

Proceedings of the Annual Stability Conference Structural Stability Research Council Toronto, Canada, March 25-28, 2014

On the Relevance of Local-Distortional Interaction Effects in the Behavior and Design of Cold-Formed Steel Columns

A.D. Martins¹, P.B. Dinis¹, D. Camotim¹, P. Providência²

Abstract

The paper reports the results of a numerical (ABAQUS shell finite element analysis) investigation on the relevance of web-triggered local-distortional interaction on the ultimate strength of a large number of cold-formed steel fixed-ended (plain) lipped channel, zed, hat and rack columns. These results concern columns with various geometries (cross-section dimensions and unrestrained length) and yield stresses, ensuring a wide variety of combined ratios between the (i) distortional and local critical buckling stresses (R_{DL}) , and (ii) yield and non-critical buckling stresses (R_v) – to avoid interaction with global buckling, all the columns have global critical buckling stresses much higher than their local, distortional and yield counterparts. The aim of the study is to identify combinations of these ratios for which L-D interaction is relevant, in the sense of affecting visibly the column elastic and elastic-plastic post-buckling behaviors, ultimate load and failure mode mechanisms – special attention is devoted to the ultimate strength erosion. The numerical ultimate strength data obtained above are then compared with the predictions of (i) the currently codified DSM (Direct Strength Method) strength curves for the design of columns failing in local and distortional modes, and (ii) available DSM-based design approaches specifically developed for local-distortional interactive failures - particular attention is devoted to those proposed by Silvestre et al. (2012). Then, experimental results available in the literature concerning failures in local-distortional interactive modes, namely those reported by Kwon & Hancock (1992), Kwon et al. (2009), Loughlan et al. (2012), Young et al. (2013) and Dinis et al. (2013a), dealing with lipped channel (mostly) and racksection columns, are used to assess the quality of the estimates provided by the DSM-based design approaches. Finally, the paper closes with some considerations about the impact of the findings reported in this work on the design of cold-formed steel columns undergoing different levels of L-D interaction.

1. Introduction

Most cold-formed steel members exhibit slender thin-walled open cross-sections, a feature making them highly susceptible to several instability phenomena involving cross-section deformation, namely local and distortional buckling – Figs. 1(b)-(d) show buckled lipped channels cross-sections corresponding to column local, distortional and global (flexural-torsional and flexural) shapes. Moreover, since several commonly used cold-formed steel member geometries (cross-section shape/dimensions and unrestrained length) may exhibit fairly similar local (L) and distortional (D) critical buckling stresses, the corresponding post-buckling behavior (elastic or elastic-plastic), ultimate strength and failure mode

¹ Department of Civil Engineering Architecture and Georesources, ICIST, Instituto Superior Técnico, University of Lisbon, Portugal. <a dramating@ist.utl.pt>, <dinis@civil.ist.utl.pt> and < dcamotim@civil.ist.utl.pt >

² Department of Civil Engineering, INESC, University of Coimbra, Portugal. <provid@dec.uc.pt>

Figure 1: Lipped channel (a) geometry and buckled shapes associated with column (b) local (c) distortional and (d) $global - (d_1)$ flexural-torsional (d_2) flexural - buckling

are likely to be affected, to a smaller or larger extent, by interaction effects involving these two instability phenomena – local-distortional (L-D) interaction.

A considerable amount of research activity has been recently devoted to local-distortional (L-D) interaction, involving mostly lipped channel columns and including experimental investigations, numerical simulations and design proposals – for instance, the works reported by Kwon & Hancock (1992), Yang & Hancock (2004), Dinis et al. (2007, 2009), Yap & Hancock (2009, 2011), Kwon et al. (2009), Silvestre et al. (2012), Young et al. (2013), Loughlan et al. (2012), Camotim et al. (2013) and Martins et al. (2013). Although in a lesser amount, some research concerning columns with other cross-sections shapes is also available: (i) Dinis et al. (2011) (hat-sections), (ii) Silvestre et al. (2008) and Dinis et al. (2013a) (rack-sections), (iii) Dinis et al. (2012b) (zed, hat and rack-sections), and (iv) Dinis & Camotim (2012, 2013) (lipped channels and zed, hat and rack-sections). It was found that L-D interaction effects are relevant when the ratio between the critical local and distortional buckling stresses, denoted here $R_{DL}=f_{crd}/f_{crl}$, is either (i) in the close vicinity of 1.0 (comprised between 0.9 and 1.1) or (ii) significantly above 1.0, provided that the yield stress f_y is "high enough" to allow the development of L-D interaction prior to collapse - this means that the yield-to-critical stress ratio also plays a crucial role in assessing the relevance of L-D interaction effects. However, a systematic investigation aimed at identifying which combinations of the ratios involving the (i) local critical stress, (ii) distortional critical stress and (iii) yield stress leading to non-negligible L-D coupling effects is still lacking - the only available results addressing (partially) this issue have been reported by Dinis et al. (2009) and Martins et al. (2013), both exclusively for (plain) lipped channels columns.

Since the structural response and strength of cold-formed steel members is complex and not yet adequately reflected in several current design codes, a fair amount of research has been devoted to develop efficient (safe and economic) design rules for such members. The most relevant fruit of this research activity was the Direct Strength Method (DSM), which (i) has its roots in the work of Hancock *et al.* (1994), (ii) was originally proposed by Schafer & Peköz (1998), and (iii) has already been included in the latest versions of the Australian/New Zealand (AS/NZS 2005) and North American (AISI 2012) cold-formed steel specifications as an alternative to the traditional Effective Width Method (EWM) to estimate the load-carrying capacity of members subjected to uniform compression (columns) or bending (beams) – a detailed account of the most relevant DSM developments can be found in Schafer (2008). The DSM has been shown to provide an efficient and general approach to estimate the ultimate strength of cold-formed steel columns and beams failing in local (L), distortional (D), global (G) and local-global (L-G) interactive modes. Unfortunately, the consideration of these limit states is not sufficient for the design of such members, since interaction phenomena involving distortional buckling, namely, L-D, D-G and L-D-G may also erode significantly the member load-carrying capacity, thus leading to unacceptably low reliability indices, *i.e.*, to a high likelihood of reaching unsafe designs.

This paper deals solely with the design of columns against L-D interactive failures. Although several

attempts have been made to extend the DSM approach, so that it covers also column L-D interactive failures, it is consensual that further research is still needed before the DSM can be successfully and generally applied to members affected by this type of mode interaction. Therefore, one of the main purposes of this work is also to contribute towards achieving this goal, by investigating the relevance of the L-D interaction effects, thus paving the way for the codification of a DSM-based design approach for columns affected by web-triggered L-D interaction. In the particular case of lipped channels columns (either pin-ended or fixed-ended) experiencing L-D interaction, the second and third authors performed extensive numerical simulations that (i) made it possible to obtain clear evidence that the current DSM local and distortional design curves cannot capture the ultimate strength erosion due to this coupling behavior and (ii) unveiled features that must appear in a DSM design approach intended for such members. These findings were incorporated into DSM-based design approaches recently proposed by Silvestre et al. (2012), for lipped channel channels only, later extended to zed, hat and rack-section columns by Dinis & Camotim (2012, 2013) - it is worth noting that these proposals concern exclusively columns affected by strong interaction stemming from the closeness between the local and distortional critical buckling stresses. Moreover, experimental results also confirmed the occurrence of considerable ultimate strength erosion due to L-D interaction in (i) fixed-ended lipped channel columns (plain or with intermediate stiffeners, *i.e.*, flange-triggered or web-triggered L-D interaction), as reported by various authors (Kwon & Hancock 1992, Yang & Hancock 2004, Yap 2008, Kwon et al. 2009, Yap & Hancock 2009, 2011, Loughlan et al. 2012, Young et al. 2013 and Dinis et al. 2013b) or (ii) fixed-ended racksection columns, as reported by Dinis et al. (2013a).

This paper presents and discusses the results of a extensive numerical (ABAQUS shell finite element) investigation involving the determination the ultimate strength of (i) 484 lipped channel (C) (ii) 440 hat-section (H) (iii) 440 zed-section (Z) and (iv) 440 rack-section (R) fixed-ended columns exhibiting different cross-section dimensions and yield stresses, thus ensuring a wide variety of combinations of the stress ratios (i) $R_{DL}=f_{crd}/f_{crl}$, relating the distortional and local critical buckling stresses, and (ii) $R_v = f_v / f_{cr.max}$, quantifying the difference between the yield stress and the higher (non-critical) of the above two buckling stresses, *i.e.*, $f_{cr.max}=max(f_{crl}; f_{crd})$ – this is because, when f_{crd} and f_{crl} are not very close, the development of L-D interaction effects is also influenced by the closeness between f_y and $f_{cr.max}$. All the selected columns have cross-section dimensions that ensured that local buckling is triggered by the web, since (i) the mechanics of web-triggered and flange-triggered L-D interaction are quite different and (ii) the latter may cause an additional ultimate strength erosion that was clearly observed in the experimental tests reported by Dinis et al. $(2013b)^3$ – moreover, all the tests results considered in this work concern columns failing in web-triggered L-D interactive modes. The aim of this investigation is to extend a very recent study by the authors (Martins et al. 2013), carried out in the context of fixedended cold-formed plain lipped channel columns, to other plain (no wall intermediate stiffeners) crosssection shapes, namely hat, zed and rack-sections. In particular, it is sought to identify the R_{DL} - R_v range combinations for which the L-D interaction effects are relevant, in the sense of eroding visibly the column ultimate load and/or altering its failure mechanism nature. The numerical ultimate strength data obtained are also compared with their predictions provided by the available DSM strength curves/expressions developed for the design of columns failing in local, distortional and L-D interactive modes - special attention is devoted to the DSM approaches recently proposed by Silvestre et al. (2012) and Dinis & Camotim (2013), which account explicitly for L-D interaction. The ultimate strength erosion due to L-D interaction is also assessed by comparing the numerical failure loads with their estimates provided by the codified DSM local and distortional strength/design curves - generally speaking, both curves

³ This type of L-D interaction is currently being studied by the authors – the results obtained will be reported in the near future.

overestimate the numerical and experimental ultimate loads, thus providing additional clear evidence of the occurrence of ultimate strength erosion due to L-D interaction.

Finally, the paper closes with some considerations concerning the impact of the findings reported in this work on the DSM design (ultimate strength prediction) of the cold-formed steel columns exhibiting different (i) (plain) cross-section shapes and (ii) levels of L-D interaction. In particular, the possibility of developing a general DSM-based approach capable of efficiently (safely and accurately) predicting the load-carrying capacity of all these different columns is addressed.

2. Buckling Analysis - Columns Geometry Selection

In order to perform an investigation involving the evaluation of the numerical ultimate strength of fixed-ended columns affected by various levels of L-D interaction, it is indispensable to begin by selecting columns with different "levels of closeness" between their local and distortional critical buckling stresses (R_{DL} values). These critical stresses can be obtained by means of various methods, such as shell finite element analyses (SFEA), finite strip analyses (FSA) or analyses based on Generalized Beam Theory (GBT). Since the column selection was made by a "trial-and-error" approach, it was decided to perform the buckling analysis using the GBT-based code GBTUL (Bebiano et al. 2008), mainly due to its computational efficiency and the structural clarity of the results obtained. Since the C, H and Z columns share the same local and distortional buckling behaviors (for identical cross-section dimensions, of course – note that local and distortional buckling are essentially governed by the web width and flange-lip assembly dimensions, respectively), the selection procedure adopted earlier (Martins et al. 2013) for the C columns was readily extended to their H and Z counterparts⁴. However, it should be noted that (i) the first 6 columns were modified, in order to have local buckling always triggered by the web, and (ii) 3 column geometries were added, in order to increase the number of columns with R_{DL} values (L-D interaction levels) comprised between 1.0 and 1.5. The end product of the columns geometry selection are the 27 distinct combinations of cross-section dimensions b_w , b_f , b_l , t (web/flange/lip widths and wall thickness – see Fig. 1(a) for the C columns) and lengths (L), which are provided in Table 1. The halfwave numbers exhibited by the critical local (n_l) and distortional (n_d) buckling modes are also given (the former only if $f_{crl} < f_{crd}$). These fixed-ended cold-formed steel (E=210GPa, v=0.3) columns (i) exhibit R_{DL} values in the range 0.42 < R_{DL} < 2.39 and (ii) have global critical buckling stresses (ii₁) much higher than their local and distortional counterparts ($f_{crg}/f_{cr.max}$ >7.5) and (ii₂) higher than all the column yield stresses considered (discussed later) $(f_{crg}/f_{y,max} > 1.0)^5$, thus ensuring that interaction with flexural-torsional (C and H columns) or minor-axis flexural (Z columns) buckling does not occur. The values of the two stress ratios are also given in Table 1, but only for the H columns $-f_{crg}$ value always lower than those of the corresponding C and Z columns, as is clearly shown in Fig. 2(a), which concerns column C11.

Fig. 2(b) shows illustrative mixed buckling modes, combining 2 D half-wave and 8 L half-waves, of columns whose post-buckling behavior and ultimate strength are strongly affected by L-D interaction.

⁴ These C columns buckling results were already reported in Martins *et al.* (2013).

⁵ In Table 1, two values concerning columns C11 e C12 are below 1.0. This is due to the fact that these column geometries were adopted in the C column investigation carried out by Martins *et al.* (2013) and C columns exhibit higher critical global buckling stress than their H counterparts (see Fig.2 (a)). Note also that the above two values are associated with maximum (critical) slenderness values equal to 3.50 in a region affected by "true" L-D interaction (close f_{crl} and f_{crd}). Since the high slenderness range is relevant only for the columns experiencing "secondary bifurcations", for which L-D interaction can develop even if f_{crl} and f_{crd} are not so close (provided that the yield stress is "sufficiently higher" – high slenderness), these two values of $f_{crg}/f_{y.max}$ below 1.0 have very little relevance. Indeed, a close inspection of the deformed configurations of these two columns showed no trace of L-D-G interaction.

