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Abstract 
The traditional method of structural analysis with material nonlinearity has always been using 
the method of changing stiffness to capture the force reduction after yielding in the structure.  
This often raises a stability question on using the appropriate stiffness matrix to represent both 
geometric nonlinearity and material nonlinearity – How will the axial force on the column affect 
the tangent stiffness of the plastic hinges and the moment-resisting frame?  In this research, the 
force analogy method combined with the stability functions will be used to answer this question.  
Through this unique combination, the stiffness force is computed by simply multiplying a 
nonlinear stiffness matrix (due to geometric nonlinearity using stability functions) with a 
nonlinear displacement vector (due to material nonlinearity using the force analogy method).  A 
detailed derivation of the nonlinear stiffness matrices taking into consideration both geometric 
and material nonlinearities is here presented to demonstrate the simplicity of the combined 
method in addressing the nonlinear coupling effect. 
 
 
1. Introduction 
Buildings constructed in seismic regions are expected to experience significant deformation 
during a major earthquake.  While design codes and standards have been developed to establish 
the seismic capacity for the structural design, estimating the seismic demand in nonlinear 
structures has always been a challenging task because no analytical theory exists in capturing the 
response of structures with significant geometric nonlinearity coupled with significant material 
nonlinearity, such as in the case of near-structural collapse.  Engineers often rely on numerical 
methods and software subroutines to handle this coupling effect of nonlinearities, but software 
developers typically use their knowledge and preferences to make independent assumptions on 
what are best for their algorithms.  One good example is that Perform-3D (CSI 2011a) uses P- 
stiffness matrix and SAP2000 (CSI 2011b) uses the geometric stiffness matrix to address 
geometric nonlinearity effects.  The end result is that there is a lack of consistency in the outputs 
between software packages for addressing nonlinearities, which can often go back and attribute it 
to the lack of analytical theory in handling the coupling effect.   
 
In this research, an analytical method of handling the coupling effect of nonlinearities is 
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developed through the combination of the force analogy method for handling material 
nonlinearity with the stability functions for handling geometric nonlinearity.  Here, the force 
analogy method uses the initial stiffness with changing displacements in the formulation of 
material nonlinearity to quantify the stiffness force in the structure.  Because the stiffness 
matrices remain unchanged with material nonlinearity, geometric nonlinearity using stability 
functions can easily be incorporated into the formulation by updating the geometric stiffness 
matrices due to changes in axial forces in the column members.  The end result is that the 
stiffness force is computed by simply multiplying a nonlinear stiffness matrix with a nonlinear 
displacement vector.   
 
In this paper, a detailed formulation on the nonlinear stiffness matrices taking into consideration 
both geometric and material nonlinearities is first derived for a column member.  Once these 
stiffness matrices are assembled to form the global stiffness matrices, several examples are then 
followed to demonstrate the simplicity of the method for analyzing nonlinear framed structures. 
 
2. Force Analogy Method 
The Force Analogy Method (FAM) is a tool for calculating the internal forces and deformations 
of a material nonlinear structure due to the applied forces.  The detailed derivation of the FAM 
has been presented in Wong and Yang (1999), and it is here briefly discussed with the inclusion 
of geometric nonlinear effects.  Consider a moment-resisting frame with n degrees of freedom 
(DOFs) and m plastic hinge locations (PHLs).  Let the total displacement x at each DOF be 
represented as the summation of elastic displacement x  and inelastic displacement x  : 
 
 xxx   (1) 
 
Similarly, let the total moment M  at the PHLs of a moment-resisting frame be separated into 
elastic moment M  and inelastic moment M  : 
 
 MMM   (2) 
 
