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Abstract 
This paper presents the results of finite element analysis studies of the effect of geometrical and 
structural imperfections on the ultimate shear strength of web tapered plate girders. Standard 
imperfection models are applied to a tapered girder finite element model subjected to uniform 
shear stress without bending. The model is validated using available test results on web tapered 
girders. A parametric study is performed to investigate the variations in both elastic buckling and 
ultimate shear strengths with the major design parameters such as web slenderness ratio, tapering 
angle, tapered panel aspect ratio.  
 
1. Introduction 
Web tapered girders are usually used in bridges to achieve economy by varying the web depth 
according to variation of the bending moments and shear forces resulting from applied loads. 
This variation leads to lighter design than conventional prismatic girders. Current design codes, 
e.g., AASHTO (2010), are based on theoretical and experimental research on prismatic girders. 
Theoretical solutions of plate buckling problems are based on the simplifying assumptions of 
simply supported plate panels. These solutions do not consider the real boundary conditions at 
the web-flange and web-stiffener connections which are known from experimental investigations 
to be somewhere between simply supported and fixed depending on the relative slenderness of 
the flange and the stiffener. Finite Element Analysis has been used effectively to obtain the 
elastic buckling stress and the ultimate strength under a wide scope of design variables related to 
applied stresses and actual boundary conditions. Allowance for initial geometric imperfections 
and residual stresses may be easily incorporated in the finite element model. The buckling stress 
is obtained by solving a linear eigen-value problem with the eigen-values representing the 
buckling load factors and the eigen-vectors representing the buckling mode shapes. The ultimate 
strength is obtained by performing a nonlinear inelastic analysis up to the failure load. The finite 
element models used may be a single isolated panel or a complete girder model.  
There are very few theoretical and experimental investigations into the structural behavior of 
web-tapered girders under shear and/or bending moments, e.g., Mirambell (2000), Real (2010), 
Studer (2013) and Bedynek (2013). Similarly, the effect of initial geometric imperfections and 
residual stresses on the shear strength of prismatic girders has been studied extensively by 
Chacon (2009), Maiorana (2009), Graciano (2011), Chacon (2009) and Chica (2013). The effect 
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of such imperfections for tapered girders has received very little attention, Bedynek (2013).  
Consequently, there are no specific provisions in current design codes for the design of tapered 
girders.   
This paper uses a finite element model to investigate the effect of geometric imperfections and 
residual stresses on the elastic shear buckling stress and ultimate stress of web tapered plate 
girders. The model is validated using available test results on web tapered girders. A parametric 
study is performed to investigate the variations in both elastic buckling and ultimate shear 
strengths with the major design parameters such as web slenderness ratio, tapering angle, tapered 
panel aspect ratio.  
 
 2. Ultimate Shear Strength 
The design of plate girder sections is usually governed by flexural strength and shear strengths 
limit states. Local plate buckling affects the calculation of the cross section resistance related to 
compression flange local buckling, web bend buckling in the flexural strength limit state and 
web shear buckling in the shear strength limit state. Other limit states such as lateral torsional 
buckling, tension flange yielding, and fatigue are not covered in this paper.  
 
Generally, a three-range design format is followed depending on the value of a slenderness 
parameter, λ, which equals the width-to-thickness ratio of the plate component considered. When 
the slenderness ratio λ is less than a value λp, the section can reach its plastic moment capacity 
and is classified as compact in the American codes AISC [2005] and AASHTO [2004], and as 
class 2 in the European Code EC3 [2005]. When λp < λ < λr, the section strength is limited by its 
yield moment and is called non-compact in the American codes AISC and AASHTO, and class 3 
in the European code EC3. When λ > λr, the section strength is governed by elastic buckling and 
the section is slender in AISC/AASHTO and class 4 in EC3. Details of the governing equations 
used to calculate the cross section resistances in each case are given in the respective codes and 
several papers such as White [2008] and White and Barker [2008]. Summary of code provisions 
related to plate buckling in the three considered codes is given Abu-Hamd (2010). 
 