Figure 2: (a) Critical buckling curves and (b) L_{LD} column mixed buckling modes concerning the C, H and Z

 Table 1: Selected column geometries, critical local/distortional/global buckling stresses, buckling mode half-wave numbers and relevant stress ratios for the C, H and Z columns

	b_w	b_f	b_l	t	L	f_{crd}		f_{crl}		_	f_{crg}	f_{crg}	$f_{\rm crg}$
	(mm)	(mm)	(mm)	(mm)	(m)	(MPa)	n_d	(MPa)	n_l	R_{DL}	(MPa)	$f_{cr.\mathrm{max}}$	$f_{y.max}$
C1	170	170	10	2.50	1.90	74	2	178	-	0.42	1343	7.5	1.49
C2	155	135	10	2.50	1.43	116	2	245	-	0.48	1911	7.8	1.34
C3	150	135	10	2.50	1.43	118	2	227	-	0.52	1799	9.6	1.25
C4	155	140	11	2.50	1.50	119	2	208	-	0.57	1738	8.3	1.19
C5	145	120	10	2.10	1.40	118	2	189	-	0.62	1714	9.0	1.19
C6	120	95	8	1.60	1.20	110	2	166	-	0.67	1583	9.5	1.16
C7	120	110	10	2.15	0.90	184	2	263	-	0.70	2856	10.9	1.27
C8	120	110	10	1.80	0.90	149	1	192	-	0.78	2852	14.8	1.55
C9	120	110	10	1.60	0.90	131	1	153	-	0.86	2850	18.6	1.77
C10	120	110	10	1.40	0.90	113	1	118	-	0.96	2849	24.1	2.04
C11	120	80	10	1.65	1.00	194	2	189	9	1.02	2093	10.5	0.90
C12	120	80	10	1.60	1.00	189	2	178	9	1.07	2092	10.8	0.96
C13	120	110	10	1.15	0.90	91	1	80	7	1.13	2307	25.4	2.36
C14	120	80	10	1.40	1.00	166	2	136	9	1.22	2090	12.4	1.25
C15	120	80	10	1.35	1.00	165	2	127	10	1.29	2090	12.4	1.34
C16	120	80	10	1.30	1.00	159	2	118	9	1.35	2089	12.8	1.44
C17	120	80	10	1.25	1.00	153	2	119	9	1.41	2089	13.3	1.56
C18	120	80	10	1.20	1.00	145	2	100	9	1.45	2088	13.8	1.69
C19	120	80	10	1.15	1.00	141	2	92	10	1.52	2088	14.3	1.84
C20	120	80	10	1.10	1.00	135	2	84	10	1.60	2087	15.0	2.01
C21	120	100	10	0.85	1.00	77	1	47	9	1.66	2255	28.7	3.92
C22	120	100	10	0.80	1.00	73	1	41	9	1.76	2254	31.0	4.42
C23	120	100	10	0.75	1.00	68	1	36	9	1.86	2254	32.5	5.03
C24	120	100	10	0.70	1.00	63	1	32	9	2.00	2254	35.1	5.77
C25	120	100	10	0.65	1.00	59	1	27	9	2.15	2254	38.0	6.69
C26	120	100	10	0.62	1.00	55	1	25	9	2.22	2254	40.4	7.35
C27	120	100	10	0.55	1.00	47	1	20	9	2.39	2254	47.7	9.33

The C, H and Z column P_{cr} vs. L behaviors only differ in the length associated with the transition between D to G critical buckling (intermediate-to-long columns). As reported by Dinis & Camotim (2013) and taking the C columns as reference, the G buckling loads (i₁) considerably increase for the Z columns, due to change from flexural-torsional to flexural buckling, and (i₂) slightly decrease for the H columns, due to the lower (about 10%) warping constant, which outweighs the marginally higher major-axis inertia.

An objective of this paper is also to extend the findings obtained by Martins *et al.* (2013) to rack-section (R) columns, thus enabling the consideration of the four more commonly used plain cold-formed steel profiles (also those for which the column design can be carried out by means of the DSM – see, for instance, AISI 2012). It is necessary again to select columns with different levels of L-D interaction and, for comparison purposes, with R_{DL} values as close to those given in Table 1, for the C, H and Z columns, as possible. The selection procedure, which was performed once more with the code GBTUL, led to 27 distinct combinations of column (i) cross-section dimensions b_w , b_f , b_l , b_s , t (web/flange/lip/stiffener widths and wall thickness) and (ii) lengths (L), which are provided in Table 2 – they exhibit R_{DL} values in the range $0.42 < R_{DL} < 2.38$, virtually the same as for the C, H and Z columns. The half-wave numbers of the local and distortional critical buckling modes are also given, as well as the ratios between the global critical buckling stresses (flexural-torsional) and the (i) higher (non-critical) of the local and distortional buckling stresses ($f_{crg}/f_{cr.max} > 5.24$), and (ii) maximum yield stress value ($f_{crg}/f_{y.max} > 1.04$).

					and relev	ant stress	s ratios for	the R	columns					
	b_w	b_f	b_s	b_l	t	L	f_{crd}		f_{crl}			f_{crg}	f_{crg}	f_{crg}
	(mm)	(mm)	(mm)	(mm)	(mm)	(m)	(MPa)	n_d	(MPa)	n_l	R_{DL}	(MPa)	$f_{cr.max}$	$\overline{f_{y.max}}$
C1	140	135	6,5	10.0	2,45	1.60	113	2	272	-	0.42	1425	5.24	1.04
C2	140	130	7.5	10.0	2.50	1.40	141	2	291	-	0.49	1879	6.46	1.10
C3	140	130	7.5	10.0	2.33	1.40	131	2	252	-	0.52	1877	7.44	1.19
C4	220	210	10.0	10.0	2.50	3.30	62	3	108	-	0.57	811	7.54	1.08
C5	200	180	10.0	10.0	2.50	2.50	86	2	139	-	0.62	1172	8.46	1.12
C6	190	160	10.0	10.0	2.54	2.00	112	2	166	-	0.67	1650	9.94	1.22
C7	190	160	10.0	10.0	2.42	2.00	106	2	151	-	0.70	1649	10.93	1.28
C8	190	160	10.0	10.0	2.20	2.00	97	2	125	-	0.77	1648	13.15	1.40
C9	190	160	10.0	10.0	2.00	2.00	89	2	104	-	0.86	1648	15.88	1.53
C10	190	160	12.5	12.5	2.43	1.85	149	2	155	-	0.96	1995	12.91	1.12
C11	190	160	12.5	12.5	2.30	1.85	143	2	139	11	1.03	1995	13.93	1.18
C12	190	160	12.5	12.5	2.23	1.85	138	2	129	11	1.07	1995	14.46	1.25
C13	190	175	15.0	15.0	2.50	1.50	177	1	158	8	1.12	3173	17.91	1.65
C14	190	175	15.0	15.0	2.30	1.50	160	1	134	8	1.20	3172	19.83	1.94
C15	190	175	15.0	15.0	2.20	1.50	157	1	123	8	1.28	3171	20.17	2.12
C16	130	100	15.0	15.0	2.20	1.00	386	1	285	9	1.35	3693	9.56	1.06
C17	130	100	15.0	15.0	2.14	1.00	381	1	269	9	1.41	3693	9.70	1.12
C18	130	100	15.0	15.0	2.00	1.10	341	1	235	10	1.45	3052	8.96	1.06
C19	130	100	15.0	15.0	2.04	1.00	373	1	245	9	1.52	3692	9.91	1.23
C20	130	100	15.0	15.0	1.95	1.00	360	1	224	9	1.61	3691	10.25	1.35
C21	130	100	15.0	15.0	1.90	1.00	354	1	213	9	1.66	3691	10.42	1.42
C22	130	100	15.0	15.0	1.82	1.00	344	1	195	9	1.76	3690	10.73	1.54
C23	130	100	15.0	15.0	1.75	1.00	335	1	180	9	1.86	3689	11.02	1.67
C24	130	100	15.0	15.0	1.65	1.00	321	1	161	9	2.00	3689	11.49	1.87
C25	130	100	15.0	15.0	1.56	1.00	308	1	143	9	2.15	3688	11.99	2.10
C26	130	100	15.0	15.0	1.51	1.00	299	1	134	9	2.22	3688	12.35	2.23
C27	130	100	15.0	15.0	1.43	1.00	286	1	120	9	2.38	3687	12.87	2.49

 Table 2: Selected column geometries, critical local/distortional/global buckling stresses, buckling mode half-wave numbers and relevant stress ratios for the R columns

3. Parametric Study: Scope and Numerical Results

This section presents the column ultimate load data concerning the four sets (C, H, Z, R) of 27 fixedended cold-formed steel columns characterized in the last section. As will be seen further ahead in the paper, L-D interaction may be relevant even when R_{DL} differs significantly from 1.0, provided that the yield stress is "sufficiently high". In order to confirm this assertion, yield stress values leading to a wide critical (local or distortional) slenderness [$\lambda_{cr} = (f_y/f_{cr})^{0.5}$] range are considered in this study – more specifically, ten λ_{cr} values, varying from 1.00 to 3.50 in approximately 0.25 intervals, correspond to yield stresses ranging roughly from (i) 240MPa to 2300MPa (C, H, Z columns) or (ii) 750 MPa to 3500MPa (R columns). Note that columns with $f_y/f_{cr}<1.0$ are not considered in this work, since their collapse is mainly governed by plasticity effects (only when R_{DL} is close to 1.0 does L-D interaction play a minor role). Moreover, the columns under investigation in this work are also highly sensitive to the shape of the initial geometrical imperfections, which has a strong influence on the normal stress pattern.

In the remainder of this section, (i) several relevant issues concerning the finite element modeling of the geometrically and materially non-linear behavior of thin-walled steel members are briefly described, (ii) the influence of the initial geometrical imperfection shape on the column ultimate strength is addressed – this shape is known to play a crucial role in mode interaction investigations (*e.g.*, Dinis *et al.* 2007), and (iii) the obtained failure load data is presented – these values will be subsequently used to assess the relevance of the L-D interaction effects in C, H, Z, R columns.

3.1 Finite Element Modeling

The column (i) elastic buckling and (ii) elastic-plastic post-buckling behaviors were determined by means of shell finite element analyses (SFEA), carried out in the code ABAQUS (Simulia Inc 2008), employing models already adopted in previous studies by Dinis *et al.* (2006, 2007, 2009) – a detailed account of the modeling issues can be found in these references. The main characteristics of these models are as follows:

- (I) Discretisation. The column mid-surface was discretized into fine meshes of S4 elements (ABAQUS nomenclature 4-node isoparametric shell elements with the shear stiffness obtained by a full integration rule). Since previous studies showed that using of elements with length-to-width ratios roughly equal to 1.0 provides accurate results, such elements were also adopted in this work. The rounded corners were neglected, since previous studies have shown that they have little impact on the column behavior (however, this assertion may not be true for other phenomena, like web crippling).
- (II) *Support Conditions*. All the columns analyzed in this work have fixed end sections with warping and torsional rotations prevented. In order to avoid numerical difficulties related to the load application, both end sections are free to move axially (the rigid-body longitudinal translation is precluded by preventing one mid-span cross-section axial displacement). These fixed-ended support conditions were modeled by means of rigid end-plates attached to the end cross-section centroids.
- (III) *Loading*. Compressive axial forces were applied at the column rigid end-plate points corresponding to the end cross-section centroids.
- (IV) *Material Modelling*. The carbon steel material behavior, deemed isotropic and homogeneous, was modelled as (i) linear elastic (buckling analysis) or (ii) elastic perfectly-plastic (post-buckling analysis). In the latter case, the well-known Prandtl-Reuss model was adopted it is based on J₂-flow plasticity theory and combines von Mises's yield criterion with its associated flow rule.

3.2 Initial Geometrical Imperfections

It is well known that the initial geometrical imperfection shape plays a key role in the non-linear analysis of thin-walled cold-formed steel columns (or any other structural system, for that matter), as its choice may alter considerably the corresponding post-buckling behavior and ultimate strength (*e.g.*, Dinis *et al.* 2007). Although various approaches can be adopted to characterize/define the initial geometrical imperfections in cold-formed steel members (*e.g.*, Schafer & Peköz 1998a or Zeinoddini & Schafer 2012), this work considers only "pure" distortional or local buckling mode shapes, which may be critical (in most cases) or non-critical, and small amplitudes (10% of the column wall thickness). This means that it was necessary to perform preliminary ABAQUS SFE buckling analyses to obtain the column initial

geometrical imperfection shape to be incorporated in the ABAQUS SFE post-buckling analyses – obviously, the same SFE meshes were adopted in both analyses.

Previous studies showed that "pure" distortional initial imperfections are always the most detrimental when compared with "pure" local ones sharing the same overall amplitude - this can be easily explained by the lower D post-critical stiffness and strength, when compared with their L counterparts (e.g., Camotim et al. 2005). However, this conclusion was based in the analysis of columns with R_{DL} values close to 1.0 (*i.e.*, 0.90<*R*_{DL}<1.10) and may not remain true for columns with higher *R*_{DL} values, *i.e.*, R_{DL} >1.10. Therefore, it was decided to analyze all the columns with "pure" distortional initial geometrical imperfections, regardless of their R_{DL} values (*i.e.*, whether the column critical buckling mode is local or distortional). In addition, when R_{DL} >1.0, the columns were also analyzed with "pure" local initial geometrical imperfections. Unlike its local counterpart, the column distortional post-buckling behavior is asymmetric with respect to the imperfection "sign", which implies that it is necessary to identify the most detrimental "sign", i.e., that leading to the lowest ultimate strengths. This identification has already been conducted by (i) Dinis et al. 2007, for C columns, and by (ii) Dinis & Camotim (2013), for H, Z, R fixed-ended columns, leading to the initial geometrical imperfection shapes depicted in Figs. 3(a)-(c) – since the same conclusions were drawn for the H and R columns, only the latter is presented. It is clearly demonstrated that, when there is only one distortional half-wave, (i) the most detrimental imperfection shape involves outward (C columns – Fig. $3(a_1)$) or inward (H, R columns – Fig. $3(a_2)$) mid-span flangelip motions - in Z columns, the initial geometrical imperfection "sign" is obviously irrelevant due to the cross-section point-symmetry (see Fig. 3(a₃)). This is also when the columns exhibit an even distortional half-wave number, as there exist the same number of outward and inward half-waves – Figs. 3 (b_1)-(b_3) show C, R, Z columns with two half-waves. Concerning the local initial geometrical imperfection, their "sign" is again irrelevant, due to the local post-buckling symmetry - Figs. 3(c1)-(c3) show C, R, Z columns with multiple half-waves numbers. The distortional and local initial geometrical imperfections shared the same overall amplitude and were characterized by (i) maximum lip free edge vertical displacements v(also in the R columns, even if it is not the maximum displacement) equal to 10% of the wall thickness tat the cross-section with the highest outward or inward flange-lip motion, and (ii) maximum mid-web flexural displacement w, also equal to 10% of wall thickness t, respectively.

The inclusion of distortional (non-critical) initial imperfections in columns with R_{DL} values significantly higher than 1.0 is done through an auxiliary buckling analysis of an otherwise identical column with a

Figure 3: Initial geometrical imperfection shapes of C, Z and R columns exhibiting (a) one distortional half-wave (b) two distortional half-waves (c) multiple local half-waves

higher thickness value, selected to have a distortional critical buckling mode. The ensuing mid-surface deformed shape is then normalized and included in the column elastic-plastic second-order SFEA. Finally, it is still worth noting that, in this work, both the residual stress and corner strength effects (due to the cold-working of the brake-pressed corners) are neglected, since they have been shown to have little impact on the ultimate strength of cold-formed steel columns (Ellobody & Young 2005).

3.3 Column Ultimate Strength

The results concerning the ultimate strengths (f_u) obtained in this work, through ABAQUS second-order elastic-plastic SFEA, are given in the tables included in Annexes A (C columns), B (H and Z columns) and C (R columns). In Annex A, only the modifications mentioned in section 2 for the C columns are presented – the remaining results can be found in Martins *et al.* (2013). The above tables include ultimate strengths ($f_{u,D}$ and $f_{u,L}$, for columns with distortional or local critical initial geometrical imperfections – the latter only if R_{DL} >1.0), and their estimates provided by (i) the codified DSM design curves (f_{nl} or f_{nd}) and (ii) the two DSM-based approaches developed to account for the L-D interaction (f_{ndl} and f_{mndl}) – a few other relevant quantities are also given.