The displacements in Eq. 1 and the moments in Eq. 2 are related by the equations: 
 
 xKM  T     ,       ΘKKKKM  1T     ,      ΘKKx  1  (3) 
 
where Θ   is the plastic rotation at the PHLs, K  is the nn  global stiffness matrix, K  is the 

mn   assembled stiffness matrix relating plastic rotations at the PHLs and forces at the DOFs, 
and K   is the mm   assembled stiffness matrix relating plastic rotations with corresponding 
moments at the PHLs.  For the ith beam or column member of the structure with plastic hinges at 
both ends but subjected to no axial force (or when geometric nonlinearity is ignored), the 
element stiffness matrices relating the shear and moment with deformations can be written as: 
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Through matrix manipulations, the governing equation of the FAM due to an external applied force 
aF  can be written as 
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3. Stability Functions 
To incorporate geometric nonlinearity into the analysis with material nonlinearity based on the 
FAM, the stiffness matrices iK , iK  , and iK   of the ith column member in Eq. 4 must be derived 
by taking into consideration the axial compressive force on the member.  Some of the previous 
derivations of the ith member elastic stiffness matrix iK  (McGuire et al. 2000, Wilson 2002, 
Powell 2010) include the P- and geometric stiffness approaches, where the stiffness matrix for 
the P- approach (i.e., )( PiK ) and that for the geometric stiffness approach (i.e., )(GSiK ) are 
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The stability theory of using stability functions, on the other hand, was developed for elastic 
structures in the 1960’s (Timoshenko and Gere 1961, Horne and Merchant 1965, Bazant and 
Cedolin 2003), but it found limited applications because of its complexity in the closed-form 
solution as compared to those using either the P- approach in Eq. 6 or the geometric stiffness 
approach in Eq. 7.  Even with the advance in computing technology, only one research publication 
was found in the recent literature on the analysis of framed structures using stability functions 
(Park and Kim 2008).  For structures with significant lateral deflection, large geometric 
nonlinearity is expected, and linear or second-order approximation of the geometric stiffness may 
not be able to capture the nonlinear behavior accurately.  Therefore, stability functions are here 
used to incorporate with the FAM to analyze structures with both geometric and material 
nonlinearities. 
 
Although the theory of using stability functions in analyzing elastic frame buckling has been fully 
developed half a century ago, the derivation of ith member elastic stiffness matrix iK  is repeated 
here mainly because this derivation is important to the subsequent derivations of inelastic iK   and 

iK   matrices.  While recognizing that only column members will be subjected to the axial 
compression and beam members will experience insignificant axial force due to the presence of the 
slab, the columns are rotated 90° in the following derivation of the stiffness matrices using the 
classical beam theory with an applied axial compressive load.  Therefore the word ‘beam’ will be 
used interchangeably with the word ‘column’ in this section. 
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3.1 Stiffness Matrix [ iK ] 
Consider separately the four cases of a beam deflection subjected to various displacement patterns 
as shown in Fig. 1 in deriving the stiffness matrices.  Here, lV1 , lM1 , lV2 , and lM 2  represent the 
fixed-end shears and moments of the beam, and 4,...,1l  represents the four cases of unit 
displacement patterns of beam deflection. 
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Figure 1: Displacement patterns and the corresponding fixed-end forces 
 
Using the classical Bernoulli-Euler beam theory where the moment is proportional to the 
curvature, the governing equilibrium equation describing the deflected shape of the beam member 
can be written as 
 
 0)(  vPvEI  (8) 
 
where E is the elastic modulus, I is the moment of inertia, v is the lateral deflection, P is the axial 
compressive force of the member, and each prime represents taking derivatives of the 
corresponding variable with respect to the x-direction of the member.  By assuming EI is constant 
along the member, the solution to the fourth-order ordinary differential equation becomes: 
 
 DCxkxBkxAv  cossin  (9) 
 
where EIPk 2 .  Let kL  to simplify the derivations, where L is the length of the member.  
The following four cases of boundary conditions (not in numerical order) are now considered. 
 
