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Abstract 

In this paper the generalization of the constrained finite strip method (cFSM) is discussed. cFSM 

is a special version of the semi-analytical finite strip method (FSM), where carefully defined 

constraints are applied which enforce the thin-walled member to deform in accordance with 

specific mechanics, e.g., to allow buckling only in flexural, lateral-torsional, or a distortional 

mode. In the original cFSM only open cross-section members are handled, here the method is 

extended to cover any flat-walled member, including those with closed cross-sections or cross-

sections with open and closed parts. In the original cFSM only 4 deformation classes are defined, 

here the deformation field is decomposed into additional, mechanically meaningful, sub-fields, to 

which formal mechanical criteria are assigned. The method is implemented into the CUFSM 

software. The application and potential of the extended cFSM method is illustrated by numerical 

examples.  

 

 

1. Introduction 

Thin-walled members possess complicated stability behaviour. If subjected primarily to 

longitudinal stresses, three characteristic buckling classes are usually distinguished: global (G), 

distortional (D), and local-plate (L) buckling. Although in practical situations these modes rarely 

appear in isolation, typically some modal coupling is involved, the GDL classification has still 

been found useful for capacity prediction, and appears either implicitly or explicitly in current 

thin-walled design standards, e.g. NAS (2007), Eurocode 3 (2006). Capacity prediction requires 

the critical loads associated with the various buckling classes. Critical load calculation for thin-

walled members is usually accomplished by some numerical methods, especially shell finite 

element method (FEM), generalized beam theory (GBT), see Silvestre et al (2011), or the finite 

strip method (FSM) which latter is in the focus of this paper. 

 

FSM is based on the work of Cheung (1968), but popularized by Hancock (1978) who provided 

the organizing thrust of today’s member design, which later evolved into the Direct Strength 

Method (DSM), see DSM (2006). Hancock introduced the notion of the signature curve, from 
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which quasi-pure buckling modes and associated loads could be determined, at least for typical 

design. Accessibility of FSM was enhanced by the introduction of the open source software 

CUFSM, first for pin-ended, see CUFSM (2006), but later for other end restraints, see CUFSM 

(2012). Note, that in all these FSM implementations the primary loading is assumed to be 

longitudinal stresses, though recently FSM has also been applied to analyse shear buckling 

(Pham and Hancock, 2009) of thin-walled members.    

 

Ádány and Schafer (2006a,b, 2008) proposed a special version of FSM, the constrained Finite 

Strip Method (cFSM). cFSM possesses the ability of modal decomposition as well as mode 

identification in a manner similar to GBT. In fact, cFSM and GBT have been found nearly 

coincident in their end results (Ádány et al, 2009), even though the roots of the two methods are 

distinctly different. Although cFSM can be considered as a theoretically interesting, and 

practically useful tool, it is not complete, having various limitations. The limitations are three-

fold: (i) inherent limitations of FSM, (ii) limitations in the mechanical criteria used to separate 

the deformation classes, and (iii) originally only open cross-sections are covered. Whilst the first 

two sources of limitations are not addressed here, the current proposed generalization of cFSM 

completely removes the limitations with regard to cross-section topology, provided the cross-

section can reasonably modelled as a set of flat thin-walled strips.  

 

To be able to handle cross-sections with closed part(s), it is essential to carefully consider in-

plane shear deformations, as shown in Ádány (2013), where the role of in-plane shear 

deformations are fully detailed. This leads to a decomposition of shear modes, which modes are 

the most important novelty of the here-introduced generalized cFSM. The new shear modes are 

required for the torsional behaviour of closed cross-sections, but also useful and practically 

meaningful for any cross-sections, and make it possible to reproduce global buckling modes 

similar to those of shear-deformable beam theories. Since the original derivations only applied to 

open cross-sections generalization of the cross-section and incorporation of the new shear modes 

requires new notations and formulation for cFSM, as presented here. 

