐸), cross-sectional properties 

such as flange width (𝑏𝑓), web height (𝑕), and flange and web thickness (𝑡𝑓  and 𝑡𝑤 ), member out-

of-straightness (δ) and frame out-of-plumb (∆). 

 

4.1.1 Variability in yield stress and elastic modulus 

The yield stress is one of the most important characteristics of steel structures which often has a 

great influence in load-carrying capacity of the whole system. In this study the yield stress is 

modeled as a lognormal distribution with the mean of 1.05Fyn  and a coefficient of variation 

(COV) of 0.1 provided by Galambos and Ravindar (1978). Here, Fyn  is the nominal yield 
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strength of steel considered as 320  Mpa . It is assumed that the yield strength is perfectly 

correlated between all members and one random Fy  is generated and assigned to all beams and 

columns. The perfectly correlated case is of interest because of its similarity to deterministic 

analysis where all members are assigned a single nominal yield strength (Buonopane and Schafer 

2006). 

 

The modulus of elasticity is modeled as a normal distributed variable with a mean equal to the 

nominal value (200 GPa) and a COV of 6% (Galambos and Ravindar 1978). Again perfectly 

correlated case has been evaluated.    

 

4.1.2 Variability in cross-section geometries 

Geometrical section properties are statistically evaluated by Melcher, et al. (2004), based on the 

experimental measurement of 369 hot-rolled I-sections. The relative geometrical characteristics 

are listed in Table 1 as the ratio of the real characteristic obtained from the measurement of 

cross-sectional geometry (e.g. cross-section depth h) to the nominal dimension of the cross-

sectional one. Strong correlations have been observed between all measured data and also 

employed in this study. The correlation matrix can be found in Eq. 3. 

 
Table 1: Statistical result of geometrical characteristics  

Thickness   Mean Standard deviation 

Section depth (𝑕) 1.001 𝑕 0.00443 

Section width (𝑏1) 1.012 𝑏1 0.01026 

Section width (𝑏2) 1.015 𝑏1 0.00961 

Web thickness (𝑡1) 1.055 𝑡1 0.04182 

Flange thickness (𝑡21) 0.988 𝑡21  0.04357 

Flange thickness (𝑡22) 0.988 𝑡22  0.04803 

 

 

  

 
 
 
 
 
 

1 −0.0068 0.0534 0.0399 −0.0686 −0.0989
−0.0068 1 0.6227 −0.2142 −0.2681 −0.1456
0.0534 0.6227 1 −0.2132 −0.1596 −0.0423
0.0399 −0.2142 −0.2132 1 0.2368 0.2451
0.0686 −0.2681 −0.1596 0.2368 1 0.7634
−0.0989 −0.1456 0.0423 0.2451 0.7634 1  

 
 
 
 
 

                                   (3) 

 

 

Using the statistics in Table 1 and correlation matrix in Eq. 3, the mean and COV of cross-

sectional area can be obtained as 1.025A and 0.032 respectively which is comparable with the 

statistical data reported in other papers (Strating and Vos 1973; Fukumoto and Itoh 1983). 

 

4.1.3 Variability in initial geometric imperfection 

Modeling imperfection is based on the method proposed by Shayan, et al. (2012). To model 

initial out-of-straightness as random quantity, experimental measurements of nine IPE 160 

columns carried out at the University of Politecnico di Milanoand and published by ECCS 

Committee 8.1 (Sfintesco 1970), are used. The reported data comprises geometric imperfection 

measurements at mid-length and quarter points. All the members are hot-rolled, simply-supported 

and axially loaded. The actual non-dimensionalised measured imperfection is then extracted into 
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first three buckling modes (Fig. 3 a) and the statistical characteristics mean (μ), standard 

deviation (σ) and probabilistic distribution of different modes are acquired (Table 2).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2: Statistic characteristics of scale factors 
 

 

 

 
 

Using these characteristics, the random shape of imperfection can be determined for each single 

member of a steel frame by generating k random scale factors for each mode and combine them 

with assigning a random sing to each mode. Additionally random sway imperfection (out-of-

plumb), is generated for whole frame using the statistics provided by Lindner (1984) (Fig. 3 b) 

and is superimposed into FE model. 