Case 2:  Imposing the boundary conditions 0)0( v , 1)0( v , 0)( Lv , and 0)(  Lv  gives 
 
 0)0( v : 0 DB  (10a) 
 1)0( v : 1CkA  (10b) 
 0)( Lv : 0cossin  DCLBA  (10c) 
 0)(  Lv : 0sincos  CkBkA  (10d) 
 
Solving simultaneously for the constants in Eq. 10 gives  
 

 
 
 

 
  BDkAC
L

B
L

A 







 ,1,
2cos2sin

sincos
,

2cos2sin

1cossin
 (11) 



 5

Therefore, Eq. 9 along with the constants in Eq. 11 gives the deflected shape for Case 2.  The 
shears and moments at the two ends of the member (see Fig. 1) are then evaluated using the 
classical beam theory formula: 
 
 vEIxM )(     ,      vPvEIxV )(  (12) 
 
Substituting Eq. 9 into Eq. 12 and using the constants calculated in Eq. 11, the fixed-end forces as 
labeled in Fig. 1 (Case 2) are calculated as: 
 
 LsEIBEIkvEIM  2
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The minus signs in front of the calculations for 12M  in Eq. 13a and 22V  in Eq. 13d appear because 
of the differences in sign convention between the classical beam theory and the theory for stiffness 
method of structural analysis. 
 
Case 4:  Imposing the boundary conditions 0)0( v , 0)0( v , 0)( Lv , and 1)(  Lv  gives 
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Solving simultaneously for the constants in Eq. 15 gives 
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These constants in Eq. 16 are used to give the deflected shape in Eq. 9 for Case 4.  Now 
substituting Eq. 9 into Eq. 12 and using the constants calculated in Eq. 16, the fixed-end forces as 
labeled in Fig. 1 (Case 4) are calculated as: 
 
 LscEIBEIkvEIM  2
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where s, c, and s  are given in Eq. 14. 
 
Case 1:  Imposing the boundary conditions 1)0( v , 0)0( v , 0)( Lv , and 0)(  Lv  gives 
 
 1)0( v : 1 DB  (18a) 
 0)0( v : 0CkA  (18b) 
 0)( Lv : 0cossin  DCLBA  (18c) 
 0)(  Lv : 0sincos  CkBkA  (18d) 
 
Solving simultaneously for the constants in Eq. 18 gives 
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These constants in Eq. 19 are used to give the deflected shape in Eq. 9 for Case 1.  Now 
substituting Eq. 9 into Eq. 12 and using the constants calculated in Eq. 19, the fixed-end forces as 
labeled in Fig. 1 (Case 1) are calculated as: 
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and s  is given in Eq. 14. 
 
Case 3:  Imposing the boundary conditions 0)0( v , 0)0( v , 1)( Lv , and 0)(  Lv  gives 
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Solving simultaneously for the constants in Eq. 22 gives 
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These constants in Eq. 23 are used to give the deflected shape in Eq. 9 for Case 3.  Now 
substituting Eq. 9 into Eq. 12 and using the constants calculated in Eq. 23, the fixed-end forces as 
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labeled in Fig. 1 (Case 3) are calculated as: 
 
 22

13 )0( LEIsBEIkvEIM   (24a) 

 33
13 0)0()0( LEIsPAEIkvPvEIV   (24b) 

   22
23 cossin)( LEIsBAEIkLvEIM   (24c) 

   33
23 0sincos)()( LEIsPBAEIkLvPLvEIV   (24d) 

 
where s  is given in Eq. 14 and s  is given in Eq. 21. 
 
In summary, based on Eqs. 13, 17, 20, and 24 for the above four cases, the stiffness matrix of the 
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3.2 Stiffness Matrix [ iK  ] 
The stiffness matrix iK   relates the plastic rotations at the PHLs with the restoring forces applied at 
the DOFs.  However, computing the restoring forces at the two ends of the member due to a unit 
plastic rotation at the PHL is a difficult process.  To avoid this problem, the T

iK  matrix relating 
the displacements at the two ends of the member with the moments at the PHLs is constructed. 
 