4. Relevance of Local-Distortional Interaction

The main results of the numerical investigation aimed at identifying the relevance of L-D interaction effects are presented and discussed next, thus extending the findings of Martins *et al.* (2013), obtained for C columns, to columns with other cross-section shapes, namely H, Z, R columns (and also the C columns not analyzed previously). The numerical ultimate strength data determined earlier are now used to identify R_{DL} and R_y ranges associated with the occurrence of relevant L-D interaction effects. Initially, the identification of the R_{DL} range associated with "true L-D interaction" is addressed – within this range, which corresponds to fairly close distortional and local critical buckling loads, the coupling effects may be said to be "intrinsic of the column" and, therefore, (i) gradually evolve as loading progresses and (ii) take place regardless of the yield stress value (provided, of course, that f_y/f_{cr} is not significantly below 1.0, in which case collapse is basically governed by plasticity). Then, attention is turned to the identification of the minimum R_y values allowing for the development of L-D interaction effects due to a "secondary (local or distortional) bifurcation", for all cross-sections shapes – these effects only emerge and grow as the applied stress nears the $f_{cr.max}$ level, provided that it falls considerably below the yield stress, particularly when the critical buckling stress is local, thus ensuring a high post-critical strength reserve.

4.1 True Local-Distortional Interaction – R_{DL} and R_{y} Upper and Lower Limits

Fig. 4(a) shows the upper portions ($P/P_{cr}>0.5$) of the P/P_{cr} vs v/t equilibrium paths (v is the mid-span flange-lip corner vertical displacement) of C13 ($R_{DL}=1.13$ – local critical buckling) lipped channel columns (i) containing D or L initial geometrical imperfections and (ii) exhibiting six R_y values (1.4, 2.0, 3.5, 5.5, 8.0 and ∞ – the latter corresponds to elastic behavior). Figs. 4(b₁)-(b₄) display the deformed configurations and plastic strain distributions near collapse of the columns with $R_y=2.0$ or $R_y=5.5$ and L or D initial imperfections – these deformed configurations are amplified either 2.5 (Fig. 4(b₃)) or 10 (remaining figures) times. The observation of these post-buckling results prompts the following remarks:

(i) Unlike the columns with D initial imperfections, which always exhibit outward mid-span flange-lip motions (akin to the initial imperfection shape), all the columns with L initial imperfections display inward mid-span flange-lip motions. This surprising feature is due to the presence of minor-axis bending, caused by effective centroid shifts towards the web stemming from stress redistribution (Young & Rasmussen 1999, despite the fixed ends). The associated outward web curvature "attracts" mid-span inward distortional deformations, which explains the failure modes in Figs. 4 (b₁) and (b₃).

Figure 4: C13 lipped channel columns (a) P/P_{cr} vs v/t paths for D and L initial geometrical imperfections, and (b) failure modes and plastic strains for (b₁)-(b₄) R_y =2.0+L, R_y =2.0+D, R_y =5.5+L and R_y =5.5+D

- (ii) In the columns with R_y closest to 1.0 (R_y =1.4), yielding starts when the normal stress distribution is still "not too far from uniform" and, therefore, precipitates a rather abrupt collapse, which occurs for a load that is practically imperfection-dependent.
- (iii) In the columns with $R_y>1.4$, on the other hand, first yielding takes place when the normal stress distribution is already "highly non-uniform" and, therefore, does not lead to an immediate failure collapse occurs either (iii₁) after a snap-through phenomenon and subsequent strength increase up to a limit point (columns with D imperfections) or (iii₂) following a fairly smooth stiffness decrease (columns with L imperfections). As R_y increases, the snap-through becomes less pronounced (it eventually disappears) and the elastic-plastic strength reserve grows considerably, because first yielding occurs at gradually more localized regions, thus impacting less the column stiffness this can be confirmed by comparing the various $R_y=*.*+D$ equilibrium paths.
- (iv) In the columns with D imperfections and $R_y < 3.5$ collapse occurs very soon after the yielding of the cross-section lips near the maximum outward distortional crest (*e.g.*, $R_y=2.0+D$ see Fig. 4(b₂)). As R_y grows, collapse occurs at a later stage, after the web-flange corner regions of the central L/3 segment have already yielded see Fig. 4(b₄).
- (v) On the other hand, the columns with L imperfections and $R_y \leq 2.0$ reach the ultimate strength when the lip free end regions of the outer half-wave most deformed cross-sections have yielded – *e.g.*, see Fig. 4(b₁), concerning $R_y=2.0+L$. For higher R_y values, collapse occurs once more at a later stage, when the lip free end and web-flange corner regions of the central L/3 segment have also yielded – see, for instance, Fig. 4(b₃), concerns $R_y=5.5+L$.
- (vi) Regardless of the initial imperfections shape and R_y value, all columns with $R_y \ge 2.0$ exhibit visible L-D interaction. Moreover, note that the failure mode does not depend on $R_y e.g.$, compare Figs. 4(b₂) and (b₄), which show the collapse mechanisms of the $R_y=2.0$ +D and $R_y=5.5$ +D columns.

Since L-D interaction occurs in all columns with R_{DL} close to 1.0 (even if it only causes significant ultimate strength erosion for $R_y \ge 2.0$, as shown later), it is important to identify when does "true L-D interaction" cease to occur, *i.e.*, the associated R_{DL} upper and lower limits. Such limits are obtained by means of a procedure involving the following steps:

- (i) Select column sets with sequences of increasing and decreasing R_{DL} values, starting as close to 1.0 as possible, and exhibiting similar R_y values not too far from 1.0 (to avoid the yield stress influence).
- (ii) Analyze all the columns within a set and, for each of them, observe and record the failure mode characteristics and location of the plastic strains at collapse. Only D initial imperfections are taken into consideration (they were shown by Dinis *et al.* 2007 to be the most detrimental).
- (iii) Compare the failure mode characteristics and/or collapse plastic strain patterns of the columns with similar R_v values and identify the pairs of successive R_{DL} values associated with a change in them.

The above procedure was first adopted to identify R_{DL} upper and lower limits for C columns, starting with the identification of the lower limit, associated with the presence of L-D interaction when the column critical buckling is distortional (R_{DL} <1.0). Figs. 5(a)-(b) show the collapse modes and plastic strains of the R_{DL} =0.78+ R_y =1.2 and R_{DL} =0.86+ R_y =1.3 columns – note that the two column deformed shapes are amplified 3 times and the latter has its web magnified 150 times – since distortional buckling clearly precedes local buckling, the distortional deformations prevail at the column collapse and, thus, the huge magnification of the web deformed shape becomes necessary. The following conclusions can be drawn from the observation of these figures:

- (i) The $R_{DL}=0.78+R_y=1.2$ column failure mode exhibits a perfect single-wave sinusoidal D shape there is no trace of local deformations as illustrated in Fig. 5(a) (*i.e.*, no L-D interaction occurs).
- (ii) Although barely perceptible, L-D interaction occurs close to collapse of the $R_{DL} = 0.86 + R_y = 1.3$ columns although the web deformed configuration appears to be a single-wave sinusoid, a minute local component can be detected by inspecting the magnified deformed web in Fig. 5(b), which provides evidence of an incipient local component (particularly near the fixed-ends).
- (iii) Therefore, it seems fair to argue that the emergence of L-D interaction effects takes place somewhere in between the R_{DL} =0.78 and R_{DL} =0.86 values.

Figure 5: (a) $R_{DL}=0.78+R_y=1.2$ and (b) $R_{DL}=0.86+R_y=1.3$ C column and web deformed shapes and plastic strains at collapse

The same methodology was adopted to identify R_{DL} lower limits for the H, Z, R columns. Due to space limitations, no numerical results and figures are presented here. However, it was found that, also for the columns with these three cross-sections, the emergence of L-D interaction effects takes place somewhere in between the R_{DL} =0.78 and R_{DL} =0.86 values.

A similar procedure was adopted to identify the R_{DL} upper limit, which concerns columns with critical local buckling stresses (R_{DL} >1.0). Figs. 6(a)-(b) display the deformed shapes (amplified 20 times) and plastic strains of the R_{DL} =1.41+ R_y =1.1 and R_{DL} =1.35+ R_y =1.2 columns at the onset of collapse – detailed views of the column region with larger outward distortional deformations are also shown. These results prompt the following remarks:

Figure 6: (a) $R_{DL}=1.41+R_y=1.1$ and (b) $R_{DL}=1.35+R_y=1.2$ C column deformed shapes (with details) and plastic strain diagrams at collapse

- (i) Although the two failure mode shapes share the same qualitative features, namely the combination of two D and several L half-waves, they are quantitatively quite different. Indeed, it is very clear that the L half-waves prevail in the $R_{DL}=1.41+R_y=1.1$ column failure mode, while the D ones are dominant in the $R_{DL}=1.35+R_y=1.2$ column collapse. Since both columns have L critical buckling modes and D initial imperfections, the dominance of the L (D) deformations in the failure mode may then be attributed to the absence (presence) of L-D interaction.
- (ii) The above assertion is confirmed by the plastic strain diagrams of the two columns at the onset of collapse. In the $R_{DL}=1.41+R_y=1.1$ column, yielding starts at the web and flange crests (*i.e.*, central areas) of the most deformed L half-wave (see detail in Fig. 6(a)), which is a clear indication of a local failure (no visible L-D interaction occurs) as will be seen later, the DSM prediction for the local failure of this column almost matches the numerical value $(f_{nl}/f_{u.D}=1.01)$, thus confirming what had been anticipated. The presence of D deformations at collapse stems exclusively from the two half-wave D initial imperfection. In the $R_{DL}=1.35+R_y=1.2$ column, on the other hand, yielding starts at the lip free edge regions of the mid-span cross-section (see detail in Fig. 6 (b)), the trademark of distortional failure thus, L-D interaction takes place, even if the ultimate strength erosion is small. The DSM prediction for a local failure slightly overestimates the numerical ultimate strength provided by the SFEA $(f_{nl}/f_{u.D}=1.03)$ minute ultimate strength erosion due to L-D interaction.

(iii) Thus, it may be argued that L-D interaction vanishes somewhere in between R_{DL} =1.35 and R_{DL} =1.41.

As before, for the upper limits, the same approach was adopted to identify R_{DL} lower limits for the H, Z, R columns and, due to space limitations, no numerical results and figures are presented. It was found that the transition between L failures and L-D collapses fits somewhere between (i) R_{DL} =1.13 and R_{DL} =1.22 (H columns), (ii) R_{DL} =1.22 and R_{DL} =1.29 (Z columns), and (iii) R_{DL} =1.28 and R_{DL} =1.35 (R columns).

Finally, it should be noted that (i) the above R_{DL} limits are in agreement with the findings of Dinis *et al.* (2009), Silvestre *et al.* (2012) and Dinis & Camotim (2013), who investigated the detrimental L-D interaction effects in columns with nearly coincident L and D critical buckling stresses ($0.9 < R_{DL} < 1.1$).

4.2 Secondary Bifurcation $-R_y$ lower Limits

As mentioned earlier, L-D interaction may occur even when the L and D critical buckling stresses are far apart (*i.e.*, when R_{DL} is not close to 1.0). This interaction, due to a secondary (local or distortional) bifurcation, takes place if R_y (*i.e.*, the yield stress) is "large enough" to allow for the emergence and development of coupling effects before plasticity precipitates failure – indeed, all the selected columns may experience L-D interaction if the yield stress is "sufficiently high", since it is well known (*e.g.*, Camotim *et al.* 2005) that the column D and L post-critical strengths are fairly high (specially the latter).

Although the interaction may occur when R_{DL} >1.0 (critical L buckling) or R_{DL} <1.0 (critical D buckling), the former case is clearly more relevant, due to the considerably higher L post-critical strength (a more severe strength erosion is also expected for these columns).

After briefly presenting two illustrative examples of L-D interaction due to a "secondary" bifurcation (for columns with all cross-sections), namely concerning the (i) C1 (R_{DL} =0.42<1.0) and (ii) C27 (R_{DL} =2.39>1.0) columns, R_y lower limits (*i.e.*, yield stresses above which "secondary" bifurcation effects can emerge and develop) are obtained for all columns not experiencing "true" L-D interaction.

To illustrate the L-D interaction R_y -dependence of a column exhibiting L critical buckling, Figs. 7(a₁)-(a₂) depicts the upper portions ($P/P_{cr} > 0.50$) of the C27 column elastic-plastic equilibrium paths P/P_{cr} vs v/t (v is again the mid-span top flange-lip corner vertical displacement) with C, H, Z (Fig. 7(a₁)) and R (Fig. 7(a₂)) cross-sections, and concerning (i) L initial imperfections, and (ii) $R_y=0.9, 1.7, 2.6, 3.8$. On the other hand, (i) Figs. 7(b₁)-(b₄) show the plastic strains at the onset of collapse of C, H, Z, R columns with $R_y=0.9$ (deformed shapes amplified 3, 4, 5 times in the C, H, Z columns, respectively) and (ii) Figs. 7(b₅)-(b₈) show similar results for $R_y=3.8$ (deformed shapes amplified 10 times in the H, R columns and 20 times in the C, Z columns). Due to space limitations, these two R_y values, which correspond to clearly distinct behaviors, are the only ones analyzed in detail in this work – however, a more detailed analysis can be found in Martins *et al.* (2013), for the lipped channel columns. The observation of the results presented in all the above figures leads to the following comments:

(i) All $R_y=0.9$ columns collapse abruptly with no trace of L-D interaction (see Figs. 7(b₁)-(b₄)) – only L deformations occur. In fact, the well-known "effective width" concept, originally proposed by von Karman, is clearly "illustrated" in these pictures, where the inability of the plate central regions to carry the compressive load forces the normal stresses to "migrate" towards the edges (when the load reaches its peak value), particularly towards the web-flange corners (the flanges are much more restrained by the web than by the lips – Silvestre & Camotim 2006), which is a trademark of local failure – note that, in these columns, the yield stress is such that $f_y/f_{crl}=2.15$ and $f_y/f_{crd}=R_y=0.9$.

- (ii) The equilibrium paths associated with $R_y=0.9$ are distinct for the C, H, Z, R columns. Indeed, since none of the columns is affected by L-D interaction (they exhibit local failures) the most appropriated displacement to plot is the mid-span mid-web flexure (*w*), which explains the irregular behavior of the Z and H column equilibrium paths. However, a small mid-span inward flange-lip motions occurs in the C and R columns, due to global bending caused by the effective centroid shift effects – the same occurs in the H columns, but only for a bit higher R_y values (obviously this cannot take place in Z columns, due to the cross section point-symmetry).
- (iii) The $R_y=1.7$ and $R_y=2.6$ columns exhibit local failures no L-D interaction occurs, even in the presence of D initial imperfections.
- (iv) All the R_y =3.8 C, H, Z, R columns exhibits L-D interaction (see Figs. 7(b₅)-(b₈)) and either (iv₁) fail after the occurrence of a snap-through phenomenon, followed by a subsequent applied load increase (C, H, Z columns – see Fig. 7(a₁)) or (iv₂) collapse occurs after a fairly smooth stiffness decrease (R column – see Fig. 7(a₂)). Note also that, as was observed in Figs. 4(b₁) and 4(b₃) for C columns, the C, H, R column with L initial imperfections exhibit mid-span inward flange-lip motions due to global bending stemming from effective centroid shift effects – as mentioned earlier, this does not apply to the Z column. These columns exhibit all local buckling and have a substantial post-critical strength reserve, which is responsible for a secondary (D) bifurcation that attracts distortional deformations and entails L-D interaction in the an elastic-plastic range, prior to collapse.
- (v) For this particular column (R_{DL} value), it can be said that L-D interaction only develops if R_y is larger than a value comprised between 0.9 and 3.8. A more refined search narrowed the previous R_y interval down to between (i) 1.4 and 1.5 (C columns), (ii) 1.7 and 1.9 (H columns), (iii) 2.1 and 2.4 (Z columns) (iv) 1.6 and 1.7 (R columns) see Fig. 9.