The theoretical elastic buckling stress of a prismatic rectangular plate, qcr, under the action of 
pure shear stress is given by the widely known formula: 
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where E is the modulus of elasticity, ν is Poisson’s ratio, t is the thickness of the plate, d is the 
width of the plate, and kq is the shear buckling factor, which depends on the plate aspect ratio α. 
The pure shear stress state results in equal compressive and tensile principal stresses in the plate. 
Various expressions for calculating kq that consider the rigidity provided by the web-to-flange 
connection are available, e.g., Lee, et al (1996, 1998, 2012).  
 
Slender plate girder webs, however, do not fail by elastic buckling but exhibit significant post-
buckling strength when the girder behaves as a truss composed of the flanges as chords and the 
transversal stiffeners acting as truss verticals to maintain equilibrium in the post buckling stage 
with the developed inclined tensile stress state. The ultimate shear strength is reached when 
plastic hinges are formed in the flanges through the development of tension field action. Basler 
(1961) calculated the ultimate shear strength as the sum of the elastic buckling shear strength and 
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the post-buckling strength provided by tension field action.  This the procedure used in AISC 
Specification (2010) and AASHTO Code (2010) to calculate shear strength of plate girder webs. 
 
On the other hand, real plate girders used in practice exhibit some imperfections that may 
prevent them from reaching the elastic buckling strength and the ultimate strength. The reduction 
of prismatic girders strength due to imperfections have been covered by many investigations, 
e.g.,  Chacon (2009), Maiorana (2009), Graciano (2011) and Chica (2013). For web tapered 
girders, however, the reduction of shear strength due to imperfections have been covered by very 
few investigations, e.g., Real, et al (2010) and Bedynek, et al (2013). This paper presents a 
numerical finite element model that can be used to investigate the effect of imperfections on both 
the elastic buckling strength and ultimate strength of web tapered plate girders.  
 
3. Imperfection Models 
Plate girders used in practice exhibit two significant types of imperfections: 
 
1- Geometrical imperfections such initial curvature of girder axis and deviation of the cross 
section from theoretical shape due to dimensional tolerances, and 
2- Structural Imperfections in the form of longitudinal residual stresses that are introduced in 
welded plate girders during flange cutting and web-to-flange welding. 
 
These imperfections may reduce the strength of real plate girders from the theoretical calculated 
values as shown by Chacon (2009), Maiorana (2009), Graciano (2011), and Chica (2013).   
 
3.1 Geometrical Imperfection Models: 
Geometrical imperfections are usually of random nature and strongly depend on fabrication 
processes. Although the shape and magnitude of these imperfections may be measured in 
practice, their incorporation in ultimate strength calculations would be extremely hard. A much 
more practical way of considering geometrical imperfections is to model their shape similar to 
the first eigen-mode shape obtained from linear buckling analysis after normalizing its maximum 
amplitude according to the tolerance allowed by codes. Tsai (2006) used the following tolerance 
limits recommended by AASHTO/AWS D1.5:2002: 
 
                                                Web:           max δ = dw/100                                   for dw/tw < 100 
                                                                               = dw/67                                     for dw/tw > 100 
 
                                              Flange:         max δf = bf/100 
 
This model shall be used in the present study to represent initial geometric imperfections. 
 
Similarly, The European Code EC3:EN1993-1-5, Annex C (2006) recommends using the 
following fabrication tolerances for normalizing the mode shape: 
 
                                                 Web:          max δ = dw/200                                    
 
                                              Flange:          max θ = bf/100 
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Where dw= web depth, tw= web thickness, and bf= Flange width, δ = out-of-flatness, and θ = 
flange twist. 
  
Initial geometric imperfections change the plate stability behavior from a bifurcation problem 
into a load-deflection problem. Chacon (2009), Maiorana (2009), Graciano (2011), and Chica 
(2013) investigated the reduction of shear strength due to several geometrical imperfection 
models and found that the difference between proposed models is small. In this paper, the 
influence of geometric imperfections on the ultimate shear strength of web tapered girders shall 
be investigated using the a.m. AASHTO/AWS recommended tolerances. 
  