Consider the four cases of unit displacements of the beam member as shown in Fig. 2, where the 
moment at the plastic hinges ‘a’ and ‘b’ (i.e., alM  and blM , 4,...,1l ) represent the desired 
quantities.  Note that the fixed end moments (i.e., lM 1  and lM 2 , 4,...,1l ) have already been 
calculated and summarized in the second and fourth rows of the stiffness matrix given in Eq. 25.  
Based on Fig. 2, the moments at the two plastic hinges for each of the four cases become: 
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Figure 2: Displacement patterns for computation of moments at the plastic hinge locations 
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Case 2:  Imposing the boundary conditions 0)0( v , 1)0( v , 0)( Lv , and 0)(  Lv  gives 
 
 LsEIMM a  122     ,      LscEIMM b  222  (27) 
 
Case 3:  Imposing the boundary conditions 0)0( v , 0)0( v , 1)( Lv , and 0)(  Lv  gives 
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From Eqs. 26 to 29, the transpose of stiffness matrix iK   for the ith member becomes 
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Once the T

iK   matrix in Eq. 30 is derived, the iK   matrix can be written as:  
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3.3 Stiffness Matrix [ iK  ] 
The stiffness matrix iK   relates the moments at the PHLs with a corresponding unit plastic rotation 
at each PHL.  To determine the iK   matrix, the goal is to compute aaM , abM , baM , and bbM  as 
shown in Fig. 3. 
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Figure 3: Displacement patterns for computation of moments due to unit plastic rotations 
 
The fixed-end forces evaluated in the iK   matrix can be used to calculate the stiffness matrix iK  .  
For example, the first column of the 24  iK   matrix in Eq. 31 represents the fixed-end shears 
( 1aM  and 3aM ) and moments ( 2aM  and 4aM ) of the beam member due to a unit plastic rotation 
at the left plastic hinge (i.e., PHL ‘a’), as shown in Fig. 3.  Similarly, the second column of the 

24  iK   matrix in Eq. 31 represents the fixed-end shears ( 1bM  and 3bM ) and moments ( 2bM  and 
4bM ) of the beam member due to a unit plastic rotation at the right plastic hinge (i.e., PHL ‘b’), as 

shown in Fig. 3.  Then the moments at the two plastic hinges for each of the two cases can be 
evaluated as: 
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Case ‘a’:  Imposing a unit plastic rotation 1 a  and 0b  gives 
 
 LsEIMM aaa  2     ,      LscEIMM aba  4  (32) 
 
Case ‘b’:  Imposing a unit plastic rotation 0a  and 1 b  gives 
 
 LscEIMM bab  2     ,      LsEIMM bbb  4  (33) 
 
From Eqs. 32 and 33, the stiffness matrix iK   for the ith member becomes 
 

 
b

a
i

LsEILscEI

LscEILsEI












K  (34) 

 
4. Advantage of Using Stability Functions 
Consider a beam member of length 3L with elastic modulus E and moment of inertia I subjected to 
an axial compressive force 22.0 LEIP   as shown in Fig. 4.  Following Eqs. 6, 7, and 25, the 
element stiffness matrices iK  using DOFs #1 to #4 with geometric nonlinearity considered can be 
written as 
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4#DOF

3#DOF

2#DOF
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SFiK  (35c) 
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L L L
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2 46 8

 

Figure 4: Beam member subdivided into three elements 
 
Now assume that the same member is subdivided into three elements of equal lengths L.  The 
stiffness matrices using DOFs #1 to #8 as labeled in Fig. 4 with geometric nonlinearity considered 
can be written as 
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8#DOF

7#DOF

6#DOF
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3#DOF

2#DOF
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Note that SFGS KK   within three significant digits.   
 
Static condensation is now used to eliminate DOFs #5 to #8 from the stiffness matrices in Eq. 36 
based on the equation 
 
 21

1
221211 KKKKK   (37) 

 
where 11K , 12K , 21K , and 22K  are sub-matrices partitioned according to the dotted lines of those 
full stiffness matrices shown in Eq. 36.  It can be seen that each of these sub-matrices are 44  
matrix, with subscript ‘2’ denoting DOFs #5 to #8 to be condensed out and subscript ‘1’ denoting 
DOFs #1 to #4 to be remained after condensation.  Now substituting these sub-matrices presented 
in Eq. 36 into Eq. 37 and performing the matrix multiplications gives 
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4#DOF

3#DOF

2#DOF

1#DOF
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Comparing Eq. 35 with Eq. 38 shows that only the stability functions approach gives exactly the 
same stiffness matrix regardless of whether one long element is used or three subdivided elements 
are used.  This indicates that while all three geometric nonlinearity approaches address large P- 
appropriately, only stability functions approach captures small P- exactly.  Note that the 
differences between the statically condensed matrices (i.e., )( PiK  and )(GSiK  relative to )(SFiK  in 
Eq. 38) is smaller than those between the original matrices (i.e., )( PiK  and )(GSiK  relative to 

)(SFiK  in Eq. 35).  This indicates that one way of capturing small P- effect in the P- approach is 
to subdivide the member into several shorter elements. 
 