 

4.1.4 Variability in residual stress 

To consider the variability of residual stresses total of 63 actual measurements are obtained from 

the literature (Shayan, et al. 2013). First the measured residual stresses at i nodes distributed in 

each cross-section are non-dimensionalised by dividing the stresses by the value of reported 

yield stress (𝐹𝑦 ) denoted by 𝜎𝑒𝑥𝑝  (Fig. 4 b). Then, the corresponding theoretical non-dimensional 

residual stresses are calculated at the same points using ECCS (1984) distribution (Fig. 4 a). 

 

 

 

 
              𝜎𝑟 = 0.5𝐹𝑦   if  𝑕 𝑏 ≤ 1.2  

 
                                                                                  𝜎𝑟 = 0.3𝐹𝑦   if  𝑕 𝑏 ≥ 1.2  
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Finally, the scale factors which minimize the error between theoretical models and experimental 

measurements are derived by error minimization. The error is defined as: 

 

𝐸𝑟𝑟𝑜𝑟 =  (𝑋𝜎𝑚𝑜𝑑𝑒𝑙
𝑖 − 𝜎𝑒𝑥𝑝

𝑖 )2𝑛
𝑖=1                                               (4) 

in which 𝑛 is total number of measurements for each cross-section. The error minimization is 

then performed (Eq. 5) and the scale factors (𝑋) for all are obtained: 

 

𝜕𝐸𝑟𝑟𝑜𝑟 𝜕𝑋 = 0                                                             (5) 

 

The scale factors are normally distributed with a mean of 1.047𝑋 and COV of 0.21 where 𝑋 is 

the scale factor applied to ECCS residual stress model. The residual stress is assumed to be 

constant along the length of the member and correlated between the members of a frame. More 

details can be found in Shayan, et al. (2013). 

 

5.  System reliability 

The basic structural reliability is to find the probability of failure (𝑃𝑓) of the structure, defined as: 

 

𝑃𝑓 = 𝑃 𝑔 𝑋 ≤ 0 =  … 𝑓X (x)
𝑔(𝑋)≤0

𝑑x                                        (6) 

 

in which 𝑃𝑓  is the probability of failure of the structure, 𝑋 = (𝑋1, … . 𝑋𝑛) is the n-dimensional 

vector of the random variables such as applied load and structural system resistance, 𝑓X x  is the 

joint probability density function for X, 𝑔 𝑋  is the limit state function and 𝑔 𝑋 ≤ 0 defines the 

unsafe (failure) region. The classical structural reliability equation (Eq. 6) is transformed to the 

more practical and familiar format of LRFD to use in advanced analysis and design equation is 

defined as: 

 

 𝜑𝑠𝑅𝑛 = 1.2𝐺𝑛 + 1.5𝑄𝑛                                                        (7) 

 

In this equation, 𝐺𝑛  and 𝑄𝑛  are the total nominal dead and live load respectively. The system 

reliability index (β) can be estimated using the first order reliability method (FORM) (Melchers 

1999), with the simple limit state function 𝑔 = 𝑅 − 𝐺 − 𝑄, in which 𝑅 is system resistance or 

frame ultimate strength, 𝐺 is dead load and 𝑄 is live load.  The limit state can be rearranged as:  

 

𝑔 =
𝑅

𝑅𝑛
×  

1.2+1.5(𝑄𝑛 𝐺𝑛 ) 

𝜑𝑠
 −

𝐺

𝐺𝑛
−

𝑄

𝑄𝑛
×

𝑄𝑛

𝐺𝑛
                                        (8) 

 