 3.2 Structural Imperfection Model 
Several distribution of longitudinal residual stress in welded plate girders have been proposed, 
e.g., ECCS Manual on Stability of Steel Structures (1976) and Barth and White (1998). Residual 
stresses reduce both the elastic buckling shear strength and the ultimate shear strength. Chacon 
(2009), Maiorana (2009), Chacon (2012), Chica (2013), and Bedynek et al (2013)  investigated 
the reduction in the shear strength due to several residual stress models and found that the 
difference between proposed models is small. In this paper, the influence of residual stresses on 
the ultimate shear strength of web tapered girders shall be investigated using the model proposed 
by Barth and White (1998) based on ECCS (1976). The distribution uses a value of 0.33 Fy in the 
flange and 0.63*Fy in the web at the web-to-flange connection. The corresponding compressive 
stresses are 0.17*Fy in the flanges and 0.07*Fy in the web. The tensile stresses at flange tips due 
to flame cutting are taken equal to 0.18*Fy. 
 
4. Numerical Analysis 
Finite Element Analysis, Earls (2007), Ziemian (2010), may be used effectively to obtain the 
elastic buckling and the ultimate strength under a wide scope of design variables related to girder 
geometry, applied stresses and actual boundary conditions. The elastic buckling stress is obtained 
by solving the linear eigen-value problem: 
 
                                                                         KE = λ KG                                                             (2) 
 
Where KE is the elastic stiffness matrix, KG is the geometric stiffness matrix, and λ is the eigen-
values which represents the buckling load factors. The corresponding eigen-vectors represent the 
mode shapes of the buckled plate.  
 
The existence of geometrical imperfections and residual stresses in real girders prevent them 
from reaching their elastic buckling strength. The ultimate strength under these conditions may 
be obtained by performing a nonlinear inelastic analysis on an imperfect model with gradually 
increasing loads up to the load level at which the model reaches its ultimate load or becomes 
unstable.  
 
4.1 Description of Girder Model 
Neither an all edges simply supported plate, nor a single web panel can realistically represent the 
actual behavior of real plate girders used in practice.  The finite element models used may be a 
single isolated panel or a complete girder model. Numerical solutions obtained from isolated 
single panel models give conservative buckling strength values as compared to results obtained 
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from complete girder models, e.g., Maiorana (2009) and Abu-Hamd (2011). Therefore, a multi-
panel girder model with realistic boundary conditions is used in this study to simulate real 
girders. 
 
Fig. 1a shows the geometric configuration of the complete girder model used in the present 
study. It represents a bridge girder with five segments, two of which are tapered. 
 
The finite element model used to represent one half of the girder is shown in Figs. 1b and 2. It is 
composed of one tapered segment with a straight segment on each side of length 1000 mm. The 
tapered segment has a variable length L = α*d2, where α= aspect ratio. The results presented in 
the numerical study covers the cases α = 1 and α = 2. 
 

L

  

dd 2

1

 
Figure 1a: Complete Girder  

 
 
 

 
 

Figure 1b:  Girder Model 
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The deeper end web depth d2 is fixed in the numerical study at 2 meters while the smaller end 
depth d1 is varied between 0.40 meter and 2 meters at 0.40 meter intervals to give different 
tapering angles of 0.20 and 0.4. The tapered segment length is varied between 2 and 4 meters at 
2 meters intervals to give different tapered panel aspect ratios of 1, and 2, respectively.  
 