5. Force Analogy Method with Stability Functions 
Consider the one-story one-bay moment-resisting steel frame as shown in Fig. 5.  Assume that 
axial deformation is ignored for all three members, this results in a system with 3 DOFs ( 3n ) 
and 6 PHLs ( 6m ) as labeled in the figure.  Also assume that a lateral force of oF  is applied at 
the horizontal degree of freedom 1x , this gives oFF 1  and 032  FF .   
 

3

1 2

PHL #1

#2

#3

#4

#5 #6
x1

x2

x3

P P

Fo

W
14

x8
2

W21x44

W
14

x8
2

Lc

Lb  
Figure 5: One-story one-bay moment-resisting steel frame 

 
Since the axial force in Member 1 (denote as 1P ) will be different from that of Member 2 (denote 
as 2P ) due to overturning induced by the lateral applied force oF , the resulting stability coefficients 
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will be different as well.  The axial force in Member 3 is assumed to be negligible (i.e., 03 P ) due 
to the presence of slab, even though it is not explicitly modeled.  Therefore, let  
 

 cc LEIP  11     ,      cc LEIP  22  (39) 

 
where 000,29E  ksi for steel, and cI  is the moment of inertia and cL  is the length of the 
W14×82 columns.  Also, let bI  be the moment of inertia and bL  be the length of the W21×44 
beam.  It then follows that the stiffness matrices of the FAM for this one-story frame become  
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where 1s , 1c , 1s , and 1s  are the stability coefficients of Member 1 as functions of 1  and 1P , and 

2s , 2c , 2s , and 2s  are the stability coefficients of Member 2 as functions of 2  and 2P .  The 
governing equation of the FAM based on Eq. 5 becomes 
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Let the gravity load on the frame be 200P  kips.  Also, let 20bL  ft and 14cL  ft, and a yield 
stress of steel be 36Yf  ksi.  Assume yield surface is determined through the interaction between 
axial force and moment with the relationships: 
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 Columns:    4,...,1,1
22
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 Beam:    6,5,1  k
Zf

M

bY

k  (42b) 

 
where cA  is the cross-sectional area and cZ  is the plastic section modulus of the columns, and bZ  
is the plastic section modulus of the beam.  Let the material exhibits elastic-plastic behavior.  This 
gives the moment versus plastic rotation relationships for the 6 PHLs as 
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where kYcM ,  is the moment capacity of the kth column plastic hinge computed based on a specified 
axial compressive force and the yield surface equation given in Eq. 42a.  A pushover curve is now 
constructed for the frame by taking the following steps.  
 
Step 1:  The frame is initially assumed to respond in the linearly elastic range i.e., 

0654321  .  At an applied force of 4.484oF  kips and 20021  PP  kips, 
extracting the first three equations of Eq. 41 gives 
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Solving for the displacements at the DOFs gives 
 
 189.61 x  in.   ,     0276.032  xx  rad (45) 
 
Then substituting Eq. 45 back into the last six equations of Eq. 41 gives the moments 
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At this point, both 5M  and 6M  reach the moment capacity of 848,16bY Zf  k-in.  Based on the 
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setup of the frame as shown in Fig. 5, the column axial force can be updated by computing the 
shear force at the two ends of the beam member using equilibrium of the beam, i.e., 
 
     6.59240838,16838,16200651  bLMMPP  kips (47a) 
 

     4.340240838,16838,16200652  bLMMPP  kips (47b) 
 
Step 2u:  The analysis continues with PHLs #5 and #6 yielded, i.e., 04321  .  The 
lateral force is applied up to 7.524oF  kips.  Rows 1, 2, 3, 8, and 9 are extracted from Eq. 41 
with the updated information on the column axial forces obtained in Eq. 47:  
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Solving for the displacements at the DOFs and plastic rotations in Eq. 48 gives 
 