 

2. FSM and cFSM essentials 

The finite strip method (FSM) is a shell-model-based discretization method. By utilizing 

longitudinal regularity, a common characteristic in thin-walled members, FSM requires a 

significantly smaller number of degrees of freedom (DOF) than the shell finite element method 

(FEM). Members are discretized into longitudinal strips as shown in Fig. 1. Note, in this paper 

(which focuses on primary modes only) only one strip per flat of the member is applied, as 

shown in Fig. 1. (Note, Fig. 1 illustrates the nodal displacements for the simplest longitudinal 

shape function as given in Eq. 4, with m=1.)  
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Figure 1: Finite strip discretization, strip DOF, and notation 

 

Within a strip, local displacement fields u, v, and w are expressed as follows (Cheung, 1968): 

 

 




































q

m

m
m

m
Y

u

u

b

x

b

x
yxu

1

][
][2

][1
1),(  (1) 

 






































q

m

m
m

m

m

a
Y

v

v

b

x

b

x
yxv

1

][
][2

][1
1),(  (2) 

 


































































































q

m

m

m

m

m

m

Y
w

w

b

x

b

x

b

x

b

x

b

x

b

x
x

b

x

b

x
yxw

1

][

][2

][2

][1

][1

2

32

3

3

2

2

2

32

3

3

2

2 23223
1),(  (3) 

 

where a is the member length, and b is the strip width. For the simplest pin-pin end restraints the 

longitudinal shape functions are as follows: 
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In this case the solution can be found for any m term independently of the other m terms, i.e., the 

m terms are uncoupled. For other end restraints (e.g. clamped-clamped) other functions are 

necessary, (Li and Schafer, 2010), and the m terms are coupled. 

 

The local elastic and geometric stiffness matrices can be constructed by following conventional 

FEM steps, by considering the 2D generalized Hooke’s law (for the constitutive matrix) and by 

considering the second-order strain terms (for the geometric matrix). The stiffness matrices can 
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be determined analytically. The size of the local strip stiffness matrices for a specific m term is 8 

by 8, while for the series solution: (8×q) by (8×q), where q is the number of considered terms in 

the longitudinal shape functions. 

 

From the local stiffness matrices the member’s (global) stiffness matrices (elastic and geometric, 

Ke and Kg) can be compiled as in FEM, by transformation to global coordinates and assembly. 

The size of the global matrices is (4×n×q) by (4×n×q), where n is the number of nodal lines. 

For a given distribution of edge tractions on a member the geometric stiffness matrix scales 

linearly, resulting in the classic eigen-buckling problem, namely: 

 

 0ΦΛKΦK ge   (5) 

 

with 

 

  nqdiag 421 ... Λ  and  4nq21  ...Φ  (6) 

 

where i is the critical load multiplier and i is the mode shape vector (i = 1..4nq). 

 

The constrained FSM (cFSM) is an extension to FSM that uses mechanical assumptions to 

enforce or classify deformations to be consistent with a desired set of criteria. The method is 

presented in Ádány and Schafer (2006a,b, 2008), and implemented in CUFSM. The cFSM 

constraints are mechanically defined, as in Table 1, and are utilized to formally categorize 

deformations into global (G), distortional (D), local (L), and other (i.e., shear and transverse 

extension, S+T) deformations. Specifically, any FSM displacement field d (e.g. an eigen-

buckling mode  is an important special case) may be constrained to any deformation space (or 

mode space) M via: 

 

 MMdRd   (7) 

 

where RM is a constraint matrix, the derivation of which can be found in Ádány and Schafer 

(2006a,b, 2008) for open cross-sections, and M might be G, D, L, S and/or T. 

Modal decomposition of the eigen-buckling solution is completed by introducing the desired 

constraint matrix RM, the columns of which can be interpreted as base vectors for the given M 

space. Applying RM for the intended space (M = G, D, L, S, and/or T) Eq. 5 becomes: 

 

 0ΦRKRΛΦRKR MMgMMMMeM 
TT

 (8) 

 

 0ΦKΛΦK MgMMMeM   (9) 

 

where KeM and KgM are reduced-size elastic and geometric stiffness matrices for the eigen-

buckling solution constrained to space M.  
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Table 1: Mechanical criteria for mode classes in original cFSM 

 G D L S/T 

0/  xux  & 0//  xvyuxy   Y Y Y N 

v≠0 & transverse equilibrium Y Y N - 

0/ 22  xwx  Y N - - 

 

Modal identification, i.e. categorization of a general deformation into the M spaces, is also 

possible, due to the fact that G+D+L+S+T spans the entire FSM space. As such, the RGDLST 

constraint matrix represents an alternative basis for the FSM space, in which deformations are 

categorized. This basis transformation of displacement vector d may be expressed as: 

 

  cRRRRd STLDG  (10) 

 

where c now provides the deformations within each class: cG, cD, cL, cST. The values of c are 

dependent on the normalization of the base vectors within R. A full discussion of the 

normalization selection for R is provided in (Li et al, 2011). Once c is determined, pi 

participation of an individual mode or pM participation of a deformation space M can also be 

determined as follows: 

 

 cciip    or  ccMMp  (11) 

 

 

3. Generalized cFSM 

 

3.1 Basics for generalized cFSM 

Generalized cFSM, presented here for the first time, extends cFSM (and modal identification and 

decomposition) to closed cross-sections and cross-sections with both open and closed portions. 