Next, a similar investigation is presented and discussed for the C1 column (R=0.42 – critical distortional buckling). Figs. 8(a₁)-(a₄) show four sets of five elastic-plastic equilibrium paths P/P_{cr} vs v/t concerning C, H, Z, R columns (v is the top flange-lip corner vertical displacement at the crest of the most deformed cross-section) associated with (i) R_y =0.4, 0.9, 1.7, 2.6, 5.1 and (ii) D initial geometrical imperfections. However, since the D post-buckling equilibrium paths concerning the Z columns are different for the top and bottom flange-lip assembly vertical displacements (Silvestre & Camotim 2003), all equilibrium paths shown in Fig. 8(a₃) correspond to the less stiff behavior (with outward motions). Figs. 8(b₁)-(d₄) depict the deformed configurations and plastic strain diagrams at the onset of collapse of the C, H, Z, R columns with (i) R_y =0.9 (Figs. 8(b₁)-(b₄)), and (ii) R_y =5.1 (Figs. 8(c₁)-(c₄)), while in Figs. 8(d₁)-(d₄) only the R_y =5.1 column web deformed configurations are depicted. The R_y =0.9 column deformed configurations are amplified either 5 times (C, H, R columns) or 10 times (Z column). As for the R_y =5.1 columns, the Z one is magnified 3 times and the C, H, R ones are not amplified – note also that the corresponding web deformed configurations are amplified either 20 times (C, H, Z columns) or only 15 times (R column). The observation of these post-buckling results prompts the following remarks:

- (i) The $R_y=0.9$ columns fail without any trace of L-D interaction, since the deformed configuration at the onset of collapse is a perfect distortional two half-wave see Figs. 8(b₁)-(b₄).
- (ii) The $R_y=5.1$ columns exhibit L-D interaction, since local deformations were detected, even if they are not visible in Figs. 8(c₁)-(c₄). Indeed, a closer view of the web deformed configuration in Figs. 8(d₁)-(d₄) reveals very small amounts of local deformations in these columns note that the web deformed configuration is depicted because the column L-D interaction is web-triggered.
- (iii) For this R_{DL} value, L-D interaction only develops if R_y is larger than a value comprised between 0.9 and 5.1. A subsequent search narrowed the above R_y range to the interval comprised between

Figure 8: C1 column (a) *P/P_{cr}* vs *v/t* equilibrium paths with D imperfections for (a₁)-(a₄) C, H, Z, R cross-sections, (b)-(c) failure modes and plastic strains for (b₁)-(b₄) *R_y*=0.9+D and (c₁)-(c₄) *R_y*=5.1+D C, H, Z, R columns, and (d) web deformed configurations and plastic strains at collapse for *Ry*=5.0+D (d₁)-(d₄) C, H, Z, R columns

1.6 and 1.7 (C columns), (ii) 1.5 and 1.6 (H columns), (iii) 1.6 and 1.7 (Z columns) and (iv) 1.4 and 1.5 (R columns) – see Fig. 9.

(iv) The fact that the deformed configuration local component is small even for high yield stresses (*e.g.*, $R_y=5.1$) may explain the quite low ultimate strength erosion due to L-D interaction, particularly when compared to that exhibited by the columns buckling in critical local modes (this issue will be addressed in section 5). In fact, the failure modes of columns with high R_y values are characterized by the yielding of the mid-span lip free end regions, a trademark of distortional collapses – this is why the DSM D strength curve always predicts their failure loads quite accurately (see section 5).

In order to attempt to identify the R_{DL} - R_y range combinations leading to the occurrence of visible L-D interaction effects, all columns not exhibiting "true" L-D interaction (*i.e.*, those with R_{DL} values not close to 1.0) were analyzed with various yield stresses (R_y or λ_{cr} values). The results obtained are given in Fig. 9, for both R_{DL} <1.0 (D critical buckling) and R_{DL} >1.0 (L critical buckling) – in the latter case only L imperfections were considered. Since the correlation between the " R_y lower limits" and R_{DL} was far from illuminating, it is preferable to focus on plots involving " λ_{cr} lower limits". Initially they consisted of relatively small intervals containing the " λ_{cr} lower limits", in the sense that they separate columns undergoing or not L-D interaction. However, in order to address all the columns studied (C, H, Z, R) and taking into account that the λ_{cr} bounded intervals were found to be rather short, it was decided, for the sake of clarity, to plot only the average of the upper and lower bounds of those intervals. The observation of this figure leads to the followings comments:

Figure 9: R- λ_{cr} combinations associated with the transition between pure individuals (L or D) and L-D interactive behaviors for C, H, Z and R cross-sections

- (i) First of all, and generally speaking, the transition between "pure" distortional ("pure" local) and L-D interactive behaviors occurs for growing λ_{cr} values as R_{DL} decreases (increases) the only exception concerns the transition between the R_{DL} =1.60 and R_{DL} =1.66 in C columns (discussed below).
- (ii) Since it was found that the collapse mechanisms of columns with R_{DL} <1.0 exhibit predominantly distortional deformations, the occurrence of L-D interaction (if the yield stress is "high enough", *i.e.*, for yield stresses above the curve depicted in Fig. 9) always involves quite small L deformations. It was also observed that the transitions between "pure" distortional and L-D collapses are very similar for the four columns considered.
- (iii) Conversely, the transitions between "pure" local and L-D collapses may be quite distinct, particularly if the comparison is made between the C and Z columns the Z columns curve is always above the remaining ones. Moreover, the curves concerning the H and R columns are quite close.
- (iv) In the C columns, the transition curve exhibits a singularity between $R_{DL}=1.60$ and $R_{DL}=1.66$. In between these two values, the half-wave number exhibited by the column critical distortional buckling mode (n_d) changes from two to one (see Table 1). It was observed that (iv₁) the failure modes of columns C15 to C20 (both with $n_d=2$) exhibited mid-span outward flange-lip motions and, conversely, (iv₂) those of columns C21 to C27 (all with $n_d=1$) exhibits mid-span inward flange-lip motions, regardless of the initial imperfection shape (L+, L–, D+ or D–). This stems from the presence of minor-axis bending caused by the effective centroid shifts towards the web, caused by the "highly non-uniform" stress redistribution (see section 4.1).

It is still worth mentioning that the above results concerning the columns with R_{DL} >1.0 provide numerical confirmation for the experimental evidence of the occurrence of L-D interaction when the R_{DL} values significantly exceed 1.0, namely those reported by (i) Young *et al.* (2013), for fixed-ended C columns with R_{DL} values comprised between 1.73 and 2.71, and (ii) Dinis *et al.* (2013a), for fixed-ended R columns with R_{DL} values varying between 1.31 and 1.46.

5. Direct Strength Method (DSM) Design – Assessment of the Ultimate Strength Estimates

The motivation for developing the Direct Strength Method (DSM) was overcoming the difficulties associated with the application of the classical Effective Width Method (EWM) to more complex cold-formed steel cross-sections (those exhibiting large wall numbers, including more or less involved lips and/or intermediate stiffeners). The DSM was originally proposed by Schafer and Peköz (1998b) about fifteen years ago, following a seminal idea of Hancock (Hancock *et al.* 1994), and has been continuously improved since then, mostly due to the research activity carried out by Schafer and his

collaborators. The method has been shown to provide an efficient and general approach to obtain efficient (safe and accurate) estimates of the ultimate strength of cold-formed steel columns and beams on the sole basis of the steel yield stress and elastic critical buckling stresses (for the whole cross-section, rather than for individual walls/plates, like in the traditional EWM) associated with local, distortional and global modes. For columns, the DSM nominal strengths against local (f_{nl}) and distortional (f_{nd}) failures are provided by "Winter-type" expressions (calibrated against a fairly large numbers of experimental and numerical failure loads, mostly involving fixed-ended columns) that can be found in Schafer's state-of-the-art report (Schafer 2008). Regarding the columns experiencing L-D interaction, there are also specific DSM approaches to predict their load-carrying capacity. The first two of them, proposed by Schafer (2002), consist of replacing f_y by either (i) f_{nd} in the f_{nl} equations (NLD approach $-f_{ndl}$) or (ii) f_{nl} in the f_{nd} equations (NDL approach $-f_{ndl}$) – the former was later employed by Yang and Hancock (2004) and Kwon *et al.* (2009). Silvestre *et al.* (2012) assessed the performance of these two approaches, for fixed-ended lipped channel columns⁶, and concluded that they provide similar results, even if the quality of the f_{ndl} estimates was found to be marginally higher – this is why this work adopts the NDL approach, defined as

$$f_{ndl} = \begin{cases} f_{nl} & , & \lambda_d \le 0.561 \\ f_{nl} & (\lambda_{dl})^{-1.2} & [1 - 0.25 (\lambda_{dl})^{-1.2}], & \lambda_d > 0.561 \end{cases}$$
(1)

where $\lambda_{dl} = (f_{nl}/f_{crd})^{0.5}$ is a distortional slenderness based on the local strength, and $\lambda_d = (f_y/f_{crd})^{0.5}$ is the distortional slenderness. Moreover, these authors also showed that the f_{nd} values (i) provide accurate column ultimate strength estimates in the low-to-moderate distortional slenderness range ($\lambda_d < 1.5$), but (ii) lead to excessively conservative predictions for more slender columns ($\lambda_d \ge 1.5$). For the latter, Silvestre *et al.* (2012) showed that the ultimate strength is best estimated by adopting (i) the current DSM distortional strength expression (f_{nd}), for $\lambda_d < 1.5$, and (ii) a modified local strength f_{nl}^* (instead of the usual f_{nl}), for $\lambda_d \ge 1.5$ – the corresponding DSM approach is termed here "modified NDL approach – MNDL". The modified local strength (i) depends on the critical half-wave length ratio L_{crd}/L_{crl} (obtained from simply supported column signature curves and given in the tables included in Annexes A to C for C, H, Z and R columns), and (ii) leads to f_{nd} and f_{ndl} values for $L_{crd}/L_{crl} \le 4$ and $L_{crd}/L_{crl} \ge 8$, respectively – it is given by

$$f_{nl}^{*} = \begin{cases} f_{y} , & \frac{L_{crd}}{L_{crl}} \leq 4 \\ f_{y} + \left(1 - 0.25 \frac{L_{crd}}{L_{crl}}\right) \times \left(f_{y} - f_{nl}\right), & 4 < \frac{L_{crd}}{L_{crl}} < 8 \\ f_{nl} , & \frac{L_{crd}}{L_{crl}} \geq 8 \end{cases}$$
(2)

It is worth noting that the DSM MNDL approach just presented was developed, calibrated and validated on the basis of numerical (SFEA) ultimate strengths concerning fixed-ended lipped channel columns exhibiting R_{DL} values comprised between 0.90 and 1.10 – this means that those numerical results were restricted to columns strongly affected by L-D interaction, for which the ultimate strength erosion is most severe (they are all included in the "true L-D interaction" region determined in section 4.1).

⁶ These findings were subsequently extended to H, Z, R columns by Dinis & Camotim (2013).

The numerical ultimate strengths (f_u) obtained previously are compared next with their estimates provided (i) by the current DSM local and distortional strength curves (f_{nl} and f_{nd}) and also (ii) by the DSM approaches specifically developed to deal with L-D interactive failures (NDL and MNDL $-f_{ndl}$ and f_{mndl}) – these four ultimate strength estimates are also given in the tables included in Annexes A to C. The aim of this study is to assess (i) how the combined R_{DL} and R_{v} values affect the ultimate strength erosion due to L-D interaction (and, if possible, provide preliminary guidelines about its relevance) and (ii) how the available DSM-based approaches predict the C, H, Z, R columns L-D interactive failure loads. The results presented concern only a representative fraction of the analyzed columns, covering the whole R_{DL} range considered: columns C1-5-9-12-16-21-24-27 (R_{DL} =0.42-0.62-0.86-1.07-1.35-1.66-2.00-2.39) - this set of columns provides sufficient information to quantify the influence of R_{DL} on the quality of the DSM ultimate strength predictions. For the sake of clarity, it was decided to present and discuss separately two sets of results: (i) those concerning the ultimate strength of C, H, Z columns (section 5.1), whose values are very similar (as explained in section 2), and (ii) a comparison between the C column results (which are also representative of the H, Z columns) with their R column counterparts (section 5.2). Each of the above 8 columns was analyzed with 11 distinct yield stresses, thus making it possible to cover a quite wide critical (distortional or local) slenderness range, which is essential to identify the columns affected by L-D interaction caused by a "secondary (L or D) bifurcation".

5.1 Lipped channel, hat-section and zed-section columns

Figs. 10(a₁)-(b₄) and 11(a₁)-(b₄) provide the variations of f_{ul}/f_y with λ_l or λ_d for the 8 sets of C, H, Z columns listed above. While only D initial imperfections were considered for the columns with R_{DL} <1.0 (distortional critical buckling), all columns with R_{DL} >1.0 (local critical buckling) were analyzed with L (white circles, squares, triangles and rhombuses) and D (grey circles, squares, triangles and rhombuses) initial imperfections. The numerical f_{ul}/f_y values are compared, separately for each R_{DL} value, with their (i) f_{nl} or f_{nd} and (ii) f_{ndl} and f_{nndl} estimates – note that f_{nndl} values were also determined outside the R_{DL} domain prescribed for the application of the MNDL approach. The comparative analysis of all these numerical ultimate strengths and associated DSM estimates prompts the following remarks:

- (i) First of all, all the numerical f_u/f_v values are well aligned along "Winter-type" curves.
- (ii) The observation of Figs. 10 and 11 shows that the C, H, Z column ultimate strength stresses concerning the same R_{DL} values are nearly coincident, even if (i) the collapse mechanism (and yielding pattern) are clearly distinct, as reported in section 4, and (ii) the configurations of the most detrimental D imperfections are different (*e.g.*, the 1 D half-wave shapes for the C and H columns).
- (iii) For R_{DL} =0.42 and R_{DL} =0.62, the f_{nd} values provide safe and fairly accurate ultimate strength estimates for the C, H, Z columns considered, which means that there is no perceptible erosion due to L-D interaction (note that, for these columns, $f_{nd} \equiv f_{nundl}$). Indeed, these columns exhibit failure modes characterized by the yielding of the lip free end regions (their locations depend on the number of distortional half-waves) – this explains why the current DSM distortional strength curve predicts adequately the ultimate strength of these columns and no relevant strength erosion stemming from a secondary L bifurcation is detected.
- (iv) The ultimate strengths of the R_{DL} =0.86 columns, which already exhibit "true" L-D interaction, are no longer appropriately predicted by the current DSM distortional strength curve (see Fig. 10(b₃)) instead, it is necessary to resort to the f_{mndl} estimates.
- (v) Concerning the R_{DL} >1.0 columns, the first remark concerns the fact that the vast majority of f_u values associated with L and D initial imperfections are very similar. The few exceptions are stocky columns whose ultimate strengths are generally very well predicted by the DSM local strength curve, which means that they are not affected by L-D interaction (low R_v values).