 557.71 x  in.  ,   0398.032  xx  rad  ,   0122.05   rad  ,   0123.06   rad (49) 
 
Then substituting Eq. 49 back into the last six equations of Eq. 41 gives the moments 
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and the column axial forces are updated as 
 
     6.59240838,16838,16200651  bLMMPP  kips (51a) 
 

     4.340240838,16838,16200652  bLMMPP  kips (51b) 
 
which remain constant since the moments at 5M  and 6M  remain at their plastic moment capacity.  
Using Eq. 43a to check for yielding at PHLs #1 and #3 gives 
 

 PHL #1:        867.031104288848646.59 22   (52a) 
 

 PHL #3:        00.131104285888644.340 22   (52b) 
 
which indicates that PHL #3 reaches its capacity at this step. 
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Step 3u:  The analysis continues with PHLs #3, #5, and #6 yielded, i.e., 0421  .  The 
lateral force is applied up to 6.535oF  kips.  Rows 1, 2, 3, 6, 8, and 9 are extracted from Eq. 41 
with the updated information on the column axial forces obtained in Eq. 51: 
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 (53) 

 
Solving for the displacements at the DOFs and plastic rotations in Eq. 53 gives 
 
 351.81 x  in.   ,     0469.02 x  rad   ,     0446.03 x  rad 
 0047.03   rad   ,     0193.05   rad   ,     0170.06   rad (54) 
 
Then substituting Eq. 54 back into the last six equations of Eq. 41 gives the moments 
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 (55) 

 
and the column axial forces remain constant at 6.591 P  kips and 4.3402 P  kips.  Using Eq. 43a 
to check for yielding at PHLs #1 and #3 gives 
 

 PHL #1:        00.131104310308646.59 22   (56a) 
 

 PHL #3:        00.131104285888644.340 22   (56b) 
 
which indicates PHL #1 has reached its capacity and PHL #3 has continued yielding at this step.  
Now that a mechanism has been formed, the frame will continue to deflect without any additional 
load, and the pushover curve can be plotted as shown in Fig. 6 for the case where geometric 
nonlinearity are updated due to the change in axial forces in the columns. 
 
Now consider the case where geometric nonlinearity is not updated when there is a change in the 
column axial forces.  This is achieved by using constant stiffness matrices K , K , and K   that are 
computed based on the initial column axial forces throughout the analysis.  Using the same one-
story frame as shown in Fig. 5, Step 1 above remains the same as previously computed, where 

4.484oF  kips and 189.61 x  in., with moments 5M  and 6M  both reaching their moment 
capacities and 20021  PP  kips. 
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Figure 6: Comparison of pushover curves with and without updates on stiffness due to geometric nonlinearity 
 
Step 2n:  The analysis continues with PHLs #5 and #6 yielded, i.e., 04321  .  The 
lateral force is applied up to 0.523oF  kips.  Rows 1, 2, 3, 8, and 9 are extracted from Eq. 41 
with the axial forces in the columns remain at 20021  PP  kips for the purpose of determining 
the nonlinear geometric stiffness (i.e., update of the geometric nonlinearity is ignored):  
 

 



















































































848,16

848,16

0

0

0.523

4074502037304074502037300

2037304074502037304074500

40745020373010113002037305411

20373040745020373010113005411

00541154115.126

6

5

3

2

1

x

x

x

 (57) 

 
Solving for the displacements at the DOFs and plastic rotations in Eq. 57 gives 
 
 502.71 x  in.   ,     0393.032  xx  rad   ,     0118.065   rad (58) 
 
Then substituting Eq. 58 back into the last six equations of Eq. 41 gives the moments 
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 (59) 

 
Since both 5M  and 6M  remain at their moment capacities, the column axial forces remain 
constant at 6.591 P  kips and 4.3402 P  kips.  Now using Eq. 43a to check for yielding at PHLs 
#1 and #3 gives 
 

 PHL #1:        850.031104285888646.59 22   (60a) 
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 PHL #3:        00.131104285888644.340 22   (60b) 
 
which indicates that PHL #3 reaches its capacity at this step. 
 