To meaningfully achieve this goal a number of changes are implemented. An important necessity 

for generalized cFSM is the application of (in-plane) shear modes as proposed and discussed in 

(Ádány, 2013). Note, here the phrase shear mode does not imply shear buckling, as in (Pham and 

Hancock, 2009), since the assumed loading is longitudinal tension and/or compression stress 

(similar to other FSM/ cFSM or GBT papers). 

 

Along with the introduction of new shear modes, the spaces are further subdivided into smaller 

sub-spaces. First, L, S and T mode spaces are separated into primary and secondary mode 

spaces. Primary modes are those deformations which are completely defined by the degrees of 

freedom (DOF) associated with the main nodes only, i.e., those nodes at the junction or end of 

the flat plates comprising the section. Secondary modes are defined by the DOF of the sub-

nodes, i.e. those nodes within a flat plate discretized into multiple strips. It is to note that G and 

D modes are – by definition – primary modes, i.e., determined solely by main node 

displacements. 
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Here a short description is given for all the introduced spaces and sub-spaces as follows. 

 G is the global space, which involves rigid-body transverse displacements and associated 

warping displacements so that the no transverse extension and no (in-plane) shear criteria 

are satisfied. It is subdivided into sub-spaces as follows: 

o GA is the axial space, which involves uniform warping displacement only. 

o GB is global bending space, the sub-space of G space consisted of two bending 

modes. GB involves rigid-body transverse displacements of the cross-section, and 

associated with warping, too, with linear warping distribution over the cross-

section. 

o GT is global torsion space, that involves the rigid-body torsion of the cross-

section, and since it is part of the G space, it is shear free (therefore typically 

associated with warping displacements, too). GT exists only if the cross-section is 

open, since if the cross-section is closed or has closed part(s), shear-free torsion is 

physically impossible. 

 D is distortional space, where the no transverse extension and no (in-plane) shear criteria 

are satisfied, but the cross-section is distorted and warping is non-zero (but piece-wise 

linear). 

 L is the local space, which involves deformations similar to local plate-buckling. It is 

subdivided into sub-spaces as follows: 

o LP is primary local space, which involves deformations generated as if no sub-

nodes would exist. 

o LS is secondary local space, characterized by zero displacements at main nodes 

and non-zero displacements at sub-nodes. 

 S is the shear space, characterized non-zero in-plane shear strain. Two kinds of shear 

space can and are useful to distinguish, as follows.  

o Sw is warping-only shear space, characterized by non-zero in-plane shear strain 

and by linear (i.e., linear between two nodes) warping displacements and zero 

transverse displacements. Within this space the following sub-spaces are defined. 

 SBw is warping-only shear bending space, characterized by warping 

displacements identical to those of GB, therefore SBw is primary mode 

space. 

 STw is warping-only shear torsion space, characterized by warping 

displacements identical to those of GT. If GT does not exist, STw does not 

exist, neither. STw is primary mode space. 

 SDw is warping-only shear distortional space, characterized by warping 

displacements identical to those of D, therefore SDw is primary mode 

space. 

 SCw is warping-only other shear space, sub-space of Sw, which is not part 

of any of SBw, STw, and SDw, but characterized by linear warping 

displacements between two main nodes, therefore SCw is primary mode 

space. 
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 SS is secondary (warping-only) shear space, sub-space of Sw, but 

characterized by non-linear warping displacements between two main 

nodes, therefore SS is a secondary mode space. 

o St is transverse-only shear space, characterized by non-zero in-plane shear strain 

and non-zero transverse displacements and zero warping displacements. St is 

primary mode space, and can be sub-divided into the following sub-spaces: 

 SBt is transverse-only shear bending space, characterized by rigid-body 

cross-sectional transverse translational displacements identical to those of 

GB. 