Figure 10: Variation of f_u/f_y and corresponding DSM predictions with (a) λ_l or (b) λ_d for (1)-(4) R_{DL} =0.42-0.62-0.86-1.07 columns

Figure 11: Variation of f_{u}/f_{y} and corresponding DSM predictions with (a) λ_{1} or (b) λ_{d} for (1)-(4) R_{DL} =1.35-1.66-2.00-2.39 columns

- (vi) For the particular case of the R_{DL} =1.07 columns, Figs. 10(a₄)-(b₄) clearly show that L-D interaction occurs in the whole slenderness range, as had already been concluded in section 4.1 (this column exhibits "true" L-D interaction) note the difference (erosion) between the numerical ultimate loads and their f_{nl} prediction. Moreover, these figures also evidence the merits of the MNDL approach, as the f_{nndl} values provide quite good estimates for the whole slenderness range.
- (vii)Practically all failure loads concerning the most slender R_{DL} >1.0 columns are clearly overestimated by the current DSM local and distortional strength curves – undeniable evidence of the occurrence of significant L-D interaction (the R_y values are "high enough").
- (viii)For R_{DL} =1.35, R_{DL} =1.66, R_{DL} =2.00 and R_{DL} =2.39, the occurrence of a secondary D bifurcation is noticeable in Figs. 11(a₁)-(a₄). The R_y and λ_{cr} values for which L-D interaction becomes less relevant (lower limits, in the sense of ceasing to cause ultimate strength erosion) clearly increase with R_{DL} .
- (ix) Finally, it may be concluded that, generally speaking, the $R_{DL}>1.0$ column ultimate strength tends to be less overestimated by the f_{nl} values as R_{DL} increases (switch from "true" L-D interaction to "secondary D bifurcation") and λ_l decreases (lower R_y values), which corresponds to less relevant L-D interaction effects (as concluded earlier). The number of fairly accurate estimates, indicating local failures, grows with R_{DL} . Conversely, the f_{nd} values provide overestimations that increase as R_{DL} increases and λ_l decreases – for $R_{DL} \leq 1.35$, such overestimations are invariably quite small and only become "visible" for columns with intermediate slenderness values.

5.2 Lipped channel and rack-section columns

Figs. 12(a₁)-(b₄) and 13(a₁)-(b₄) provide the variations of f_{ld}/f_y with λ_l or λ_d for the 8 sets of C, R columns considered (they are similar to Figs. 10(a₁)-(b₄) and 11(a₁)-(b₄)), in order to compare the C column earlier findings (also valid for the H, Z columns) with the R column results. Like in section 5.1, (i) only D initial imperfections were considered for the R_{DL} <1.0 columns, (ii) all R_{DL} >1.0 columns were analyzed with L (white circles, squares, triangles and rhombus) and D (grey circles, squares, triangles and rhombus) initial imperfections. Again, the numerical f_{u}/f_y values are compared, separately for each R_{DL} value, with their (i) f_{nl} or f_{nd} and (ii) f_{nndl} estimates. The comparison leads to the following comments:

- (i) First of all, the comments (i) and (iii) to (ix) of the previous section remain perfectly valid for the results presented in Figs. 12(a₁)-(b₄) and 13(a₁)-(b₄).
- (ii) Generally speaking, on the basis of the observation of Figs. 10-11 and Figs. 12-13, can be stated that, for similar R_{DL} values, the R columns ultimate loads are lower than their C column counterparts, which implies that the former columns are more affected by L-D interaction than the latter (and also the H, Z columns).

5.3 Assessment of the numerical ultimate strength estimates

On the basis of the significant amount of numerical ultimate strengths obtained in this work, concerning C, H, Z, R columns affected by L-D interaction, it is possible to draw some preliminary conclusions concerning the quality of their DSM-based predictions. Figs. 14(a)-(c) show, respectively, the variations of (i) f_{u}/f_{nd} with the local slenderness λ_l , (ii) f_{u}/f_{nl} with the distortional slenderness λ_d , and (iii) f_{u}/f_{ndl} with the distortional slenderness λ_d , for the C, H, Z, R columns analyzed⁷. However, note that Figs. 14(a)-(b) include only results of columns with $R_{DL} < 1.0$ and $R_{DL} > 1.0$, respectively, while all column results are displayed in Fig. 14(c). Moreover, the grey circles in these three figures correspond to the R column ultimate strengths. The observation of these figures prompts the following comments:

⁷ The inclusion of the apparently "illogical" f_u/f_{nd} vs. λ_l and f_u/f_{nl} vs. λ_d plots (instead of the more "logical" f_u/f_{nd} vs. λ_d and f_u/f_{nl} vs. λ_d ones) is done to improve the "readability" – the values are much less "on top of each other".

Figure 12: Variation of f_u/f_v and corresponding DSM predictions with (a) λ_l or (b) λ_d for (1)-(4) R_{DL} =0.42-0.62-0.86-1.07 columns

Figure 13: Variation of f_u/f_y and corresponding DSM predictions with (a) λ_1 or (b) λ_d for (1)-(4) R_{DL} =1.35-1.66-2.00-2.39 columns

- (i) First of all, as mentioned already by several authors, the current DSM expressions (NL and ND) are not able to predict adequately the ultimate strength erosion caused by the L-D interaction, particularly the NL approach, whose estimates have mean and standard deviation values equal to 0.82 and 0.15 (minimum value of 0.52!). The ND predictions exhibit much higher quality: they are clearly more accurate and mostly safe, as reflected in the mean and standard deviation values of 1.08 and 0.08 – note that all unsafe estimates in Fig. 14(a) concern columns affected by "true" L-D interaction.
- (ii) The NDL approach always provides safe ultimate strength estimates (the minimum value of 1.02) see Fig. 14(c) (and also Figs. 10-13(a₁)-(b₄)). However, as already observed by Silvestre *et al.* (2012) and Dinis & Camotim (2013), a considerable fraction of the estimates concerning columns with R_{DL} values close to 1.0 (strong "true" L-D interaction), are overly conservative nevertheless, this approach can be quite useful for designers, particularly in the preliminary column design stages.

Figure 14: Variation of (a) f_u/f_{nd} with λ_l , (b) f_u/f_{nl} with λ_d and (c) f_u/f_{ndl} with λ_d (C, H, Z, R columns)

Figs. 15(a₁₋₃)-(b₁₋₃) show the variation of f_u/f_{nundl} with the distortional slenderness λ_d for the (1-C, 2-H, 3-Z) columns (i) C10-C13 (R_{DL} between 0.96 and 1.13 – Fig. 15(a)), and (ii) C7-C20 (R_{DL} between 0.70 and 1.60 – Fig. 15(b)) – only the former fall inside the R_{DL} range considered by Silvestre *et al.* (2012) and Dinis & Camotim (2013), to assess the quality of the DSM MNDL ultimate strength estimates. It is worth noting that f_u is taken as (i) $f_{u,D}$, for $R_{DL} \le 1.0$, and (ii) the lowest of $f_{u,D}$ and $f_{u,L}$, for $R_{DL} > 1.0$. As for Figs. 16(a)-(b), they provide similar results for the R columns. Finally, Fig. 16(c) shows the variation of f_u/f_{nundl} with the distortional slenderness for all C, H, Z, R columns with 0.70< $R_{DL} < 1.60$. The observation of the results shown in the above figures makes it possible to conclude that (on the basis of the limited number of numerical results obtained in this work, of course):

- (i) The MNDL approach, which was developed specifically for columns with *R_{DL}* values comprised between 0.90 and 1.10, provides quite good predictions for the *R_{DL}*=0.96, *R_{DL}*=1.07 and *R_{DL}*=1.13 C, H, Z, R columns in the whole slenderness range note that only the *R_{DL}*=1.07 column results were displayed in Figs. 10(a₄)-(b₄) (C, H, Z columns) and Figs. 12(a₄)-(b₄) (R columns).
- (ii) The MNDL was found to provide also quite good estimates for C, H, Z columns with R_{DL} values falling outside its intended domain of application, namely values comprised between (ii₁) 0.70 and 0.90 (Figs. 15(a₁)-(a₃)), and (ii₂) 1.10 and 1.60 (Figs. 15(b₁)-(b₃)) indeed, the ultimate strengths of columns C7, C8, C9, C13, C14, C15, C16, C17 were efficiently predicted. Figs. 16(a)-(b) show that this assertion (efficient MNDL estimates) can also be extended to R columns in the same R_{DL} range.
- (iii) The quality of the f_{mndl} estimates is very similar for the C10-C12 and C7-C17 C, H, Z columns (Fig. 15), as attested by (iii₁) the closeness of the corresponding averages and standard deviations (iii₂) the strong resemblance between the f_{mndl}/f_u vs λ_d "clouds" and (iii₃) the fact that the minimum and maximum values are very similar. Moreover, the overwhelming majority of column ultimate strength predictions are safe ($f_u/f_{mndl} > 1$) the "level of safety" increases with the slenderness λ_d .

Figure 15: Variation of f_u/f_{mndl} with λ_d for columns (a) C10-C13 (0.96< R_{DL} <1.13) and (b) C7-C20 (0.70< R_{DL} <1.60)

Figure 16: Variation of f_{u}/f_{mndl} with λ_d for columns (a) C10-C13 (0.96< R_{DL} <1.13) and (b) C7-C20 (0.70< R_{DL} <1.60)

- (iv) Despite the reduced number of columns analyzed in the $0.90 < R_{DL} < 1.10$ range, the average and standard deviation of their f_u/f_{mndl} values are very similar to those reported by Silvestre *et al.* (2012) and Dinis & Camotim (2013). However, the quality of the other values reported earlier by these same authors (Dinis *et al.* 2009) is considerably lower (average and standard derivation equal to 1.09 and 0.11, respectively) most likely, this was due to a poor column geometry selection, in the sense that the global (flexural-torsional) critical buckling loads are not "above enough" their local and distortional counterparts, which led to some amount of mode interaction involving global buckling modes, thus causing additional ultimate strength erosion.
- (v) It seems fair to expect that it will be possible to extend the domain of application of the DSM MNDL design approach, developed and validated for fixed-ended columns with $0.90 < R_{DL} < 1.10$, to C, H, Z, R columns in the range $0.70 < R_{DL} < 1.60$, as clearly shown in Fig. 16(c) (mean and standard deviation values equal to 1.03 and 0.06).

5.4 Assessment of the experimental ultimate strengths reported in the literature

It is well known that the development of the column DSM design/strength curves/expressions was validated against fairly large numbers of experimental and numerical failure loads, mostly concerning fixed-ended columns. Following the assessment of the numerical ultimate strength data estimation, presented in the previous section, attention is now turned to the prediction of the experimental failure loads, in order to assess the generality of the available DSM-based design approaches developed to handle L-D interaction, thus paving the way for their codification.

The experimental results available in the literature and considered in this work are those reported by Kwon & Hancock (1992), Kwon *et al.* (2009), Loughlan *et al.* (2012), Young *et al.* (2013) and Dinis *et al.* (2013a), all concerning column specimens compressed between fixed-ended cross-sections, which fully prevent local/global rotations and warping – with the exception of the tests reported by Dinis *et al.* (2013a), which concern R columns, all the above results deal with C columns. A total of 54 test results were gathered and it is worth noting that those selected concern exclusively column specimens for which (i) local buckling is triggered by the web (plain cross-section columns with flanges wider than the web were excluded – a different kind of L-D interaction phenomenon that is currently under investigation by the authors), and (ii) L-D interactive failures were experimentally observed⁸. Since the overwhelming majority of the experimental data concerns columns with critical local buckling stresses (*i.e.*, $R_{DL}>1.0$) (only very few tests on columns with critical distortional buckling stresses were found), an experimental program covering the $R_{DL}<1.0$ range is planned for the near future.

5.4.1 Kwon & Hancock (1992)

Table 3 concerns the tests carried out by Kwon & Hancock (1992) and provides the corresponding (i) critical buckling stresses (f_{crl} , f_{crd} , f_{crg}), (ii) R_{DL} values, (iii) experimental ultimate stresses (f_{Exp}), (iv) their estimates yielded by the ND, NDL and MNDL DSM approaches and (v) the corresponding experimental-to-predicted ultimate stress ratios – the measured (mean) steel properties were E=210GPa and $f_y=590MPa$. The observation of this table shows that, with a single exception (specimen CH1-5-800), all columns have almost coincident f_{crl} and f_{crd} values, *i.e.*, experience "true" L-D interaction for all slenderness values. Figs. 17(a)-(b) plot f_{Exp}/f_{MNDL} and f_{Exp}/f_{NDL} against the distortional slenderness (almost coincident with the local one, since $R_{DL}\approx1.0$). It is clear that the f_{MNDL} values predict very accurately the four experimental failure loads (mean and standard deviation equal to 1.00 and 0.04), which provides experimental confirmation for the fact that, as mentioned in sections 5.1 and 5.2, the predictions of the MNDL approach (developed specifically for columns exhibiting strong "true" L-D interaction) correlate very well with the numerical failure loads (mean and standard deviation equal to 1.46 and 0.15).

Finally, the "single" CH1-5-800 specimen is affected by L-D interaction caused by a "secondary local bifurcation", since R_{DL} is much lower than 1.0 (0.61) and R_y is very high (7.13). For this column all the conclusions drawn in section 5.1 and illustrated in Fig. 12(b₂) apply: (i) the NDL estimate is very conservative ($f_{Exp}/f_{ndl}=1.70$) and the most accurate prediction is provided by the distortional strength curve ($f_{Exp}/f_{nd}=1.13$), which is not surprising because D deformations govern the column collapse.

⁸ In a few cases, the authors of the experimental investigations reported (i) distortional failures (tests T1.9-MS-4, T2.4-HSS-(1 to 6) of Young *et al.* 2013), (ii) flexural-torsional failures (tests T1.9-MS-8, T2.4-MS-1 of Young *et al.* 2013, and test A-8-2-800 of Kwon *et al.* 2009), (ii₃) local-flexural-torsional interactive failures (tests A-6-1-800, A-6-1-1000, A-6-1-1200, A-8-1-800, A-8-1-1000, A-8-1-1200, A-8-2-1200 of Kwon *et al.* 2009), and (ii₄) one local-distortional-global (flexural-torsional) interactive failure (test T1.0-HSS-3 of Young *et al.* 2013) – note that the original specimen labels are kept in this paper.

