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Abstract 
Both AASHTO and AISC provisions for flexural members assume that no warping restraint is 
provided to a member undergoing elastic lateral torsional buckling.  And while AASHTO 
provisions allow for a rational analysis to determine required unbraced lengths, most 
transportation jurisdictions simply use previously mandated cross frame spacing requirements. 
However, ignoring warping restraint typically results in a very conservative critical span bracing 
pattern.  Previous research has shown that elastic buckling strengths for critical spans increase 
from 30% to 50% due to the warping restraint provided by adjacent spans and can increase as 
much as 50% to 90% when a split pipe warp restraining device is used at the piers and 
abutments. 
 
This study expands on previous laboratory and computational research conducted at the 
University of Texas at Austin Ferguson Structural Engineering Laboratory and The United States 
Military Academy by examining continuous girders subjected to distributed load patterns 
common in bridge and building construction.  To conduct the study, previously validated finite 
element modeling techniques are used to estimate continuous girder buckling capacity and 
compare the results to a recently developed analytic procedure to account for warping and weak 
axis torsional restraint provided to the critical span by adjacent span and split pipe warping 
restraint devices.   
 
1. Introduction 
Previous computational studies conducted at the United States Military Academy have shown 
that accounting for the increase in continuous girder elastic buckling capacity due to warping 
restraint at the ends and piers required more than just considering the restraint provided by 
adjacent spans warping and weak axis rotation stiffness (Quadrato & Arnett, 2013).  The moment 
gradient also played a key role in estimating this increase.  This study examines the relationship 
between all three factors and proposes a method to estimate the maximum unbraced length for 
the critical span of a continuous steel girder.  This study also considers the impact of split pipe 
warp restraining devices on the elastic critical girder buckling load in the critical span. 
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2. Background 
Girder elastic buckling strength and its associated critical unbraced length depend on the girder 
cross sectional geometry, support conditions, and load placement.  Initial studies such as those 
done by Nethercot and Rockey (Nethercot & Rockey, 1971) provided accurate estimates using a 
single factor known as a buckling coefficient shown in Eq. 1 
 

 𝑀𝑐𝑟 = 𝜋2𝛼 𝐿𝑏⁄ �𝐸𝐼𝑦𝐺𝐽 + 𝜋2𝐸2𝐶𝑊𝐼𝑌/𝐿𝑏2    (1) 

where 
 
Mcr = girder segment buckling moment 
α = buckling coefficient 
Lb = girder segment unbraced length 
Iy = girder segment weak-axis moment of inertia 
G = shear modulus 
J = girder segment torsional constant 
E = Young’s modulus 
Cw = girder segment warping constant 
 
Another approach is to separate the modifiers for support conditions and load placement into two 
or more factors.  The load placement effect factors are typically captured using a coefficient of 
bending and the support conditions are accounted for through one or two effective length factors 
as summarized in Guide to Stability Criteria for Metal Structures (Structural Stability Research 
Council, 1998) and shown in Eq. 2 (American Institute of Steel Construction, 2011) and 
(Trahair, 1993). 
 
 𝑀𝑐𝑟 = 𝜋2𝐶𝑏 (𝑘𝑦𝐿𝑏)� �𝐸𝐼𝑦𝐺𝐽 + 𝜋2𝐸2𝐶𝑊𝐼𝑌 (𝑘𝑤𝐿𝑏)2⁄  (2) 
where 
 
Cb = moment gradient coefficient 
ky = girder segment effective length factor for weak axis rotational restraint 
kw = girder segment effective length factor for warping restraint 
 
In this approach, the moment gradient coefficient is calculated as shown below and accounts for 
nonuniform moment as well as load height effects (Structural Stability Research Council, 1998). 
 