 STt is transverse-only shear torsion space, characterized by rigid-body 

cross-sectional torsional displacements, identical to those of GT. If GT 

does not exist, STt does still exist, since rigid-body torsional displacements 

for the cross-section can always be applied. 

 SDt is transverse-only shear distortional space, characterized by transverse 

displacements identical to those of D. 

 SCt is transverse-only other shear space, sub-space of St, which is not part 

of any of SBt, STt, and SDt. 

 T is transverse extension space, characterized by zero warping and non-zero transverse 

extension/shortening (in the mid-planes). It can be subdivided into sub-spaces as follows: 

o TP is primary transverse extension space, generated as if no sub-nodes would 

exist, which is resulted in constant transverse strain in between two main nodes. 

o TS is secondary transverse extension space, characterized by zero displacements 

at main nodes and non-zero displacements at sub-nodes, which is resulted in non-

constant transverse strain in between two main nodes. 

 

3.2 Construction of the spaces 

For the construction of the base system (RM) for any deformation space, three kinds of criteria 

are employed: null, independence and orthogonality.  

 For any space or sub-space some strain components are set to zero, these define the null 

criteria. In some cases it is also necessary to examine whether transverse equilibrium of 

the cross-section is satisfied or not. Since transverse equilibrium means that unbalanced 

nodal forces/moments are zero, transverse equilibrium is also treated as a null criterion, 

which, again, can easily be enforced.  

 Furthermore, the spaces, that is G, D, L, S and T must be linearly independent, leading to 

the independence criteria.  

 Finally, the sub-spaces within a space must be orthogonal (in certain sense) leading to the 

orthogonality criteria. For example, GA and GB and GT, all being part of space G, must 

be orthogonal to each other. 

 

Table 2 summarizes the null criteria. Three in-plane strains and three out-of-plane curvatures are 

considered as follows:  

 

 xux   yvy   xvyuxy   (12) 
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 22 xwx   22 ywy   yxwxy  2  (13) 

 

where all the u, v and w functions are interpreted at the middle surface of the plates (i.e., at 

z = 0).  

 

Table 2 indicates whether the given criterion is satisfied or not (Y or N, respectively) in the given 

space or sub-space. Here are a few important comments as follows. 

 

It is to observe that between the various warping-only S modes there is no mechanical difference, 

they are separated on the basis of warping distribution, by using the warping distributions of G 

and D modes.  

 

Although Table 2 is virtually different from Table 1, there is no conflict between the two tables: 

the new mode definition table does not modify the original mode definitions, it only gives more 

details. In fact, those cells are highlighted in Table 2 which contain the same information as 

Table 1. Note, the distributions of v and y along any cross-section line are identical, therefore 

v≠0 and y=0 are opposing criteria.   

 
Table 2: Null criteria for mode classes in generalized cFSM 

  G  D L S T 

 GA GB GT  LP LS SBt STt SDt SCt SBw STw SDw SCw SS TP TS 

x=0  Y  Y Y Y N 

γxy=0  Y  Y Y N N 

eq.  Y  Y N Y Y Y N Y Y Y Y Y N 

y=0  N  N Y Y Y Y Y N N N N N Y 

x=0  Y  N N Y Y N N Y Y Y Y Y N Y 

xy=0 Y Y N N N N Y N N N Y Y Y Y Y N Y 

y=0 Y N N N N N N N N N Y Y Y Y Y N Y 

 

For G and S modes there is a special issue, discussed by Ádány (2013). GB and SBw vectors have 

the same warping displacements, while GB and SBt have the same transverse displacement. (Note 

the scaling can be different, but any mode vector can arbitrarily be scaled.) Thus, summing SBw 

and SBt yields GB, and the three spaces are linearly dependent. Only two of the three spaces can 

and must be selected. Exactly the same is true for GD, SDw and SDt; therefore, only two of these 

three spaces can and must be selected. 

 

As far as G and S torsion modes are concerned, for open cross-sections all GT, STw and STt are 

existing and linearly dependent as bending or distortional modes. If the cross-section is closed or 

has closed part(s), GT does not exist, consequently STw does not exist. STt still (and always) 

exists, and does not overlap. 

 

From a practical aspect it is deemed beneficial to have shear-free modes (i.e., G modes) if they 

exist, to which either warping-only or transverse-only shear modes can be selected, based on the 

user’s choice, as illustrated in Fig. 2. 
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Figure 2: Compilation of the base system for primary shear mode 

 

Detailed derivations for the base vectors would be too long to present here (but will be presented 

in future publications). Nevertheless, the various criteria can be expressed by matrices, thus, the 

various criteria can be enforced by matrix equations. The process is already implemented into a 

special version of CUFSM software.  