4.2 Finite Element Model 
Fig. 2 shows the finite element model made using ANSYS (2009) to represent the model girder. 
All plate elements were modeled with an iso-parametric finite strain shell element designated as 
“Shell 181” in ANSYS element library. Shell 181 is a four-noded shell element with six degrees 
of freedom per node and has geometric and material nonlinearities capabilities. It is well suited 
for linear, large rotation, and /or large strain nonlinear applications. In the construction of the 
finite element model, convergence was achieved by using a mesh size in the order of 50 mm for 
all plate elements.  The displacement boundary conditions at the left end were specified to give a 
roller support while the right end was restrained to represent symmetry about the middle vertical 
plane. Lateral torsional buckling was prevented by restraining the movement in the out-of-plane 
direction of all nodes along the web-to-flange connection. The material properties used 
correspond to an elastic-plastic material with Von Mises yield criteria and isotropic hardening. 
The values of the material constants used are Elastic modulus E=210 GPa, yield stress Fy=350 
MPa, and Poisson’s ratio ν=0.3. 

 
 
 

 
Figure 2:  Finite Element Model 
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4.3 FEM Validation 
Bedynek, et al (2013) presented an experimental and numerical study on shear strength of 
tapered plate girders. In the experimental part, four small-scale experimental tests of tapered 
steel plate girders were carried out and their test results were compared with those obtained by 
numerical simulation of the tests. The four tests covered four typologies used in tapered plate 
girders according to the direction of the resulting diagonal compression responsible for shear 
buckling. Typologies I and II only shall be considered here because of their practical importance. 
In typology I, the direction of diagonal compression is in the direction of the longer diagonal of 
the tapered panel, while as the direction of diagonal compression is in the direction of the shorter 
diagonal of the tapered panel. This effect of diagonal compression direction was also discussed 
by Real et al (2010). Due to the difference in length of the buckled diagonal, the shear strength of 
typology II is larger than that of typology I.   
 
The proposed model in the present paper was validated by comparing its results with the 
experimental and numerical results presented by Bedynek, et al (2013). Three test girders of 
topology I were simulated using the proposed model for the same material properties of the test 
girders, i.e., Elastic modulus E=211.3 GPa, Poisson's ratio ν = 0.3, and yield strength Fy= 320.6 
MPa. The results of the comparison are shown in Table 1. 
 

Table 1 
 

Comparison between Test Results and Model Results 
 

 
 Girder A Girder B Girder C 
Girder Cross Section 600/800*3.9*180*15 500/800*3.9*180*15 480/800*3.9*180*15 
Length (mm) 800 1200 800 
Aspect Ratio α 1 1.5 1 
Tapering Angle tgt.φ 0.25 0.25 0.4 
1) Elastic Buckling    
Test Results 225 220 265 
Model Result 240 215 290 
% Difference +6.66 % -2.32 % +9.40 % 
2) Ultimate Strength    
Test Result 392 320.5 388.2 
Model Results 396 330 347 
% Difference +1 % +3.12 % -10.6 % 

 
The differences between test results and model results are between -2.32 % for Girder B and 
+9.40 % for Girder C. Test result for the ultimate strength of girder C is equal to 0.754*Fy which 
exceeds the shear yield stress 0.577*Fy, indicating a large amount of tension field action prior to 
failure. These differences are considered acceptable and may be attributed to the differences in 
initial imperfections and residual stress distributions. 
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5. Parametric Study 
After validating the FE-model versus available test results, a parametric study is performed to 
investigate the effect of major design parameters such as web and flange slenderness, tapering 
angle, tapered panel aspect ratio on the ultimate shear strength in the presence of typical 
distributions of geometric imperfections and residual stresses. The model is subjected to two 
point loads at tapered panel ends. The load values are chosen to produce a shear stress of 
0.577*Fy at each end. As these loads subjects the tapered panel to high bending stresses, 
balancing uniform distributed moment (m) is applied to the tapered panel. The values of the 
additional moments are calculated to balance the bending moment resulting from the difference 
in applied shear so that the tapered panel is subjected to uniform pure shear stress. Details of 
these loads are given in Abu-Hamd (2011).  
 
The range of design parameters covered in this study is as follows: 

1- Tapered panel aspect ratio α= 1,2 
2- Tapered panel angle tgt φ= 0, 0.2, and 0.4. 
3- Web slenderness ration at larger end λw = d2/tw = 75 to 200 at intervals of 25. 
4- Flange slenderness ratio λf = bf/2*tw = 8,13,18 corresponding to the cases of  a  
     compact, non- compact and a slender flange, respectively. 