Step 3n:  The analysis continues with PHLs #3, #5, and #6 yielded, i.e., 0421  .  The 
lateral force is applied up to 4.535oF  kips.  Rows 1, 2, 3, 6, 8, and 9 are extracted from Eq. 41 
with the axial forces in the columns remain at 20021  PP  kips for the purpose of determining 
the nonlinear geometric stiffness: 
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Solving for the displacements at the DOFs and plastic rotations in Eq. 61 gives 
 
 414.81 x  in.   ,     0475.02 x  rad   ,     0448.03 x  rad 
 0054.03   rad   ,     0199.05   rad   ,     0172.06   rad (62) 
 
Then substituting Eq. 62 back into the last six equations of Eq. 41 gives the moments 
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 (63) 

 
and the column axial forces remain constant at 6.591 P  kips and 4.3402 P  kips.  Using Eq. 43a 
to check for yielding at PHLs #1 and #3 gives 
 

 PHL #1:        00.131104310308646.59 22   (64a) 
 

 PHL #3:        00.131104285888644.340 22   (64b) 
 
which indicates PHL #1 has reached its capacity and PHL #3 has continued yielding at this step.  
Now that a mechanism has been formed, the frame will continue to deflect without any additional 
load, and the pushover curve can be plotted as shown in Fig. 6 for the case where the update of 
stiffness matrix due to geometric nonlinearity is ignored when axial forces in the columns change. 
 
Fig. 6 shows that the difference between whether or not to update the geometric nonlinearity due to 
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changes in column axial force at every step on the pushover curve is negligible.  One hidden 
assumption often made among various software packages, including Perform-3D (CSI 2011a), is 
that the effect of changing axial force in the frame on the geometric stiffness matrices is ignored, 
and therefore the geometric nonlinearity need not be updated.  The idea behind this assumption is 
that when lateral displacement imposes overturning moment on the entire framed structure, global 
equilibrium requires that there will be an increase in column compression on one side of the frame 
and an equal amount of reduction in column compression on the opposite side of the frame.  While 
an increase in column compression on one side of the frame reduces the lateral stiffness of these 
columns, a reduction in column compression on the opposite side of the frame increases the lateral 
stiffness of those columns by a similar amount.  The end result is that the net change in total lateral 
stiffness of the entire frame becomes negligible, and this can be observed when the stiffness matrix 
in Eq. 48 (Step 2u) is compared with that in Eq. 57 (Step 2n).  Similar observations can also be 
made when the stiffness matrix in Eq. 53 (Step 3u) is compared with that in Eq. 61 (Step 3n).  
Therefore, an assumption to keep the geometrically nonlinear stiffness matrices unchanged 
throughout the analysis, even as loading increases, is reasonable.   
 
6. Pushover Analysis of a Two-Story Frame 
Consider the two-story moment-resisting steel frame as shown in Fig. 7.  Assume that axial 
deformation is ignored for the beam members, this gives a system with 17 DOFs ( 17n ) and 17 
PHLs ( 17m ), resulting in a 1717  K  matrix, a 1717  K  matrix, and a 1717  K   matrix.  
Let 100,26290009.0 E  ksi be the elastic modulus and 4.32369.0 Yf  ksi be the yield 
stress of steel.  Also, let the yielding surface of the column plastic hinges be 
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 (65) 

 
where kP  is the axial force, kM  is the plastic hinge moment, ckA  is the cross-sectional area, and 

ckZ  is the plastic section modulus of the column containing the kth plastic hinge. 
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Figure 7: Two-story moment-resisting steel frame 
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Step 1:  The analysis begins with considering the gravity loads only.  The frame is assumed to 
respond in the linearly elastic range.  At an applied lateral force of 0oF , the responses and the 
column axial forces are calculated, and the resulting roof displacement is 437.02 x  in. 
 