 

A final comment is that the above-summarized process of mode construction leads to 

unambiguous and distinct sub-spaces for most of the cross-sections. However, overlapping of 

sub-spaces happens if the cross-section is too simple, namely, if it has zero or one main node. 

The problem is not discussed here, but it is to mention that it can easily be handled.  

 

3.3 Illustration of the spaces 

Primary modes are those deformations that are associated with minimal cross-section 

discretization, i.e. nodal lines located at folds and ends only. When primary modes are 

constructed, sub-nodes are disregarded. Fig. 3 shows all the primary modes of a two-cell cross-

section member. 

 

The simplest way to construct base vectors for secondary modes is to apply 1’s and 0’s at the 

sub-nodes for the relevant degrees of freedom, while keeping all main node DOF fixed at zero. 

For a single plate with 4 sub-nodes (5 strips) the resulting base systems are illustrated in Figs. 4-

6. (Note, SS base vectors for a whole cros-section are presented in the Appendix.) 

 

 

3.4 Orthogonalization within a mode space 

The construction of the deformation spaces determines the deformation spaces, defined by their 

base vectors (functions). However, various systems of base vectors are possible (unless the space 

is one-dimensional such as A, or GT), of which some might be practically more useful than 

another. From a practical aspect, orthogonalized base systems are of special importance, since 

orthogonal base vectors may be useful for reducing the size of the problem to be solved, or 

isolating and examining a particular behavior in detail. Moreover, orthogonality of the base 

vectors is desired when mode identification is performed.  

 

Two basic interpretations with respect to orthogonality are considered: (i) orthogonality in cross-

section sense, and (ii) orthogonality in member sense. Orthogonality in the member sense is 

included in CUFSM and detailed in (Li et al, 2011) and not discussed here further. Orthogonality 

in the cross-section sense has the important feature that the base vectors are intended to be 

determined independently of the longitudinal shape functions, i.e. independent of member 

length, end restraints, and loading. This kind of orthogonality is discussed here as follows. 
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GA GB1 GB2 D1 LP1 

     
LP2 LP3 LP4 LP5 LP6 

     
SBw1 SBw2 SDw1 SCw1 SCw2 

     
SBt1 SBt2 STt SDt1 SCt1 

     
TP1 TP2 TP3 TP4 TP5 

  

   

TP6 TP7    

  
 

Figure 3: Primary modes of a two-cell cross-section 
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LS1 LS2 LS3 LS4 

 

LS5 LS6 LS7 LS8 
Figure 4: Base system for secondary local space of a single plate 

 

 

SS1 SS2 SS3 SS4 
Figure 5: Base system for secondary shear space of a single plate 

 

 

TS1 TS2 TS3 TS4 
Figure 6: Base system for secondary transverse extension space of a single plate 

 

 

Cross-section orthogonal base vectors (functions) imply: (i) some displacement functions (or 

their derivatives) are orthogonal to each other, (ii) the orthogonality is satisfied by base vectors 

within the same deformation space, and (iii) the orthogonality is interpreted within cross-sections 

(rather than in the member). Mathematically, this implies: 

 

 0 dsff sr  if sr   and 0 dsff sr  if sr   (14) 

 

where f is a displacement function (or its appropriate derivative), which can be determined from 

a displacement vector. Since orthogonality is for the cross-section (rather than for the whole 

member), f must be selected so that it would be characteristic for the cross-section. Similar 

orthogonality condition has already been applied during the construction of the deformation 

spaces. The most well-known of such orthogonality condition is the orthogonality of warping 
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functions within the GD space. These functions are characteristic for G and D spaces, thus, can 

readily be used to create orthogonal mode vectors. For other spaces other functions might be 

advantageous. For the potentially multi-dimensional primary spaces the proposed functions are 

summarized in Table 3. 

 
Table 3: Orthogonality criteria for the multidimensional spaces 

 primary secondary 

mode space GB D LP SCw SCt TP LS SS TS 

displ. function for orthogonality y x x γxy γxy x x γxy x 

 

It is to note that SB and SD spaces are (or can be) multi-dimensional, too. However, these spaces 

are tied to GB and D, therefore, if GB and D are orthogonalized, SB and SD are automatically 

orthogonalized in the same way. Orthogonal base system is shown in the Appendix. 