						Expe	rimental	N	D	NI	DL		М	NDL	
Specimen	f_y	f_{crl}	f_{crd}	f_{crg}	R_{DL}	f_{Exp}	Failure	f_{nd}	f _{Exp} / f _{nd}	f_{ndl}	f _{Exp} / f _{ndl}	L _{crd}	L _{crl}	L_{crd}/L_{crl}	f _{exp} / f _{mndl}
CH1-5-800	590	82.8	50.6	3709	0.61	148	L+D	130.4	1.13	86.7	1.70	460	110	4.2	1.17
CH1-6-800	590	78.8	67.6	3769	0.86	147	L+D	154.2	0.96	100.3	1.47	520	110	4.7	1.03
CH1-7-400	590	83.1	83.1	15438	1.00	160	L+D	173.6	0.92	112.7	1.42	570	110	5.2	1.04
CH1-7-600	590	81.7	86.7	6824	1.06	156	L+D	177.9	0.88	114.8	1.36	560	110	5.1	0.98
CH1-7-800	590	81.0	82.5	3844	1.02	150	L+D	172.9	0.86	111.7	1.34	560	110	5.1	0.97

Table 3: Results concerning the tests carried out by Kwon & Hancock (1992): critical buckling stresses, experimental ultimate stresses and observed failure modes, and DSM ultimate strength predictions (stresses in MPa)

Figure 17: Tests of Kwon & Hancock (1992): plots of the ratios (a) f_{Exp}/f_{mndl} and (b) f_{Exp}/f_{ndl} against λ_d

5.4.2 Loughlan et al. (2012)

Table 4 concerns the tests reported by Loughlan *et al.* (2012) and gives the specimen (i) critical buckling stresses (f_{crl} , f_{crd} , f_{crg}), (ii) R_{DL} and R_y values, (iii) experimental ultimate stresses (f_{Exp}), (iv) their estimates yielded by the NL and NDL approaches and (v) the corresponding experimental-to-predicted ultimate

 Table 4: Results concerning the tests carried out by Loughlan *et al.* (2012): critical buckling stresses, experimental ultimate stresses and observed failure modes, and DSM ultimate strength predictions (stresses in MPa)

Specimen	f	f.	f.	f	<i>R</i>	P	Exper	rimental	2	N	L	N	DL
specifien	J_y	Jcrl	J crd	Jcrg	N _{DL}	Ny	f_{Exp}	Failure	λ_l	f_{nl}	f_{Exp}/f_{nl}	f_{ndl}	f_{Exp}/f_{ndl}
1-1000	209	28.9	127.8	3177	4.42	1.64	101.0	L+D	2.69	88.3	1.14	75.8	1.33
1-1200	209	28.5	122.5	2207	4.30	1.71	100.5	L+D	2.71	87.8	1.14	74.5	1.35
1-1400	209	28.8	106.5	1622	3.70	1.96	99.4	L+D	2.69	88.2	1.13	71.1	1.40
1-1600	209	28.8	99.5	1243	3.45	2.10	99.9	L+D	2.69	88.2	1.13	69.3	1.44
1-1800	209	28.8	97.6	983	3.39	2.14	91.5	L+D	2.69	88.2	1.04	68.8	1.33
2-1000	209	39.8	150.1	2461	3.77	1.39	107.3	L+D	2.29	99.3	1.08	86.5	1.24
2-1200	209	39.8	127.7	1710	3.21	1.64	102.1	L+D	2.29	99.3	1.03	81.9	1.25
2-1400	209	39.8	119.6	1257	3.01	1.75	108.8	L+D	2.29	99.3	1.10	80.0	1.36
2-1600	209	39.6	118.4	964	2.99	1.77	106.6	L+D	2.30	99.2	1.08	79.6	1.34
2-1800	209	39.4	111.9	762	2.84	1.87	108.8	L+D	2.30	99.0	1.10	77.9	1.40
3-1000	209	56.2	150.5	1803	2.68	1.39	127.1	L+D	1.93	112.6	1.13	94.2	1.35
3-1200	209	56.3	143.5	1254	2.55	1.46	128.9	L+D	1.93	112.7	1.14	92.6	1.39
3-1400	209	55.8	136.9	923	2.45	1.53	126.4	L+D	1.94	112.3	1.13	90.9	1.39
3-1600	209	55.2	132.4	708	2.40	1.58	114.3	L+D	1.95	111.9	1.02	89.6	1.28
3-1800	209	55.2	130.8	560	2.37	1.60	124.1	L+D	1.95	111.9	1.11	89.1	1.39
4-1000	209	85.1	222.8	1681	2.62	0.94	123.8	L+D	1.57	130.6	0.95	118.0	1.05
4-1200	209	84.4	194.3	1168	2.30	1.08	135.9	L+D	1.57	130.2	1.04	113.0	1.20
4-1400	209	84.2	176.2	859	2.09	1.19	123.8	L+D	1.58	130.1	0.95	109.3	1.13
4-1600	209	83.8	171.0	659	2.04	1.22	134.4	L+D	1.58	129.9	1.03	108.0	1.24
4-1800	209	83.7	166.0	521	1.98	1.26	120.7	L+D	1.58	129.9	0.93	106.9	1.13

stress ratios – the measured (mean) steel properties were E=193GPa and $f_y=209MPa$. The observation of this table shows that these experimental are clearly different from those reported by Kwon & Hancock (1992), since the local buckling stresses are now always critical and significantly below their distortional counterparts (1.98< R_{DL} <4.42). This is not surprising since the authors mention that the purpose of this experimental investigation, conducted about 25 years ago, was to assess the influence of local buckling on the compressive strength of fixed-ended C columns. In the light of the numerical findings of sections 4.2 and 5.1, it can be concluded that the tested specimens either fail in local modes or experience L-D interaction due to a "secondary D bifurcation"⁹. It is worth noting that only the last four specimens (4-1200, 4-1400, 4-1600 and 4-1800) exhibit combinations of R_{DL} and λ_l values matching those dealt with in the numerical investigation presented in section 5.1 (see Figs. 11(a₃)-(a₄)) – all the remaining specimens have significantly higher R_{DL} and/or λ_l values.

With one exception, all column critical distortional buckling stresses are below the yield stress – R_y varies between 1.08 and 2.14 (R_y =0.94 for the exception – specimen 4-1000). In view of the high R_{DL} values ($R_{DL} \ge 1.98$, *i.e.*, outside the range covered by the DSM-based MNDL design approach), the columns tested would be expected to fail either in local modes (lower R_y values) or in L-D interactive modes stemming from a "secondary D bifurcation" (higher R_y values). This assertion is confirmed by looking at Figs. 18(a)-(b), where the f_{Exp}/f_{NL} and f_{Exp}/f_{NDL} ultimate stress ratios are plotted against the column local slenderness. It is observed that (i) the f_{NL} values provide fairly good ultimate strength estimates (f_{Exp}/f_{NL} mean value and standard deviation equal to 1.07 and 0.07, and only three overestimations) and (ii) the f_{NDL} values considerably underestimate the experimental failure loads (f_{Exp}/f_{NL} mean value and standard deviation equal to 1.30 and 0.11, and no overestimation).

Figure 18: Tests of Loughlan *et al.* (2012): plots of the ratios (a) f_{Exp}/f_{nl} and (b) f_{Exp}/f_{ndl} against λ_l

5.4.3 Kwon et al (2009), Young et al. (2013) and Dinis et al. (2013a)

Table 5 concerns the last set of experimental data, namely the tests carried out by Kwon *et al.* $(2009)^{10}$, (specimens A), Young *et al.* (2013) (specimens T) and Dinis *et al.* (2013a) (specimens RS). It gives the (i) critical buckling stresses (f_{crl} , f_{crg}), (ii) R_{DL} and R_y values, (iii) experimental ultimate stresses (f_{Exp}), (iv) their estimates yielded by the NDL and MNDL DSM approaches, and (v) the corresponding experimental-to-predicted ultimate stress ratios.

⁹ In the opinion of Young *et al.* (2013), which is shared by the authors, local failures were wrongly interpreted as L-D interactive failures, due to the fact that "distortional deformations" suddenly appear at collapse. They are triggered by severe yielding at the web-flange junctions, caused by the normal stress redistribution stemming from the heavy local deformations, and do not originate on the emergence of distortional buckling effects.

¹⁰ Note that the specimens A-6-1-400, A-6-2-1000, A-8-2-400 were excluded from these data because they have webs and flanges with the same width, *i.e.*, exhibit flange-triggered L-D interaction (situation not covered in this work).

							Experi	imental	NI	DL	Ν	MNDI		
Specimen	f_y	f_{crl}	f_{crd}	f_{crg}	R_{DL}	R_y	f_{Exp}	Failure	f_{ndl}	f _{Exp} / f _{ndl}	L _{crd}	L _{crl}	L_{crd}/L_{crl}	f _{Exp} / f _{mndl}
T1.0-HSS-1	536	82.5	148.8	348	1.80	3.6	140.8	L+D	144.9	0.97	980	100	9.8	-
T1.0-HSS-2	536	90.4	156.1	335	1.73	3.4	146.0	L+D	150.9	0.97	980	90	10.9	-
T1.2-HSS-1	588	60.7	105.2	2104	1.73	5.6	126.3	L+D	119.3	1.06	1200	140	8.6	-
T1.2-HSS-2	588	60.9	116.7	2122	1.92	5.0	131.2	L+D	125.6	1.04	1250	140	8.9	-
T1.2-HSS-3	588	54.7	96.3	2173	1.76	6.1	121.6	L+D	112.0	1.09	1300	150	8.7	-
T1.5-HSS-1	494	175.1	321.9	1789	1.84	1.5	248.0	L+D	228.4	1.09	850	100	8.5	-
T1.5-HSS-2	494	153.6	303.1	1973	1.97	1.6	229.6	L+D	216.8	1.06	860	110	7.8	-
T1.5-HSS-2R	494	156.9	310.6	1984	1.98	1.6	228.7	L+D	219.9	1.04	860	110	7.8	-
T1.5-HSS-3	494	45.1	82.4	2220	1.83	6.0	101.2	L+D	94.7	1.07	1750	200	8.8	-
T1.5-HSS-4	494	44.1	94.5	2272	2.14	5.2	104.0	L+D	100.7	1.03	1850	200	9.3	-
T1.9-MS-1	336	114.3	280.7	5112	2.46	1.2	171.0	L+D	168.2	1.02	1200	160	7.5	-
T1.9-MS-2	336	113.4	307.4	5162	2.71	1.1	173.9	L+D	172.8	1.01	1200	160	7.5	-
T1.9-MS-3	336	117.0	273.3	5302	2.34	1.2	157.5	L+D	167.7	0.94	1250	160	7.8	-
T1.9-MS-5	336	255.1	470.7	1004	1.85	0.7	237.4	L+D	238.9	0.99	1300	120	10.8	-
T1.9-MS-6	336	66.4	132.6	2475	2.00	2.5	110.2	L+D	111.7	0.99	1600	210	7.6	-
T1.9-MS-7	336	65.5	147.0	2500	2.24	2.3	112.4	L+D	116.3	0.97	1650	210	7.9	-
RS-1	500	233.0	318.9	493	1.37	1.6	259	L+D	262	0.99	590	60	9.8	0.99
RS-2	500	196.3	265.4	394	1.35	1.9	218	L+D	234	0.93	700	60	11.7	0.93
RS-3	500	166.8	244.1	357	1.46	2.0	210	L+D	218	0.96	760	70	10.9	0.96
RS-4-1	464	153.0	214.9	311	1.40	2.2	184	L+D	202	0.91	820	70	11.7	0.91
RS-4-2	500	147.8	213.8	305	1.45	2.3	185	L+D	201	0.92	830	70	11.9	0.92
RS-5	550	244.3	320.1	490	1.31	1.7	257	L+D	260	0.99	700	70	10.0	0.99
RS-6	550	214.0	296.0	454	1.38	1.9	239	L+D	245	0.98	770	70	11.0	0.98
RS-7	550	200.1	262.4	391	1.31	2.1	213	L+D	229	0.93	850	80	10.6	0.93
RS-8-1	550	172.7	227.3	315	1.32	2.4	197	L+D	209	0.94	900	80	11.3	0.94
RS-8-2	550	165.6	225.3	314	1.36	2.4	198	L+D	206	0.96	920	80	11.5	0.96
A-8-1-400	671	232.5	585.1	3378	2.52	1.2	334	L+D	334	1.00	380	45	8.4	0.65
A-8-3-1000	671	99.6	256.1	1021	2.57	2.6	209	L+D	203	1.03	410	65	6.3	0.81
A-8-4-1000	671	99.0	132.8	878	1.34	5.1	166	L+D	150	1.11	250	60	4.2	0.75

Table 5: Results concerning the tests of Kwon et al (2009), Young et al (2013), Dinis et al. (2013a): critical buckling stresses, experimental ultimate stresses and observed failure modes, and DSM ultimate strength predictions (stresses in MPa)

First of all, note that all column specimens tested buckle in critical L modes (R_{DL} >1.0). Then, it is also observed that (i) all C column specimens tested by Young *et al.* (2013) and (ii) two of the three C column specimens tested by Kwon *et al.* (2009) exhibit R_{DL} values falling outside the domain of application of the MNDL approach ($0.70 < R_{DL} < 1.60$), defined in sections 5-1 and 5.2 – indeed, they are in the range $1.73 \le R_{DL} \le 2.71$. Conversely, (i) the remaining C column specimen tested by Kwon *et al.* (2009) and (ii) all R column specimens tested by Dinis *et al.* (2013a) fall inside the above domain of application ($1.31 \le R_{DL} \le 1.46$). Concerning the R_y values, decisive for the possible occurrence of L-D interaction caused by a "secondary D bifurcation", they are in the intervals $1.2 < R_y < 5.1$ (Kwon *et al.* 2009), $0.7 < R_y < 6.1$ (Young *et al.* 2013) and $1.6 < R_y < 2.4$ (Dinis *et al.* 2013a). Only one specimen tested by Young *et al.* (2013) (T1.9-MS-6) has R_y below 1.1 – probably, its observed L-D interactive failure mode is a "disguised local failure mode" (like in most of the specimens tested by Loughlan *et al.* 2012).

Figs. 19(a)-(c) plot the f_{Exp}/f_{NDL} values against the local slenderness from the three sets of tests. Note that all the columns eligible for the application of the MNDL design approach¹¹ have L_{crd}/L_{crl} values higher than 8.0, which means that the f_{MNDL} and f_{NDL} estimates coincide. It is observed that the f_{NDL} values predict

¹¹ Recall that it was shown, in sections 5.1 and 5.2, that the MNDL approach is only valid within the $0.70 < R_{DL} < 1.60$ range.

quite satisfactorily the three sets of test results considered: the mean and standard deviations of the f_{Exp}/f_{NDL} ratios are equal to (i) 1.02 and 0.05 (Young *et al.* 2013a), (ii) 1.05 and 0.05 (Kwon *et al.* 2009) and (iii) 0.95 and 0.03 (Dinis *et al.* 2013a). The slight overestimations of the R column predictions are most certainly due to the fact that most of these columns exhibit critical global buckling stresses visibly below the yield stress (0.57 $< f_{crg}/f_y < 0.99$), which implies the occurrence of non-negligible interaction with global buckling – naturally, the added ultimate strength erosion is not captured by the NDL approach.

Figure 19: Tests of Kwon *et al.* (2009), Young *et al.* (2013) and Dinis *et al.* (2013a): plots of the ratios f_{Exp}/f_{ndl} against λ_l

5.4.4 Summary

Finally, this section summarizes the findings of the previous ones and makes it possible to compare the full set of experimental column ultimate strengths available in the literature with their estimates provided by the NDL and MNDL DSM design approaches, *i.e.*, those that were specifically developed to capture the ultimate strength erosion due to L-D interaction. Figs. 20(a)-(b) plot the appropriate sets of f_{Exp}/f_{NDL} and f_{Exp}/f_{MNDL} ratios against the local slenderness – the use of the word "appropriate" means that (i) Fig. 20(a) includes all experimental results and (ii) Fig. 20(b) includes only the results concerning specimens with 0.70<R_{DL}<1.60, *i.e.*, all tests of Kwon & Hancock (1992) and Dinis et al. (2013a), and specimen A-8-4-1000 from Kwon et al. (2009). The first plot clearly shows that the NDL approach provides generally safe predictions of the experimental failure loads (all the unsafe ones correspond to f_{Exp}/f_{NDL} values above 0.91), but a fair number of them are overly conservative – the overall f_{Exp}/f_{NDL} mean and standard deviation are equal to 1.15 and 0.19. As for the second plot, it evidences the quality of the f_{MNDL} estimates, reflected in the overall f_{Exp}/f_{MNDL} mean and standard deviation of 0.97 and 0.09 – note that the "negatively isolated" value concerns the single specimen tested by Kwon et al. (2009), whose removal would improve the above indicators to 0.98 and 0.07. It should still be recalled that a large fraction of the f_{MNDL} overestimations correspond to the R column tests reported by Dinis *et al.* (2013a), for which the closeness of the global buckling stress is certainly responsible for an added failure load erosion.