 𝐶𝑏 = 12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥+3𝑀𝐴+4𝑀𝐵+3𝑀𝐶
1.42𝑦/ℎ (3) 

where 
 

Mmax = maximum moment in the span 
MA, MB, Mc = the moments at the ¼, ½, and ¾ points in the span, respectively 
y = distance from load point to cross section mid-height (positive for below and negative for 
above cross section mid-height) 
h= girder depth 
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The buckling coefficient approach has been shown to be extremely effective for specific 
boundary and loading conditions for which the coefficient, α, is derived.  Expressions for α exist 
for simply supported, warping fixed, weak axis bending fixed, and rigid end conditions with 
mid-span concentrated, evenly spaced double concentrated loads, uniformly distributed, and end 
moment loading conditions at all heights along the cross section (Nethercot & Rockey, 1971).  
An example finite element model with its ends fixed against weak axis rotation and warping with 
a mid-span concentrated load shown below was run and compared to Eq. 1.  The finite element 
model estimated the buckling load at 25.61 kips while Eq. 1 predicted 25.87 kips for a 1% 
difference.  But, Eq. 2 gives the buckling estimate as 33.15 kips, an overestimate of over 28% 
when using ky = 0.5 and kw = 0.5.  Similar errors were noted in other loading conditions and 
girder geometries investigated. 
 

 
 

Figure 1:  Single-Span Girder Buckled Shape 
 
These results are not surprising as Eq. 1 was derived for these support conditions, while Eq. 2 
assumes that the bending moment coefficient is independent of any applied warping or weak axis 
rotational restraint.  However, deviating from the completely fixed conditions in the model 
induces significant errors in Eq. 1 and attempting to use Eq. 2 for situations with significant 
weak axis rotational and warping restraint leads to significant errors in estimating buckling 
strength (Quadrato & Arnett, 2013).  The problem is further compounded when warp restraining 
devices, such as the split pipe stiffeners shown below are used to prevent warping. 
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Figure 2: Split Pipe Stiffener Before (L) and After (R) Girder Buckling 

 
3.  Proposed Analytic Solution 
 
The proposed initial analytic solution is to use the effective length factor approach of Eq. 2 
combined with the buckling coefficient approach of Eq. 1.  This allows the fully rigid conditions 
required in the buckling coefficient of Eq. 1 to be adjusted via the effective length factors used in 
Eq. 2.  The proposed method is outlined below and relies on a similar method to determine the 
effective length factors for adjacent spans and warp restraining devices used in previous studies 
(Quadrato & Arnett, 2013) (Pi & Trahair, 2000) (Trahair, 1993). 
 
1. Compute the girder strong axis bending moment diagram and find the maximum moment in 

each segment (Mmi) for the load condition to be investigated. 
 
2. Calculate the effect of moment gradient and load height using Eq. 5 below for each segment 

assuming the segment is simply supported and initially assume effective length factors kw 
and ky are equal to one. 

 
 𝐶𝑏 = 𝐴𝐵𝑥 (4) 
where 
 
A = 12.5𝑀𝑚𝑎𝑥

2.5𝑀𝑚𝑎𝑥+3𝑀𝐴+4𝑀𝐵+3𝑀𝐶
  

 
When calculating A use the simply supported moment diagram for spans loaded by applied 
loads. 
 
B = 1-0.018W2+0.649W for concentrated load at mid-span 
 
B = 1-0.154W2+0.535W for a uniformly distributed load along the span 
 
(other B values are available from (Nethercot & Rockey, 1971) but this current study will be 
limited to the two loading conditions described above). 

 
𝑊 =  𝜋/(𝑘𝑦𝐿𝑏)�𝐸𝐶𝑤/(𝐺𝐽)   
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x = 1 for bottom flange loading; 0 for loads applied at the centroid, -1 for top flange loading 
 

3. Determine the critical elastic buckling moment capacity (Mcri) for each unbraced segment 
using Eq. 2 (repeated below for convenience). 
 

 𝑀𝑐𝑟 = 𝜋2𝐶𝑏 (𝑘𝑦𝐿𝑏)� �𝐸𝐼𝑦𝐺𝐽 + 𝜋2𝐸2𝐶𝑊𝐼𝑌 (𝑘𝑤𝐿𝑏)2⁄  (4) 
 
4. Determine each segment’s remaining load capacity prior to elastic buckling for the loading 

condition to be investigated using Eq. 5 below.  The highest value of λ will be the critical 
span (λc) and the segments adjacent to it will be the restraining segments (λr)A/B where A and 
B denote the segments on either side of the critical segment. 