 

For mode identification the (orthogonal) base vectors must be scaled. For scaling a simple 

straightforward way is selected: set the maximum value of a characteristic displacement 

component to 1 in a given base vector. The characteristic displacement component can be the 

local w for GB, GT, D, L (including both primary and secondary L) and St modes, the local v for 

GA and warping-only Sw modes (including secondary shear modes), and the local u for T modes 

(both primary and secondary). 

 

 

4. Numerical examples 

In this Section a numerical examples are provided to illustrate the novel features of the new, 

generalized cFSM. A beam with a hollow-flange U cross-section is discussed. The cross-section 

and its dimensions are shown in Fig. 7.  

 

 
Figure 7: Geometry of the analyzed hollow-flange U-beam (dimensions in mm) 

 

In applying cFSM, first the FSM deformation space must be decomposed into the G, D, L, S and 

T spaces and their sub-spaces. While (number and shape of) primary modes are independent of 

the applied discretization, (number and shape of) secondary modes are strongly influenced by the 

sub-nodes. For a rough discretization, with having three sub-nodes in the web only, deformation 

modes are presented in the Appendix, where both (possible) non-orthogonal and orthogonal base 

vectors are shown. It is to mention that the base vectors are independent of the loading, material 

properties, member length or end restraints. 
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For the given beam member with the considered cross-section critical stresses are calculated 

employing several options. Pin-pin end restraints are applied. The considered material constants 

are as follows: E = 210 MPa, G = 105 MPa,  = 0. It is to note that the Poisson’s ratio is assumed 

to be zero for no other reason than to avoid the artificial stiffening effect of restrained  (mid-

plane) transverse extension which takes place in G and D modes for non-zero Poisson’s ratios, as 

discussed in detail in (Ádány et al, 2009). It is to emphasize that during the calculations a fine 

enough discretization is applied (i.e., finer than the one illustrated by the figures of the 

Appendix). 

 

In Table 4, first, the effect and importance of shear deformations is illustrated. “Pure” global 

buckling, that is lateral-torsional buckling is calculated in 4 options, with neglecting and 

considering shear deformations. As it is clear from the numerical results, LTB is practically 

impossible without in-plane shear, since the no-shear criterion completely eliminates the twist of 

the cross-sections (see the G option). As soon as some shear is allowed, the buckled shape will 

involve lateral translation and torsion, therefore, can reasonably be categorized as lateral-

torsional buckling. The value of the calculated critical stress depends on the considered shear 

modes. Comparison of G+SP and G+SP+SS options suggests that the SS secondary shear modes 

have small effect and limited to (fairly) short members only. Comparison of G+ST and G+SP 

options, however, highlights that consideration of all the SP primary shear modes leads to 

significant critical stress reduction compared to the case when the ST shear torsion mode is 

considered only.  

 

 
Table 4: Critical stresses for lateral-torsional buckling of the hollow-flange U-beam 

length (mm) 50 100 200 500 1000 2000 5000 10000 

G 265582 265582 265582 265582 265582 265582 265582 265582 

G+ST 261175 215409 113932 45886.8 22962.3 11483.5 4593.65 2296.84 

G+SP 69508.9 61643.4 44945.9 18591.9 7454.44 3119.97 1149.61 566.859 

G+SP+SS 67108.1 58620.7 42474.8 17811.1 7318.02 3103.16 1148.58 566.731 

 

 

 

 
 

Figure 8: All-mode and quasi-pure-mode curves for the analyzed hollow-flange U-beam 
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Fig. 8 compares the all-mode solution (i.e., classic FSM solution), and pure “global”, 

distortional, and local buckling solutions. (For the “pure” global mode, the G+SP solution is 

selected.) Note, such comparison was not possible with the original cFSM method, but can be 

done without any problem by using the generalized cFSM presented here. 

 

The modal identification of the all-mode curve (i.e., so-called signature curve) is shown in Fig 9, 

where G, D, L, S and T participations are given in percentages as a function of length. Selected 

buckled mode shapes and modal participations are provided in Fig 10. Here are some comments 

as follows. 

 Two local buckled shapes exist with nearly identical minimal critical stresses: for short 

buckling lengths local-plate buckling of the most compressed flange governs, while for 

slightly longer buckling lengths local-plate buckling of the compressed part of the web 

governs.  