 
The results of the parametric study are presented in Figs. 3,4,5 for the elastic buckling shear 
strength and in Fig. 6 and 7 for the inelastic ultimate shear strength. The difference in stress 
reduction due to flange slenderness was found to be small so that only results corresponding to 
the case on non-compact flange are presented. 
 
5.1 Elastic Shear Buckling Results 
5.1.1 Effect of diagonal compression direction 
Fig. 3 shows the variation of the elastic shear buckling stress (qcr/0.58*Fy) with the web 
slenderness ratio λw for different values of the aspect ratio α and the tapering angle φ for two 
cases of long and short diagonal compression.  Based on the results of the studied girder models, 
the elastic buckling stress for the case of short diagonal compression is larger than the case of 
long diagonal compression. The % increase ranges between 6 to 10 % for α=1 and φ=0.2 and 
between 25 to 36 % for α=2 and φ=0.4. 
 
5.1.2 Reduction of Elastic shear buckling stress due to residual stresses 
Figs. 4 and 5 show the variation of the elastic shear buckling stress (qcr/0.58*Fy) against the web 
slenderness ratio λw for different values of the aspect ratio α and the tapering angle φ with and 
without residual stresses. 
 
Based on the results of the studied girder models, the reduction in elastic shear buckling strength 
ranges between 4 and 10 % for all α and φ values.  
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Figure 3: Variation of Shear Buckling Stress according to Compression Diagonal Direction 
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Figure 4a: Reduction in Shear Buckling Stress due to Residual Stresses (tgt φ=0.2) 
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(b) Short Diagonal 

 
Figure 4b: Reduction in Shear Buckling Stress due to Residual Stresses (tgt φ=0.4) 

0 

0.2 

0.4 

0.6 

0.8 

1 

75 100 125 150 175 200 

       tgt φ =0.4 
- - - -  Without RS 
_____ With RS 

α=1 

α=2 

Web Slenderness Ratio  λw 

Bu
ck

lin
g 

Sh
ea

r S
tr

es
s (

 q
cr

/0
.5

8 
Fy

) 

0 

0.2 

0.4 

0.6 

0.8 

1 

75 100 125 150 175 200 

       tgt φ =0.4 
- - - -  Without RS 
_____ With RS α=1 

α=2 

Web Slenderness Ratio  λw 

Bu
ck

lin
g 

Sh
ea

r S
tr

es
s (

 q
cr

/0
.5

8 
Fy

) 



12 
 

 
 

 
 
 

Figure 5: Reduction in Shear Buckling Stress due to Residual Stresses 
 for different α and φ values 
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5.2 Ultimate  Shear Strength 
Fig. 6 and 7 show the variation of the ultimate shear stress (qcr/0.58*Fy) against the web 
slenderness ratio λw for different values of the α=2 and the tapering angle φ =0.2 and 0.4, with 
and without geometric imperfection and residual stresses.  
 
Based on the results of the studied girder models, the reduction in ultimate shear strength for 
girder with compact and non-compact web ranges between 15 and 24 %.  For girders with 
slender webs, the reduction ranges between 3 and 15 %.. 
 
 

 

 
Figure 6: Reduction in Ultimate Shear Stress due to Imperfections (α=2, tgt φ=0.2,0.4) 
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Figure 7: Reduction in Ultimate Shear Stress due to Imperfections 
 for different α and φ values 
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6. Conclusions 
This paper presents the results of finite element analysis studies of the effect of geometrical and 
structural imperfections on the elastic buckling strength and the ultimate shear strength of web 
tapered plate girders. Standard geometric imperfection and residual stress models are applied to a 
tapered girder finite element model subjected to uniform shear stress without bending. The 
model is validated using available test results on web tapered girders. A parametric study is 
performed to investigate the reduction due to imperfections in both elastic buckling strength and 
the ultimate shear strengths under different values of the major design parameters such as web 
slenderness ratio, tapering angle, tapered panel aspect ratio.  
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