 
 /i cri miM Mλ =  (5) 
where 
 
λi = segment buckling capacity factor – note that λc = 1 for the critical segment 
 
5. Determine the bending moment distribution factor (γr) for restraining segments A and B 

using Eq. 6 below. 
 
 2 2

/(1 / )f mr crr A BM Mγ = −  (6) 
where 
 
Mmr = bending moment in restraining segment A or B from step 1 
Mcr = elastic moment capacity in restraining segment A or B from step 2 
 
6. Compute restraint stiffness for the critical segment, supporting segments, and split pipe 

stiffeners as shown in sub-steps a – d below. 
 

a. Critical segment weak axis flexural stiffness (αcy) 
 

 𝛼𝑐𝑦 = (𝑛 2)𝐸𝐼𝑦⁄ (𝑘𝑦𝐿𝑏)⁄  (7) 
where 
 
 n = 4 if both ends are continuous or 3 if only one end is continuous 
 

b. Critical segment warping stiffness 
 

 𝛼𝑐𝑤 = 𝐸𝐶𝑤/(𝑘𝑦𝐿𝑏) (8) 
 
Notice here that we use the effective length for weak axis restraint.  This assumes the 
ratio of critical span to restraining span stiffness for both weak axis rotation and 
warping restraint are equal since we have a uniform cross section.  Additionally this 
effective length is due to the warping stiffness of the restraining span and not any 
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warp restraining device, so if the restraining spans have a different cross section than 
the critical span, kw for the restraining spans should be used. 
 

c. Restraining segments A and B restraint stiffness 
 

 𝛼𝑟𝑦𝐴/𝐵 = 𝛾𝑓𝐸𝐼𝑦/𝐿𝑏(1 − 𝜆𝑐/𝜆𝑟) (9) 
 

d. Split pipe warping restraint stiffness (if split pipe warp restraining device used) 
 

 pipe pipeGJ dα =  (10) 
 

where 
 
d = distance between bottom and top flange centroids 

 
7. Determine the stiffness ratios (GA/B) for weak axis rotational restraint and warping at the A 

and B ends of the critical segment as shown in sub-steps a and b below. 
 

a. Restraining segments A and B and pipe warping restraint stiffness ratio  
 / / ( )wA B cw pipeG α α=   (11) 

Note that the warping stiffness of the restraining span should be added to the split 
pipe warping restraint if the restraining span warping stiffness is large enough to 
influence the ratio of stiffnesses in Eq. 11.  In this study it was not. 

 
b. Restraining segments A and B weak axis rotational restraint stiffness ratio 

 
 𝛼𝑟𝑦𝐴/𝐵 = 𝛼𝑐𝑦/𝛼𝑟𝑦𝐴/𝐵 (12) 
 
8. Solve for the effective length factors for weak axis rotation restraint (ky) and warping (kw) by 

using the appropriate restraint stiffness ratios and iterating to solve the equation below for k 
(Kavanagh, 1962).  A G value of 50 may be used if one end of the critical span is free to 
warp or rotate about its weak axis (American Institute of Steel Construction, 2011). 
 

 
2

  
2 tan

2  1 1
4 2 tan

A B A BG G G G kk
k

kk

ππ
π

ππ

   
  +     + − + =         

    

 (13) 

 
9. Determine the critical segment elastic bucking moment capacity (Mcr) using the effective 

length factors from step 13 and the bending coefficient, Cb, from step 2 in Eq. 2. 
 