 Though participation of D is never more than 50%, it has non-negligible participation for 

any length larger than approx. 1000 mm. Moreover, D’s small participation significantly 

decreases the critical stress at large buckling lengths. 

 For shorter lengths, when the buckling mode is (nearly) pure local, the buckled shape is 

superposed from multiple local individual modes, including practically all the primary 

local modes and a few secondary local modes. For longer lengths the buckled shape 

consists of only a few modes. For example, at 2500 mm, only two individual modes have 

significant participation: GB1 and D1. Similarly, at 15000 mm, only four individual modes 

have significant participation: GB1 and D1, and ST and SD1. 

 It is found that transverse extension modes have negligible importance in the analysed 

case. 
 

 

 
 

Figure 9: Mode participations in all-mode curve for the hollow-flange U-beam  
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buckled shape 

 

length (mm) 100 300 1500 2500 15000 

G % 0.0 0.0 31.4 45.2 82.8 

D % 0.1 0.2 38.2 49.8 11.0 

L % 99.7 99.4 28.7 4.1 0.0 

S % 0.2 0.4 1.6 1.0 6.2 

T % 0.0 0.0 0.0 0.0 0.0 
Figure 10: Buckled shape samples, all-mode, hollow-flange U-beam 

 

 

5. Concluding remarks 

In this paper the generalization of the constrained Finite Strip Method (cFSM) is introduced. The 

most important novel features are summarized as follows. 

 

While the original cFSM proposal handles open cross-section members only, the generalized 

method covers virtually any flat-walled member, including those with closed cross-sections or 

cross-sections with open and closed parts.  

 

Exclusion of closed cross-sections from original cFSM was (mostly) due to the superficial 

handling of in-plane shear deformations. In-plane shear deformations are carefully considered 

and applied by the generalized method. In other words, the generalized cFSM provides a 

theoretically and practically meaningful decomposition for the in-plane shear deformations.  

 

In the original cFSM only 4 deformation classes are defined (i.e., G, D, L and S/T). In the 

generalized cFSM the deformation field is decomposed into smaller sub-fields. Introduction of 

sub-fields is, first of all, necessary for the shear mode decomposition, as well it provides with a 

fine control on the considered deformation field (e.g., whether warping is linear or non-linear in 

between two main nodes). Formal mechanical criteria are given for all the mode spaces and sub-

spaces. 

 

The implementation of the mechanical criteria is generalized. In the new cFSM proposal no 

preliminary assumption is necessary regarding the cross-section topology. Moreover, no cross-

section properties are necessary or used. Thus, though beam-model-based results can be 

reproduced, the here presented generalized cFSM is completely independent of beam models. 

 

It is believed that the introduction of the generalized cFSM, as briefly presented here, is an 

important step toward an even more generalized decomposition method based on shell finite 

elements.  
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Appendix: The full set of modes for a hollow-flange U-beam 

 

 

          
GB1 GB2 D1 D2 D3 

Figure A1: Native base system for the GB and D spaces 

 

 

          
GB1 GB2 D1 D2 D3 

Figure A2: Cross-section orthogonal base system for the GB and D spaces 
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LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 

Figure A3: Native base system for the LP space 

 

 

 
LP1 LP2 LP3 LP4 LP5 LP6 LP7 LP8 

Figure A4: Cross-section orthogonal base system for the LP space 

 

 
LS1 LS2 LS3 LS4 LS5 LS6 

Figure A5: Native base system for the LS space 

 

 
LS1 LS2 LS3 LS4 LS5 LS6 

Figure A6: Cross-section orthogonal base system for the LS space 
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SBw1 SBw2 SDw1 SDw2 SDw3 SCw1 SCw2 

Figure A7: Cross-section orthogonal base system for the SPw space 

 
SBt1 SBt2 SDt1 SDt2 SDt3 STt SCt1 

Figure A8: Cross-section orthogonal base system for the St space 

    

SS1 SS2 SS3  SS1 SS2 SS3 
Figure A9: Native (left) and cross-section orthogonal (right) base system for the SS space 

 

 
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 

Figure A10: Native base system for the TP space 
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TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 

Figure A11: Cross-section orthogonal base system for the TP space 

 

  

TS1 TS2 TS3  TS1 TS2 TS3 
Figure A12: Native (left) and cross-section orthogonal (right) base system for the TS space 

 

 

 

 