When the actual distributions of the random variables are taken into account, including 

distributions which are non-normal, the first order reliability method (FORM) is performed in an 

iterative manner. The mean-to-nominal strength (𝑅 𝑅𝑛 ) (bias) statistics are determined from the 

frame simulations while the statistics of loads can be obtained from the literature. The 

probability distribution of dead loads is assumed to be normally distributed with a mean-to-

nominal value (𝐺 𝐺𝑛 ) of 1.05 and a COV of 0.1. The live loads follow an extreme Type I 

distribution with a mean-to-nominal value 𝑄 𝑄𝑛 = 1.0 and a COV of 0.25 (Ellingwood, et al. 

1980).  
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6. Simulation results 
The basic idea of the methodology described in Section 2 is to establish an appropriate 

relationship between the reliability index and the system resistance factor for different steel 

frames. To achieve this, first the frames presented in Fig. 2 were designed based on the 

Australian standard (AS4100 1998). Member sizes of all frames as well as ultimate failure 

modes are given in Table 3. Those frames were then modeled into ABAQUS and analyzed by 

advanced analysis to evaluate the ultimate load factors (𝜆𝑛 ) under factored gravity loads (Table 

3). The frame ultimate strength (𝑅𝑛 ) can be expressed as the product of the total applied load and 

the ultimate load factor (total load × 𝜆𝑛 ). By substituting this into Eq. 7, the total load can be 

cancelled out from both sides of the equation and the system resistance factor (𝜑𝑠) for each 

single frame, may be determined as 𝜑𝑠 = 1 𝜆𝑛 .  

 

To plot β versus 𝜑𝑠  two different approaches are presented in this study.  

 

6.1 Method 1-adjusting frame cross-sections 

 The first method is based on adjusting the cross-sections of steel frame members to develop 

different ultimate load factors (𝜆𝑛 ) and thereby different resistance factors (𝜑𝑠) for each frame.  

For example for Frame 5 designed based on (AS4100 1998), the failure mode is BFY-CPY 

(beam(s) fully yielded and column(s) partially yielded) and the corresponding resistance factor is 

0.68 (𝜑𝑠 = 1 𝜆𝑛 ). This frame was then designed for different values of  𝜑𝑠  (system-based 

design) and the details of the cross-sections are presented in Table 4. Monte Carlo simulations 

are then conducted for these frames, accounting for all uncertainty as discussed in Section 4. The 

statistics (frequency distribution, mean and COV) of the ultimate load factors (λ) are determined 

and summarized in Table 5. An example of the frame ultimate load factor histogram, for the 

frame assigned to 𝜑𝑠  equals to 0.63, is shown in Fig. 5. A lognormal distribution is fitted to 

frame strength histogram. It should be noted that the mean and nominal values presented in 

Table 5 are based on applying unfactored nominal loads to the frame structures (𝐺𝑛 + 𝑄𝑛). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 5: Histograms of ultimate load factor for Frame 5 with 𝜑𝑠=0.63 
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Table 3: Frames design based on AS4100 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame Members Section 𝜆𝑛  Failure mode 