10. Iterate steps 1-9 until solution converges.  Two iterations were sufficient for this study. 
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4.  Parametric Study 
 
A parametric study was used to verify the results of the proposed analytic solution using the 
three cross sections shown in Fig. 3 and the loading and span geometries shown in Fig. 4.  Each 
combination of cross section as well as span and loading geometries were run in the three 
dimensional finite element program ANSYS/Multiphisics® version 14.0 for critical span to depth 
ratios of 20, 25, 30, 35, and 40.  At these ratios, the girder webs were not subject to significant 
distortion or buckling.  The finite element model used in this study has been previously validated 
with full scale laboratory test results and additional analytic solutions (Quadrato, et al., 2010). 
 
Every combination was run for girders with ½” thick plate bearing stiffeners and ½” thick pipe 
stiffeners with diameters 2” less than the girder flange width as shown in Fig. 5 (unless otherwise 
noted).  ½” thick plate bearing stiffeners were also used under any concentrated loads.  All 
specimens were loaded with unit loads and an eigenvalue buckling analysis was used to 
determine the critical buckling load.  See Fig. 6 for an example buckled shapes.  Critical spans in 
all cases were the spans with applied loads. 
 

 
Figure 3: Cross Sections Used in Parametric Study 

 

 
 

Figure 4: Span Geometries and Loading Used in Parametric Study 
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Figure 5: Plate Bearing Stiffener (L) and Pipe Bearing Stiffener (R) Details 

 

 
 

Figure 6: Sample Buckled Shapes for Plate Stiffener Specimens 
 

5. Parametric Study Results 
 
The figures below show the results for each of the load cases and span geometries considered.  
The critical buckling load results have been normalized by the simply supported span buckling 
load as calculated by Eq. 2 with ky and kw = 1.  Note that the D72x24 specimen was run with a 
pipe diameter 4" less than its flange width, which is smaller than the pipe diameter relative to the 
flange width in the other two specimens.  The purpose of this was to determine if the analytic 
procedure was able to adequately account for varying the pipe torsional stiffness. 
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Figure 7: Buckling Loads for Two Span with Concentrated Load 

 

 
Figure 8: Buckling Loads for Three Span with Concentrated Load  
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Figure 9: Buckling Loads for Three Span with Uniform Load 

 
The results in Figs. 7 through 9 show that the proposed analytic solution provides a conservative 
yet reasonably accurate prediction of the increase in girder buckling strength and the 
corresponding critical unbraced length.  Furthermore, as previously reported (Quadrato & Arnett, 
2013), the split pipe stiffener significantly increases the critical buckling loads for continuous 
girders.  Note that the interaction between spans is also relatively significant in increasing the 
critical span unbraced length. 
 
The results also show that the proposed analytic solution error is relatively consistent for every 
case.  For plate stiffened specimens the error is approximately 6% and is 15% for pipe stiffened 
specimens.  This constant error is most likely due to inaccuracies in the moment magnification 
factor.  Since the analytic model uses terms designed for a simply supported span, it should be 
expected that some error will be introduced that cannot be mitigated by iteration with respect to 
the relative stiffnesses to account for the girder continuity. 

 
6. Conclusions 
 
This study has proposed a reasonably conservative method to estimate continuous girder elastic 
buckling using split pipe or plate bearing stiffeners.  The study investigated all combinations of 
three doubly symmetric girder cross sections, three span and load geometries, and five span-to-
depth ratios for girders using plate and split pipe bearing stiffeners.  Errors in the proposed 
analytic solution, when compared to a previously validated finite element model, were 
approximately 5% in the plate bearing stiffener specimens and 15% in pipe bearing stiffener 
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specimens.  All errors were conservative and consistent.  The results also showed an approximate 
15% to 20% increase in elastic buckling capacity for the plate stiffened girders and 30% to 100% 
for the pipe stiffened specimens. 
 
Future work will focus on varying loading conditions including those found in typical bridge 
construction, such as distributed loading over positive moment regions as is common during 
deck placement, to determine if the proposed analytic procedure can be adjusted to accommodate 
these applied loads.  Additionally, the impact of intermediate bracing patterns between the 
abutments and piers will be investigated to determine how the associated critical unbraced 
lengths are impacted by the presence of pipe stiffeners in continuous girders. 
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