Figure 20: Experimental tests reported in the literature: plots of the ratios (a) f_{Exp}/f_{ndl} and (b) f_{Exp}/f_{nndl} against λ_l

6. Concluding Remarks

An extensive numerical investigation about the relevance of web-triggered L-D interaction effects on the post-buckling behavior, ultimate strength and DSM design of fixed-ended cold-formed steel plain lipped channel, hat-section, zed-section and rack-section columns was reported. All the columns analyzed had cross-section dimensions, lengths and yield stresses selected to ensure a wide variety of ratios between the (i) distortional and local critical buckling stresses (R_{DL}), and (ii) yield and non-critical buckling stresses (R_y). In order to prevent the occurrence of interaction phenomena involving global buckling, the column selection ensured that the global critical buckling stresses were (i) much larger than their distortional and local counterparts, and also (ii) higher than the maximum yield stress considered. ABAQUS geometrically and materially non-linear SFEA were employed to assess the structural response of columns (i) containing critical-mode initial imperfections with small amplitudes (10% of the wall thickness) and (ii) exhibiting a linear-elastic-perfectly-plastic constitutive law (typical of carbon steels) – residual stresses and corner strength effects were neglected, since they have been shown to have little impact on the ultimate strength of cold-formed steel columns.

The results obtained made it possible to reach preliminary conclusions concerning the identification of the combinations of the above stress ratios for which of web-triggered L-D interaction is relevant, in the sense that it erodes visibly the ultimate strength of C, H, Z and R columns and/or alters their failure mode characteristics. After providing numerical evidence about the presence or absence of L-D interaction, its influence on the ultimate strength erosion was assessed by comparing the numerical column failure loads with their estimates supplied by (i) the current DSM local (NL) and distortional (ND) strength curves, and (ii) two DSM-based design approaches specifically developed to estimate failure loads of columns affected by L-D interaction (NDL and MNDL – Schafer 2002 and Silvestre *et al.* 2012) – besides assessing the quality of the predictions, it was also possible to establish their domains of application. Next, the experimental results available in the literature on columns collapsing in web-triggered L-D modes, namely those reported by Kwon & Hancock (1992), Kwon *et al.* (2009), Loughlan *et al.* (2012), Young *et al.* (2013) and Dinis *et al.* (2013a), which consist of lipped channel (mostly) and rack-section columns, were used to assess the quality of the various DSM-based design approaches.

The numerical results presented and discussed in this work provided clear evidence that web-triggered cold-formed steel columns may be affected by two types of L-D interaction: (i) one due to the closeness between the local and distortional critical buckling stresses (R_{DL} in the vicinity of 1.0), characterized by the simultaneous presence of L and D deformations since the early loading stages and denoted as "true" L-D interaction, and (ii) the other caused by a "secondary (L or D) bifurcation", which occurs when the L and D critical buckling stresses are not so close and stems from the high (moderate) L (D) post-critical strength reserve strength – collapses must take place visibly below the yield stress, whose value plays a key role in this type of L-D interaction coupling (*e.g.*, it explains why L-D interaction was observed in the tests carried out by Young *et al.* 2013 and Dinis *et al.* 2013a, involving columns with R_{DL} values ranging from 1.73 to 2.71 and from 1.31 to 1.46, respectively). This investigation addressed also the determination of the minimum yield stresses required to enable the development of this second type of L-D interaction to emerge and develop before yielding precipitates the column failure.

The DSM-based ultimate strength estimation confirmed what had already been concluded by other researchers, namely that the current DSM NL and ND strength curves cannot capture the ultimate strength erosion stemming from L-D interaction. However, the NDL and MNDL approaches were found to predict satisfactorily both the numerical and experimental ultimate strengths of columns experiencing

web-triggered L-D interaction. While the former underestimates the vast majority of numerical and experimental ultimate strengths (often by a quite large amount), the latter yields quite accurate and mostly safe predictions for the numerical and experimental failure loads of C, H, Z, R columns with R_{DL} values comprised between 0.70 and 1.60. The ultimate strength erosion due to web-triggered L-D interaction was found to be more relevant in columns exhibiting "true" L-D interaction than in those undergoing "secondary (L or D) bifurcation" L-D effects (even when if local buckling precedes distortional buckling – the worst case). Although the available experimental failure loads were reasonably well estimated by the NDL and MNDL design, they do not cover all the important parameter ranges – therefore, additional carefully planned test programs need to be conducted, in order to completely clear the path leading to the codification of a DSM design approach for columns affected by L-D interaction. In particular, because the overwhelming majority of available test results concern columns with R_{DL} well above 1.0, the future tests must involve specimens with different cross-sections and R_{DL} values close to and/or quite below 1.0.

Since this paper dealt exclusively with columns exhibiting web-triggered local buckling, it must be complemented with similar work on columns undergoing flange-triggered local buckling, namely columns with "v-shaped" intermediate stiffeners and sigma-section columns – research on this subject is currently underway). Finally, taking advantages of the modal features of the Generalized Beam Theory (GBT) analyses, an in-depth investigation on the mechanics underlying the various local-distortional coupling phenomena is also planned for the near future.

Acknowledgements

The first and fourth authors gratefully acknowledge the financial support of FCT (*Fundacão para a Ciência e a Tecnologia* – Portugal), through the (i) doctoral scholarship SFRH/BD/87746/2012 and (ii) project grant Pest-C/EEI/UI0308/2011, respectively.

References

- American Iron and Steel Institute (AISI) (2012), North American Specification (NAS) for the Design of Cold-Formed Steel Structural Members (AISI-S100-12), Washington DC.
- Australian/New Zealand Standard (AS/NZS) (2005), *Cold-Formed Steel Structures* AS/NZS 4600 (2nd edition), Sydney-Wellington.
- Bebiano R, Pina P, Silvestre N, Camotim D (2008), *GBTUL 1.0β Buckling and Vibration Analysis of Thin-Walled Members*, DECivil/IST, Technical University of Lisbon. (*http://www.civil.ist.utl.pt/gbt*)
- Camotim D, Silvestre N, Dinis PB (2005) "Numerical analysis of cold-formed steel members", *International Journal of Steel Structures*, **5**(1), 63-78.
- Camotim D, Dinis PB, Young B, Silvestre N (2013), "Local-distortional interaction in cold-formed steel columns: non-linear behaviour, ultimate strength and DSM design", *Proceedings of 5th International Conference of Structural Engineering, Mechanics and Computation* (SEMC 2013 – Cape Town, 2-4/9), A. Zingoni (ed.), Taylor & Francis (London), pp. 7-8. (full paper in CD-ROM Proceedings – 17-22)
- Dinis PB, Camotim D (2006), "On the use of shell finite element analysis to assess the local buckling and postbuckling behaviour of cold-formed steel thin-walled members", *Book of Abstracts of III European Conference* on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (III ECCM – Lisboa, 5-9/6), C.A.M. Soares et al. (eds.) Springer, 689. (full paper in CD-ROM Proceedings).
- Dinis PB, Camotim D (2010), "Local/distortional mode interaction in cold-formed steel lipped channel beams", *Thin-Walled Structures*, **48**(10-11), 771-785.
- Dinis PB, Camotim D (2012), "Direct strength method to predict the resistance of cold-formed steel columns against local-distortional interactive failure", *Proceedings of 11th International Conference on Computational Structures Technology* (CST 2012 Dubrovnik, 3-7/9), B. Topping (ed.), Civil-Comp Press (Stirling), Paper 30.

(full paper in USB Key Drive Proceedings)

- Dinis PB, Camotim D (2013), "Cold-formed steel columns undergoing local-distortional coupling: behaviour and direct strength prediction against interactive failure", *submitted for publication*.
- Dinis PB, Camotim D, Silvestre N (2007), "FEM-based analysis of the local-plate/distortional mode interaction in cold-formed steel lipped channel columns", *Computers & Structures*, **85**(19-20), 1461-1474.
- Dinis PB, Silvestre N, Camotim D (2009), "On the relevance of local-distortional interaction in the post-buckling behaviour and strength of cold-formed steel lipped channel columns", *Proceedings of 12th International Conference on Civil, Structural and Environmental Engineering Computing* (CC 2009 Funchal, 1-4/9) Civil-Comp Press (Stirling), Paper 12. (full paper in CD-ROM Proceedings)
- Dinis PB, Camotim D, Fena R (2011), "Local/distortional mode interaction in hat-section columns: post-buckling behaviour, strength and DSM design", *Proceedings of 6th European Conference on Steel and Composite Structures*, (EUROSTEEL 2011 Budapest, 31/8-2/9), 69-74.
- Dinis PB, Camotim D, Fena R (2012b), "Post-buckling, strength and design of cold-formed steel lipped channel, zedsection and hat-section columns affected by local-distortional interaction", USB Proceedings of SSRC Annual Stability Conference (Grapevine – 18-21/4).
- Dinis PB, Young B, Camotim D (2013a), "Local-distortional interaction in cold-formed steel rack-section columns", *Thin-Walled Structures*, in press.
- Dinis PB, Young B, Camotim D (2013b) "Strength, interactive failure and design of web-stiffened lipped channel columns exhibiting distortional buckling", *Thin-Walled Structures*, in press.
- Ellobody E, Young B (2005), "Behavior of cold-formed steel plain angle columns", *Journal of Structural Engineering* (ASCE), **131**(3), 457-466.
- Hancock GJ, Kwon YB, Bernard ES (1994), "Strength design curves for thin-walled sections undergoing distortional buckling", *Journal of Constructional Steel Research*, **31**(2-3), 169-186.
- Kwon YB, Hancock GJ (1992), "Tests of cold-formed channels with local and distortional buckling", *Journal of Structural Engineering* (ASCE), **118**(7), 1786-1803.
- Kwon YB, Kim BS, Hancock GJ (2009), "Compression tests of high strength cold-formed steel channel with buckling interaction", *Journal of Constructional Steel Research*, **65**(2), 278-89.
- Loughlan J, Yidris N, Jones K (2012), "The failure of thin-walled lipped channel compression members due to coupled local-distortional interactions and material yielding", *Thin-Walled Structures*, **61**(December), 14-21.
- Martins AD, Dinis PB, Camotim D, Providência P (2013), "The relevance of local-distortional interaction effects in lipped channel columns", *Proceedings of 14th International Conference Civil, Structural and Environmental Engineering Computing* (CC 2013 Cagliari, 3-6/9), B.H.V. Topping, P. Iványi (eds.), Civil-Comp Press (Stirling), Paper 8. (full paper in CD-ROM Proceedings)
- Schafer BW (2002), "Local, distortional and Euler buckling in thin-walled columns", *Journal of Structural Engineering* (ASCE), **128**(3), 289-299.
- Schafer BW (2008), "Review: the direct strength method of cold-formed steel member design" *Journal of Constructional Steel Research*, **64**(7-8), 766-778.
- Schafer BW, Peköz T (1998a), "Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses", *Journal of Constructional Steel Research*, **47**(3), 193-210.
- Schafer BW, Peköz T (1998b), "Direct strength predition of cold-formed steel members using numerical elastic buckling solutions", *Thin-Walled Structures - Research and Development* (ICTWS'98 – Singapore, 2-4/12), N. Shanmugam, J.Y.R. Liew, V. Thevendran (eds.), Elsevier, 137-144.
- Silvestre N, Camotim D (2003), "Non-linear generalized beam theory for cold-formed steel members", *International Journal of Structural Stability and Dynamics*, **3**(4), 461-490.
- Silvestre N, Camotim D (2006), "Local-plate and distortional postbuckling behavior of cold-formed steel lipped channel columns with intermediate stiffeners", *Journal of Structural Engineering* (ASCE), **132**(4), 529-540.

Silvestre N, Dinis PB, Camotim D (2008), "DSM design of simply supported rack-section columns against local/distortional interactive buckling", *Proceedings of 5th International Conference on Coupled Instabilities in Metal Structures*, (CIMS 2008 – Sydney 23-25/6), K. Rasmussen, T. Wilkinson (eds.), 417-424.

Silvestre N, Camotim D, Dinis PB (2012), "Post-buckling behaviour and direct strength design of lipped channel columns experiencing local/distortional interaction", *Journal of Constructional Steel Research*, **73**(June), 12-30.

Simulia Inc. (2008), ABAQUS Standard (version 6.7-5).

- Yang D, Hancock GJ (2004), "Compression tests of high strength steel channel columns with interaction between local and distortional buckling", *Journal of Structural Engineering* (ASCE), **130**(12), 1954-1963.
- Yap DCY, Hancock GJ (2009), "Interaction of local and distortional modes in thin-walled sections", *Proceedings* of 6th International Conference on Advances in Steel Structures (ICASS'09 – Hong Kong, 16-18/12), S.L. Chan (ed.), 35-48.
- Yap, D.C.Y., Hancock, G.J. (2011), "Experimental study of high strength cold-formed stiffened-web C-sections in compression", *Journal of Structural Engineering* (ASCE), vol. 137(2), pp. 162-72.
- Yap DCY (2008), "Local and distortional buckling of high strength cold-formed steel section", Ph.D. Thesis, School of Civil Engineering, University of Sydney, Australia.
- Young B, Rasmussen KJR (1999), "Shift of effective centroid in channel columns", *Journal of Structural Engineering* (ASCE), **125**(5), 524-531.
- Young B, Silvestre N, Camotim D (2013), "Cold-formed steel lipped channel columns influenced by localdistortional interaction: strength and DSM design", *Journal of Structural Engineering* (ASCE), **139**(6), 1059-1074.
- Zeinoddini VM, Schafer BW (2012), "Simulation of geometric imperfections in cold-formed steel members using spectral representation approach", *Thin-Walled Structures*, **60**(November), 14-21.