Frame 1 

𝐵1 

𝐶1, 𝐶2 200UC59 

460 UB74 

1.32 BFY-CPY 

Frame 2 

𝐵3 

𝐶1 to 𝐶6 

𝐵1, 𝐵2 

250UB37 

310UB40 

250UB31 

1.39 BFY-CPY 

Frame 3 

𝐶2 

𝐵1 

𝐵2 

𝐶1, 𝐶3 460UB74 

460UB67 

410UB59 

530UB92 

1.63 BFY-CPY 

Frame 4 𝐶1, 𝐶3, 𝐶4, 𝐶6 

𝐶2, 𝐶5 

𝐶7, 𝐶8, 𝐶9 

𝐵1 to 𝐵4 

𝐵5, 𝐵6 

200UB25 

250UB37 

200UB22 

360UB56 

250UB37 

1.26 CFY 

Frame 5 𝐶1, 𝐶4, 𝐶5, 𝐶8, 𝐶9, 𝐶12  

𝐶2, 𝐶3, 𝐶6, 𝐶7 

𝐶10 , 𝐶11  

𝐵1, 𝐵3, 𝐵4, 𝐵6, 𝐵7 , 𝐵9 

𝐵2, 𝐵5, 𝐵8  

250UC72 

200UC59 

150UC30 

460UB67 

360UB50 

1.45 BFY-CPY 

Frame 6 

𝐵7 

𝐵8 

𝐶1 to 𝐶8 

𝐶9, 𝐶10  

𝐶11 , 𝐶12  

𝐵1 to 𝐵6 

250UB37 

250UB31 

200UB29 

360UB56 

310UB40 

200UB29 

1.28 BFY-CPY 

Frame 7 

𝐶2 

𝐵2 

𝐵3 

𝐶1, 𝐶4 

𝐶3, 𝐶5, 𝐶6 

𝐵1, 𝐵4 

150UB14 

310UB40 

250UB37 

310UB46 

460UB67 

200UB29 

1.55 BFY-CPY 

Frame 8 

𝐶4 

𝐵1 

𝐵2 

𝐶1, 𝐶5, 𝐶6 

𝐶2, 𝐶3 

𝐶7, 𝐶8 

𝐵3, 𝐵6 

𝐵4, 𝐵5 

150UB14 

250UB37 

180UB18 

200UB22 

310UB40 

360UB50 

200UB29 

250UB37 

1.69 BFY-CPY 

Frame 9 

𝐵1 

𝐵6 

𝐶1, 𝐶4, 𝐶5, 𝐶8, 𝐶9 

𝐶2, 𝐶3, 𝐶6, 𝐶7 

𝐵2, 𝐵4 

𝐵3, 𝐵5 

530UB92 

200UB25 

310UB46 

250UB37 

410UB53 

610UB125 

1.43 BPY-CPY 
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Using first order reliability analysis (FORM), the reliability index corresponding to any value of 

𝜑𝑠  was determined, assuming different load ratios (𝑄𝑛 𝐺𝑛 ) (Eq. 8). The system reliability index 

(β) versus 𝜑𝑠  for Frame 5 is plotted in Fig. 6. The appropriate system resistance factors are 

obtained for four values of target reliability, i.e. 𝛽= 2.5, 2.75, 3 and 3.5 (Table 6). To find a 

single resistance factor for each frame which does not depend on the specific load ratio, a 

relative weight is assigned to different load ratios (𝑤𝑖). These weights represent the best estimate 

for the likelihood of different load situations (Ellingwood et.al 1980). Thus, the final system 

resistance factors were calculated based on Eq. 9 and presented in Table 6. 

 

𝜑𝑠 = ( 𝑤𝑖 × 𝜑𝑠𝑖) 100                                                       (9) 

 

 
                                              Table 4: System based design for Frame 5 fails by BFY-CPY                
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                            Table 5: Frame strength statistics, Frame 5 
 

 

 

 

 

 

 

 

 

 

 