Step 2:  The analysis continues with an addition of the applied lateral forces.  At this point, the 
frame is assumed to remain in the linearly elastic range, i.e., 0... 1721  .  The lateral 
force is now applied up to 05.2oF , giving a base shear of 76.19V  kips.  Without considering 
any update on the axial force due to geometric nonlinearity, the resulting roof displacement is 

369.12 x  in. and a plastic hinge at PHL #11 is formed at this applied lateral force level. 
 
Step 3n:  The analysis continues with an increase of the applied lateral forces and a plastic hinge at 
PHL #11, i.e., 0... 101   and 0... 1712  .  The lateral force is now applied up to 

05.3oF , giving a base shear of 40.29V  kips.  By solving the matrix equation with 18 
unknowns (17 DOFs plus 1 PHL), the resulting roof displacement is calculated as 318.22 x  in.  
At this point, a plastic hinge at PHL #7 is formed, and the plastic rotation at PHL #11 is 

00059.011   rad. 
 
Step 4n:  The analysis continues with an increase of the applied lateral forces and plastic hinges at 
PHLs #7 and #11, i.e., 0... 61  , 01098  , and 0... 1712  .  The lateral force 
is now applied up to 10.4oF , giving a base shear of 52.39V  kips.  By solving the matrix 
equation with 19 unknowns (17 DOFs plus 2 PHLs), the resulting roof displacement is now 
calculated as 776.42 x  in.  At this point, a plastic hinge at PHL #4 is formed, and the plastic 
rotations at the other PHLs are 01018.07   rad and 00255.011   rad. 
 
Step 5n:  The analysis continues with an increase of the applied lateral loads and plastic hinges at 
PHLs #4, #7, and #11, i.e., 0109865321   and 0... 1712  .  The 
lateral force is now reduced to 71.3oF , giving a base shear of 76.35V  kips.  By solving the 
matrix equation with 20 unknowns (17 DOFs plus 3 PHLs), the resulting roof displacement is now 
calculated as 114.62 x  in.  At this point, a plastic hinge at PHL #1 is formed, and the plastic 
rotations the other PHLs are 00576.04   rad, 01596.07   rad, and 00256.011   rad. 
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Figure 8: Pushover curve of a two-story frame without update of geometric nonlinearity 
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The analysis stops at this point, which is when a mechanism is formed with PHLs #1, #4, and #7 
yielded.  The resulting pushover curve is shown in Fig. 8, and a similar curve obtained using 
Perform-3D is also plotted in the figure as a comparison.  While Perform-3D also shows only 
PHLs #1, #4, #7, and #11 have yielded, the difference between the two curves after yielding can be 
attributed to the default column yield surface in Perform-3D that is different from the one defined 
in Eq. 65.  Note that the present analysis is able to easily capture the strain softening response of 
the structure as shown in Fig. 8, which is one of the major advantages of the FAM. 
 
7. Conclusions 
In this paper, a detailed derivation of the nonlinear geometric stiffness matrices using stability 
functions was presented on a column member with plastic hinges at the ends.  Through this 
derivation, it was demonstrated that the stiffness force can be computed by simply multiplying a 
geometric nonlinear stiffness matrix with a material nonlinear displacement vector.  While the 
use of stability functions produced the global stiffness matrix that was numerically equivalent to 
the common use of geometric stiffness approach, using stability functions was demonstrated 
through numerical calculation to have the advantage of capturing the P- effect exactly.  This 
results in the simplicity on incorporation of the force analogy method for addressing material 
nonlinearity into the formulation and the accuracy when static condensation is performed.  
Numerical examples using one-story and two-story frames were then presented to show the 
simplicity of the method for analyzing the responses of nonlinear framed structures.  Through 
these numerical exercises, it was demonstrated that updating the geometric stiffness is not a 
major factor on influencing the shape of the pushover curves. 
 
8. Disclaimers 
Certain software may have been identified in this paper in order to specify the analytical 
procedure adequately.  Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology (NIST), nor is it intended to 
imply that the software identified are necessarily the best available for the purpose. 
 
The policy of NIST is to use the International System of Units (metric units) in all publications.  
In this document, however, some information is presented in the U.S. Customary Units, as this is 
the U.S. earthquake engineering industry preferred system of units. 
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