𝜑𝑠 Members Section 𝜆𝑛  

0.63 𝐶1, 𝐶4, 𝐶5, 𝐶8, 𝐶9, 𝐶12  

𝐶2, 𝐶3, 𝐶6, 𝐶7 

𝐶10 , 𝐶11  

𝐵1, 𝐵3, 𝐵4, 𝐵6, 𝐵7 , 𝐵9 

𝐵2, 𝐵5, 𝐵8  

250UC72 

200UC59 

150UC30 

460UB74 

360UB56 

1.4 

0.74 𝐶1, 𝐶4, 𝐶5, 𝐶8, 𝐶9, 𝐶12  

𝐶2, 𝐶3, 𝐶6, 𝐶7 

𝐶10 , 𝐶11  

𝐵1, 𝐵3, 𝐵4, 𝐵6, 𝐵7 , 𝐵9 

𝐵2, 𝐵5, 𝐵8  

200UC59 

200UC59 

150UC30 

460UB67 

360UB50 

1.36 

0.85 𝐶1, 𝐶4, 𝐶5, 𝐶8, 𝐶9, 𝐶12  

𝐶2, 𝐶3, 𝐶6, 𝐶7 

𝐶10 , 𝐶11  

𝐵1, 𝐵3, 𝐵4, 𝐵6, 𝐵7 , 𝐵9 

𝐵2, 𝐵5, 𝐵8  

250UC72 

200UC59 

150UC30 

360UB56 

360UB50 

1.18 

0.96 𝐶1, 𝐶4, 𝐶5, 𝐶8, 𝐶9, 𝐶12  

𝐶2, 𝐶3, 𝐶6, 𝐶7 

𝐶10 , 𝐶11  

𝐵1, 𝐵3, 𝐵4, 𝐵6, 𝐵7 , 𝐵9 

𝐵2, 𝐵5, 𝐵8  

250UC72 

200UC59 

150UC30 

360UB50 

310UB40 

1.04 

𝜑𝑠 Mean (𝜆 ) COV 𝜆𝑛  𝜆 𝜆𝑛  

0.63 2.292 0.100 2.143 1.07 

0.68 2.089 0.101 1.959 1.07 

0.74 1.959 0.100 1.832 1.07 

0.85 1.692 0.102 1.593 1.06 

0.96 1.483 0.100 1.399 1.06 
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                     Table 6: System resistance factor (𝜑𝑠) for Frame 5 for different reliability levels, Method 1       
 

 

 

 

 

 

 

 

 

 

 

 

6.2 Method 2 -adjusting applied loads 

In second approach different values of  𝜑𝑠 for any specific frame are achieved by scaling the 

total applied load while the member cross-sections remain unchanged. Clearly, the mean-to-

nominal values of frame strength (𝑅 𝑅𝑛 ) are same for frames assigned to different 𝜑𝑠’s. As only 

the ratio between the mean and nominal strength is reflected in design equation (Eq. 8), there is 

no need to run the simulations for every point in 𝛽 − 𝜑𝑠 plot. The Monte Carlo simulation is run 

for one frame with specific failure mode and the statistics of bias (𝑅 𝑅𝑛 ) are obtained. 

Reliability indices (β) are then determined, assuming different values of  𝜑𝑠  in Eq. 8. This 

method is more efficient as it is faster and needs fewer simulations to plot the 𝛽 − 𝜑𝑠  curves 

compared to Method 1. Fig .7 shows the reliability index versus the system resistance factor for 

Frame 5 fails by BFY-CPY and the final values of 𝜑𝑠 obtained for different target reliability are 

summarized in Table 7.  

 

 

 

𝑄𝑛 𝐺𝑛  Weight  

w (%) 
𝜑𝑠 

𝛽 = 2.5 𝛽 = 2.75 𝛽 = 3 𝛽 = 3.5 

0.5 10 0.93 0.89 0.85 0.78 

1 20 0.91 0.86 0.81 0.73 

1.5 25 0.89 0.84 0.79 0.7 

2 35 0.87 0.82 0.77 0.68 

3 7 0.86 0.8 0.75 0.66 

5 3 0.84 0.78 0.73 0.64 

Final value of  𝜑𝑠  0.89 0.84 0.79 0.71 

Figure 6: β vs. 𝜑𝑠 for Frame 5, using Method 1 
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                       Table 7: System resistance factor (𝜑𝑠) for Frame 5 for different reliability levels, Method 2       
 

 

 

 

 

 

 

 

 

 

 

The conclusion drawn from the results displayed in Table 6 and Table 7 is that both methods 

produce the same outcome for system resistance factors assuming various target reliability 

levels. Therefore, as Method 2 requires fewer simulations, this method is used in this study. 

 

6.3 Simulation results for literature frames 

In addition to the frames reported herein, a total of eight frames designed by Ziemian (1990) 

using advanced analysis are considered in this study to investigate the relationship between 

frame resistance factors and system reliability indices. These frames were previously analysed by 

Buonopane and Schafer (2006) and the values of 𝜑𝑠 for both β=2.0 and 3.0 were reported. The 

geometry, support conditions and applied loads for those frames are shown in Fig. 8 (a) while 

more necessary details are available in Buonopane and Schafer (2006). Two different cases of 

light and heavy gravity loads are considered. In present study, columns are subdivided into 8 

elements and beams into sixteen elements using 2D beam elements of ABAQUS. All the random 

variables discussed in Section 4 are considered in frames simulations. 

 

 

 

𝑄𝑛 𝐺𝑛  Weight 

w (%) 
𝜑𝑠 

𝛽 = 2.5 𝛽 = 2.75 𝛽 = 3 𝛽 = 3.5 

0.5 10 0.94 0.90 0.86 0.78 

1 20 0.91 0.86 0.82 0.73 

1.5 25 0.89 0.84 0.79 0.71 

2 35 0.88 0.83 0.78 0.69 

3 7 0.86 0.81 0.76 0.66 

5 3 0.85 0.79 0.74 0.64 

Final value of  𝜑𝑠  0.89 0.84 0.79 0.71 

Figure 7: β vs. 𝝋𝒔 for Frame 5, using Method 2 

 

254



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The statistics of frame ultimate strength (𝑅) are presented in Table 8. Normally distributed  

gravity load (𝑊) with the mean of 1.026𝑄𝑛  and the COV of 0.1 is assumed by Buonopane and 

Schafer (2006), which is generated from the normal distribution of dead load (mean=1.05𝐺𝑛 and 

COV=0.1) and the normal distribution of live load (mean=𝑄𝑛 and COV=0.1). A COV value of 

0.1 seems to be suitable for dead load, but appears to be too low for live load. In this study, the 

COV of live load is updated to 0.25 as it is reported in most research studies (Ellingwood et.al 

1980; Beck and Doria 2008). More accurately, instead of combining dead and live loads to 

generate the total load (𝑊 ), the limit state of 𝑅 − 𝐺 − 𝑄  is assumed and the corresponding 

reliability indices (β) and system resistance factors (𝜑𝑠) according to Section 5 are determined 

(Table 8). To design these frames (Ziemian 1990), resistance factors were incorporated into 

model by scaling the yield surface by the factor of 0.9. The resistance factors (𝜑𝑠) presented in 

Table 8, which are mostly about 0.9, verify the model.  

 

 
                                                     Table 8: Statistic characteristics for Ziemian’s frames        
 

 

 

 

 

 

 

 

 

 

 

By applying Method 2 with frame strength statistics provided in Table 8, the system resistance 

factors (𝜑𝑠 ) are determined for all Ziemian’s frames assuming different values of reliability 

indices (β) (Table 9). 

 

Frame Mean 

(𝑅 ) 

Bias 

(𝑅 𝑅𝑛 ) 
COV Reliability index (β) 

using FORM and limit 

state of  𝑅 − 𝐺 − 𝑄 

𝜑𝑠 

UP50HA 1.657 1.047 0.094 2.48 0.90 

UP50LA 1.714 1.037 0.099 2.65 0.89 

UF50HA 1.778 1.080 0.100 2.62 0.89 

UF50LA 1.831 1.072 0.102 2.77 0.84 

SP50HA 1.769 1.075 0.085 2.73 0.89 

SP50LA 1.772 1.064 0.098 2.69 0.89 

SF50HA 1.886 1.073 0.098 2.93 0.85 

SF50LA 1.771 1.070 0.100 2.63 0.89 

Figure 8: (a) Loads and dimensions of frames (Ziemian 1990) 

 

4.57 m 

6.10 m 

𝐶5 

L: 32.84 KN/m  

𝐶1 𝐶2 𝐶3 

𝐶4 𝐶6 

𝐵1 𝐵2 

𝐵3 𝐵4 

H: 109.45 KN/m  

L: 16.42 KN/m  H: 51.08 KN/m  

F 

P 

U: 6.10 m 

S: 10.36 m 

U: 14.63 m 
S: 10.36 m 
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Table 9: System resistance factor (𝜑𝑠) for frames designed by Ziemian (1990) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean value of system resistance factors (𝜑𝑠) for Zeimain’s frames corresponding to target 

reliability of 3 is equal to 0.84 which is less than the mean value of 0.88 reported by Buonopane 

and Schafer (2006) for the same frames. The incorporation of more random variables (e.g. 

residual stress, elastic modulus and initial geometric imperfections) in this study leads to larger 

values of COVs and therefore smaller 𝜑𝑠’s for the same target reliability. Another reason can 

explain this difference is that Eq. 10 which is used in that study to determine the value of 𝜑𝑠, 

might be an overestimate prediction of system resistance factors. 

 

𝜑𝑠 = (𝑅 𝑅𝑛 )exp(−0.55𝛽 𝑉𝑅)                                               (10) 

 

6.4 Simulation results for proposed frames  

 A total of nine steel frames are studied in this paper to determine the system resistance factors 

using Method 2 (Fig. 2). Frames statistic characteristics as well as final values of 𝜑𝑠  are 

summarized in Table 10, assuming various reliability levels. Different failure modes are 

considered for each frame. The COVs of the strengths are in range of 0.093 to 0.106 and the 

mean-to-nominal strength ratio falls within the range of 1.02-1.12. Three different goodness-of-

fit tests (Chi-Squared, Anderson Darling and Kolmogorov Smirnov (K-S)) are performed on 

ultimate strength results from simulations and log-normal distribution was found to be the best fit 

(Haldar and Mahadevan 2000). 

 
Based on the results displayed in Table 10, it can be seen that for common type of rigid moment 

frames under gravity load, the system resistance factors obtained from extensive probabilistic study, 

are quite similar for specific target reliability, despite the frame configuration (regular or irregular) 

and frame failure modes (e.g. BFY-CPY, CFY,…). The values of 𝜑𝑠 range from 0.85 to 0.94 for 

target reliability of 2.5 with the average of 0.90 which somehow complies with the load factor of 

0.9 for LRFD specification. As the target reliability increases to values of 2.75, 3 and 3.5, the 

average system reliability factor drops to 0.85, 0.8 and 0.7, respectively. Fig. 9 shows system 

resistance factor versus reliability index plots for some selected frames. Apparently, further work 

is needed to establish appropriate target reliability for system-based design by analyzing the 

reliability of the frames designed based on existing criteria.  

 

 

Frame Failure modes 𝜑𝑠 

𝛽 = 2.5 𝛽 = 2.75 𝛽 = 3 𝛽 = 3.5 

UP50HA BFY-CPY 0.88 0.83 0.78 0.70 

UP50LA BFY-CPY 0.86 0.81 0.77 0.69 

UF50HA BFY-CPY 0.89 0.84 0.79 0.70 

UF50LA BFY-CPY 0.89 0.84 0.79 0.71 

SP50HA BFY-CPY 0.92 0.86 0.81 0.72 

SP50LA BFY-CPY 0.89 0.84 0.79 0.71 

SF50HA BFY-CFY 0.90 0.85 0.80 0.71 

SF50LA BFY-CPY 0.89 0.84 0.79 0.71 

Average value of  𝜑𝑠 0.89 0.84 0.79 0.71 
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Table 10: System resistance factor (𝜑𝑠), Bias factors and COVs of proposed frames 
Frame Failure 

mode 
𝑅 𝑅𝑛  COV 𝜑𝑠 

𝛽 = 2.5 𝛽 = 2.75 𝛽 = 3 𝛽 = 3.5 

Frame 1 BFY-CPY 1.07 0.103 0.89 0.83 0.79 0.71 

Frame 2 BFY-CPY 1.03 0.100 0.85 0.80 0.76 0.68 

Instability 1.10 0.097 0.91 0.86 0.81 0.73 

BPY-CPY 1.10 0.093 0.92 0.87 0.82 0.73 

Frame 3 BFY-CPY 1.07 0.102 0.88 0.83 0.79 0.71 

BPY-CFY 1.06 0.104 0.88 0.83 0.78 0.69 

BPY-CPY 1.02 0.105 0.85 0.80 0.75 0.67 

Frame 4 BFY-CPY 1.07 0.102 0.91 0.85 0.79 0.69 

CFY 1.07 0.103 0.89 0.84 0.79 0.71 

BPY-CFY 1.07 0.105 0.89 0.84 0.79 0.71 

Frame 5 BFY-CPY 1.07 0.101 0.89 0.84 0.79 0.71 

CFY 1.12 0.102 0.94 0.88 0.83 0.74 

BPY-CFY 1.11 0.101 0.90 0.85 0.81 0.73 

Frame 6 BFY-CPY 1.06 0.101 0.87 0.82 0.78 0.71 

BPY-CFY 1.08 0.104 0.89 0.84 0.79 0.71 

Frame 7 BFY-CPY 1.06 0.099 0.88 0.83 0.79 0.71 

CFY 1.04 0.095 0.88 0.82 0.79 0.70 

BPY-CPY 1.04 0.095 0.88 0.82 0.77 0.69 

Frame 8 BFY-CPY 1.06 0.102 0.88 0.83 0.78 0.70 

BPY-CFY 1.07 0.102 0.89 0.84 0.79 0.71 

BPY-CPY 1.06 0.101 0.90 0.84 0.79 0.70 

Frame 9 BFY-CPY 1.06 0.106 0.87 0.82 0.78 0.70 

BPY-CPY 1.07 0.103 0.91 0.85 0.80 0.71 

BFY-CFY 1.09 0.103 0.90 0.84 0.79 0.71 

                                      Average value of  𝜑𝑠 0.90 0.85 0.80 0.70 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: β vs. 𝜑𝑠 for selected frames, using Method 2 
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7. Conclusion 
This paper is part of the research effort to develop the next generation of steel structural code 

based on advanced analysis. Using that approach and derived system resistance factor, the user 

stands to benefit from more reliable design method and shortened design time as there is no need 

for separate member/section capacity check. This method can provide the details of frame failure 

modes. In most cases using system-based design by advanced analysis can save portion of steel 

weight and leads to lighter structures.  

 

To develop this methodology, a series of 2D frames were analyzed in this study using advanced 

analysis and Latin Hypercube sampling method. The effect of uncertainties in ultimate strength 

of a frame is considered by modeling yield stress, elastic modulus, cross-sectional properties, 

member and frame initial geometric imperfection and residual stress as random variables. 

Different failure modes are considered for each frame the system strength statistical 

characteristics are obtained. The resistance factor 𝜑𝑠 is plotted versus reliability index (β) for all 

frames using two different approaches. It was concluded that Method 2, which is based on 

changing loads to achieve a specific resistance factor, is faster and requires fewer simulations. 

The simulation results show that although different frames with various geometries and 

configurations are analyzed, the COVs and mean-to-nominal ratios of ultimate strength are quite 

similar. On the other hand different frames fail by various failure modes, show nearly same 

statistics and thereby similar values of system resistance factors (𝜑𝑠 ). The system resistance 

factor determined in this study for target reliability of 2.5 is 0.9 while it drops to 0.7 by assuming 

the reliability of 3.5.  However, these values are only based on the result of simulations for 

unbraced frames under gravity and further work is needed to determine 𝜑𝑠 for braced frame as 

well as frames under different load combinations.  
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