ANNEX A -	– Lipped	CHANNEL	COLUMN	RESULTS
-----------	----------	---------	--------	---------

Table A1: C columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - I

			SFEA		DSM			NDL			Ν	1NDL	
	$\lambda_{_d}$	f_y	f_u	f_{nl}	f_{nd}	$rac{f_{nd}}{f_u}$	$\lambda_{_{dl}}$	f_{ndl}	$\frac{f_{ndl}}{f_u}$	f_{nl}^{*}	λ^*_{dl}	f_{mndl}	$rac{f_{mndl}}{f_u}$
C1 (L _{crd} =675; L _{crf} =175)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25	74 89 115 166 226 295 461 664 779	60 67 77 96 115 133 163 199 217	74 89 113 144 177 211 283 357 395	55 62 71 86 101 114 141 166 178	0.92 0.92 0.93 0.90 0.88 0.86 0.86 0.83 0.82	1.00 1.10 1.24 1.40 1.55 1.69 1.96 2.20 2.32	55 62 70 80 89 97 112 125 131	0.92 0.92 0.84 0.78 0.74 0.69 0.63 0.60	74 89 115 166 226 295 461 664 779	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25	55 62 71 86 101 114 141 166 178	0.92 0.92 0.93 0.90 0.88 0.86 0.86 0.83 0.82
С2 (L _{сид} =575; L _{си} =150)	3.50 1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	904 116 141 182 262 356 465 727 1047 1229 1425	235 96 107 125 152 179 202 251 302 342 369	435 116 141 170 218 267 318 425 536 594 652	190 87 98 112 136 159 180 222 261 281 299	0.81 0.91 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.82 0.81	2.43 1.00 1.10 1.21 1.37 1.51 1.65 1.91 2.15 2.26 2.37	137 87 98 108 124 138 150 173 193 202 211	0.58 0.91 0.87 0.81 0.77 0.74 0.69 0.64 0.59 0.57	904 116 141 182 262 356 465 727 1047 1229 1425	3.50 1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	190 87 98 112 136 159 180 222 261 281 299	0.81 0.91 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.82 0.81
C3 (L _{crd} =575; L _{crf} =150)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	118 142 184 265 360 470 735 1058 1242 1441	97 109 127 153 205 253 308 334 361	118 141 167 214 262 312 417 526 582 639	88 99 114 138 161 182 224 264 284 303	0.91 0.90 0.90 0.88 0.89 0.89 0.89 0.86 0.85 0.84	1.00 1.09 1.19 1.35 1.49 1.63 1.88 2.11 2.22 2.33	88 98 108 123 137 150 172 192 202 211	0.91 0.90 0.85 0.81 0.76 0.73 0.68 0.63 0.60 0.58	118 142 184 265 360 470 735 1058 1242 1441	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	88 99 114 138 161 182 224 264 284 303	0.91 0.90 0.90 0.88 0.89 0.89 0.86 0.85 0.84
C4 (L _{crd} =625; L _{crf} =175)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	119 144 186 268 365 476 744 1072 1258 1458	97 109 128 152 179 201 249 302 328 354	119 138 164 209 257 305 407 513 568 624	89 100 115 139 162 185 227 268 287 306	0.92 0.92 0.90 0.92 0.91 0.92 0.91 0.89 0.88 0.87	1.00 1.08 1.17 1.33 1.47 1.60 1.85 2.08 2.18 2.29	89 97 107 123 136 149 171 191 201 210	0.92 0.90 0.84 0.81 0.76 0.74 0.69 0.63 0.61 0.59	119 144 186 268 365 476 744 1072 1258 1458	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	89 100 115 139 162 185 227 268 287 306	0.92 0.92 0.90 0.92 0.91 0.92 0.91 0.89 0.88 0.87
C5 (L _{crd} =575; L _{crf} =150)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	118 142 184 264 360 470 735 1058 1242 1440	96 107 126 148 171 192 238 300 329 357	116 133 158 201 246 293 390 491 544 597	88 99 114 138 160 182 224 264 283 302	0.92 0.92 0.91 0.93 0.94 0.95 0.94 0.88 0.86 0.85	1.00 1.06 1.16 1.31 1.45 1.58 1.82 2.04 2.15 2.25	88 95 104 119 133 145 167 186 195 204	0.92 0.88 0.83 0.81 0.78 0.76 0.70 0.62 0.59 0.57	118 142 184 264 360 470 735 1058 1242 1440	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	88 99 114 138 160 182 224 264 283 302	0.92 0.92 0.91 0.93 0.94 0.95 0.94 0.88 0.86 0.85
C6 (L _{crd} =475; L _{crf} =125)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	110 133 172 247 337 440 687 989 1161 1347	90 101 117 138 151 178 223 283 307 330	106 121 144 183 224 267 355 448 495 544	82 92 106 129 150 171 210 247 265 283	0.92 0.92 0.91 0.94 1.00 0.96 0.94 0.87 0.86 0.86	0.98 1.05 1.14 1.29 1.43 1.56 1.80 2.02 2.12 2.22	81 87 96 110 122 134 154 172 180 188	0.90 0.87 0.82 0.80 0.81 0.75 0.69 0.61 0.59 0.57	110 133 172 247 337 440 687 989 1161 1347	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	82 92 106 129 150 171 210 247 265 283	0.92 0.92 0.91 0.94 1.00 0.96 0.94 0.87 0.86 0.86

			SF	EA]	DSM			NDL			MNDL	
	λ_l	f_y	$f_{u.D}$	$f_{u.L}$	f_{nl}	f_{nd}	$\frac{f_{nl}}{f_{u.D}}$	$\frac{f_{nl}}{f_{u.L}}$	f_{ndl}	$\frac{f_{ndl}}{f_{u.D}}$	$\frac{f_{ndl}}{f_{u.L}}$	f_{mndl}	$\frac{f_{_{mndl}}}{f_{_{u.D}}}$	$rac{f_{mndl}}{f_{u.L}}$
	1.00	189	152	158	160	143	1.06	1.02	129	0.85	0.82	143	0.94	0.90
ି	1.10	228	170	177	182	160	1.08	1.03	140	0.83	0.79	160	0.94	0.90
10	1.25	295	194	200	216	185	1.12	1.08	155	0.80	0.78	185	0.95	0.93
ŕ	1.50	425	223	227	274	224	1.23	1.21	177	0.79	0.78	224	1.00	0.99
, , 1	1.75	578	249	259	334	261	1.34	1.29	197	0.79	0.76	248	1.00	0.96
Οĝ	2.00	755	*	295	396	297	*	1.34	216	*	0.73	281	*	0.95
4	2.50	1180	*	372	526	365	*	1.41	249	*	0.67	343	*	0.92
crd	3.00	1699	*	449	661	430	*	1.47	279	*	0.62	403	*	0.90
1)	3.25	1994	*	487	731	462	*	1.50	292	*	0.60	431	*	0.89
	3.50	2312	*	525	802	493	*	1.53	305	*	0.58	459	*	0.88
	1.00	127	109	110	108	105	0.99	0.98	94	0.87	0.86	105	0.97	0.95
Ô	1.10	153	122	125	122	118	1.00	0.98	103	0.84	0.82	118	0.97	0.95
:10	1.25	198	141	144	145	138	1.03	1.01	114	0.81	0.79	138	0.98	0.96
L.	1.50	285	161	170	184	168	1.14	1.08	132	0.82	0.78	168	1.05	0.99
15 7 L	1.75	388	173	186	224	197	1.30	1.21	148	0.85	0.79	183	1.06	0.98
ပစ္ထ	2.00	507	196	208	266	225	1.36	1.28	162	0.83	0.78	207	1.06	1.00
ŝ	2.50	792	242	262	353	279	1.46	1.35	188	0.78	0.72	254	1.05	0.97
- CC	3.00	1140	291	317	444	329	1.53	1.40	211	0.73	0.67	298	1.02	0.94
3	3.25	1338	316	344	491	354	1.56	1.43	222	0.70	0.65	319	1.01	0.93
	3.50	1552	340	371	538	378	1.59	1.45	232	0.68	0.63	340	1.00	0.92
	1.00	92	83	82	78	81	0.94	0.96	72	0.86	0.88	81	0.97	0.99
Q	1.10	111	94	93	89	91	0.95	0.96	79	0.84	0.85	91	0.97	0.98
=10	1.25	144	108	109	105	107	0.98	0.97	88	0.82	0.81	107	1.00	0.99
-cr]	1.50	207	127	130	134	132	1.06	1.03	102	0.81	0.79	132	1.04	1.01
; L	1.75	282	140	141	163	155	1.17	1.16	115	0.83	0.82	155	1.11	1.11
022	2.00	368	152	147	193	178	1.27	1.32	127	0.84	0.87	159	1.04	1.08
Ĩ	2.50	575	188	182	257	221	1.37	1.41	148	0.79	0.82	194	1.04	1.07
L _{crc}	3.00	829	227	221	323	262	1.42	1.46	167	0.73	0.75	228	1.00	1.03
3	3.25	972	247	241	357	282	1.45	1.48	175	0.71	0.73	244	0.99	1.01
	3.50	1128	266	260	391	301	1.47	1.51	183	0.69	0.71	260	0.98	1.00

Table A2: C columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - II

* Due to numerical difficulties, no ultimate strength could be obtained for these columns.

ANNEX B – HAT-SECTION AND ZED-SECTION COLUMN RESULTS

Table B1: H and Z columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - I

			SF	EA		DSM			Ν	DL				MNDI		
	$\lambda_{_d}$	f_y	f_u^H	f_u^Z	f_{nd}	$\frac{f_{nd}}{f_u^H}$	$rac{f_{nd}}{f_u^Z}$	$\lambda_{_{dl}}$	f_{ndl}	$\frac{f_{ndl}}{f_u^H}$	$\frac{f_{ndl}}{f_u^{Z}}$	f_{nl}^{*}	λ^*_{dl}	$f_{\scriptscriptstyle mndl}$	$\frac{f_{_{mndl}}}{f_{_{u}}^{^{H}}}$	$rac{f_{mndl}}{f_u^Z}$
ri=175)	1.00 1.10 1.25 1.50	74 89 115 166	60 67 78 100	61 68 78 98	55 62 71 86	0.92 0.93 0.92 0.87	0.91 0.92 0.92 0.88	1.00 1.10 1.23 1.40	55 62 70 80	0.92 0.93 0.91 0.81	0.91 0.92 0.92 0.83	74 89 115 166	1.00 1.10 1.25 1.50	55 62 71 86	0.92 0.93 0.92 0.87	0.91 0.92 0.92 0.88
C1 5rd=675; Lo	1.75 2.00 2.50 3.00	226 295 460 663	119 135 165 204	119 136 173 204	101 115 141 166	0.85 0.85 0.85 0.82	0.85 0.84 0.82 0.81	1.55 1.69 1.95 2.20	89 97 112 125	0.75 0.72 0.68 0.62	0.76 0.73 0.66 0.62	226 295 460 663	1.75 2.00 2.50 2.99	101 115 141 166	0.85 0.85 0.85 0.85	0.85 0.84 0.82 0.81
(Fc	3.25 3.50	778 902	214 231	223 241	178 190	0.83	0.80	2.31 2.42	131 137 97	0.61	0.60	778 902	3.24 3.49	178 190	0.83 0.82	0.80 0.79
_{sr} =150)	1.00 1.10 1.25 1.50	141 182 262	107 125 160	109 125 156	98 113 137	0.91 0.90 0.85	0.80 0.89 0.90 0.87	1.00 1.10 1.21 1.36	98 109 124	0.91 0.87 0.78	0.89 0.87 0.79	141 182 262	1.00 1.10 1.25 1.50	98 113 137	0.91 0.90 0.85	0.89 0.90 0.87
C2 ∉=575; L	1.75 2.00 2.50	357 466 728	187 204 258	186 207 251	159 181 223	0.85 0.89 0.86	0.85 0.87 0.88	1.51 1.65 1.90	138 151 173	0.74 0.74 0.67	0.74 0.73 0.69	357 466 728	1.75 2.00 2.49	159 181 223	0.85 0.89 0.86	0.85 0.87 0.88
(T ^{cr}	3.00 3.25 3.50	1048 1230 1426	312 340 366	345 371	262 281 300	0.84 0.83 0.82	0.82 0.81 0.81	2.14 2.25 2.36	203 212	0.62 0.60 0.58	0.61 0.59 0.57	1048 1230 1426	2.99 3.24 3.49	262 281 300	0.83	0.82 0.81 0.81
ı≓150)	1.00 1.10 1.25 1.50	142 184 265	97 108 127 162	99 110 127 158	99 114 138	0.92 0.92 0.90 0.85	0.89 0.90 0.90 0.87	1.00 1.09 1.19 1.35	98 108 124	0.92 0.91 0.86 0.76	0.89 0.89 0.85 0.78	142 184 265	1.00 1.10 1.25 1.50	99 114 138	0.92 0.92 0.90 0.85	0.89 0.90 0.90 0.87
C3 ∉575; L₀	1.75 2.00 2.50	360 471 736	190 210 262	190 210 259	161 183 225	0.85 0.87 0.86	0.85 0.87 0.87	1.49 1.63 1.88	138 150 173	0.72 0.72 0.66	0.72 0.71 0.67	360 471 736	1.75 2.00 2.49	161 183 225	0.85 0.87 0.86	0.85 0.87 0.87
(T ^{cr}	3.00 3.25 3.50	1059 1243 1442 119	318 346 373 97	316 351 379	265 285 304	0.83 0.82 0.81	0.84 0.81 0.80	2.11 2.22 2.33	202 211 90	0.61 0.59 0.57	0.61 0.57 0.56	1059 1243 1442 119	2.99 3.24 3.49	265 285 304	0.83 0.82 0.81	0.84 0.81 0.80
sri=175)	1.10 1.25 1.50	144 186 268	109 127 162	111 127 157	100 115 140	0.92 0.91 0.86	0.90 0.91 0.89	1.07 1.17 1.32	98 108 123	0.90 0.85 0.76	0.88 0.85 0.78	144 186 268	1.10 1.25 1.50	100 115 140	0.92 0.91 0.86	0.90 0.91 0.89
C4 ∂=625; L	1.75 2.00 2.50	365 477 745	189 206 256	188 206 254	163 185 228	0.86 0.90 0.89	0.87 0.90 0.89	1.47 1.60 1.85	137 150 172	0.73 0.73 0.67	0.73 0.72 0.67	365 477 745	1.75 1.99 2.49	163 185 228	0.86 0.90 0.89	0.87 0.90 0.89
(T ^{cr}	3.00 3.25 3.50	1072 1258 1459 118	339 365 96	305 344 371 98	269 288 307 89	0.85	0.88 0.83 0.83	2.07 2.18 2.29	202 210 88	0.62 0.60 0.58	0.63 0.58 0.57	1072 1258 1459 118	2.99 3.24 3.49	269 288 307 89	0.85	0.83 0.83 0.90
sri=150)	1.10 1.25 1.50	143 184 266	107 125 156	109 125 153	99 114 138	0.93 0.92 0.89	0.90 0.91 0.90	1.06 1.16 1.31	95 105 120	0.89 0.84 0.77	0.87 0.84 0.78	143 184 266	1.10 1.25 1.50	99 114 138	0.93 0.92 0.89	0.90 0.91 0.90
ر =575; ل	1.75 2.00 2.50	361 472 738	177 193 244	177 195 223	161 184 226	0.91 0.95 0.93	0.91 0.93 1.01	1.44 1.57 1.82	133 146 168	0.76 0.76 0.69	0.75 0.74 0.75	361 472 738	1.75 2.00 2.50	161 184 226	0.91 0.95 0.93	0.91 0.93 1.01
(F°	3.25 3.50 1.00	1002 1247 1446 111	299 325 350 90	303 329 354 92	200 285 304 83	0.89 0.88 0.87	0.87	2.04 2.15 2.25 0.98	107 197 205 82	0.63 0.60 0.59	0.62 0.59 0.58	1002 1247 1446 111	2.99 3.24 3.49	200 285 304 83	0.89 0.88 0.87	0.87 0.86 0.85
_{er} ≓125)	1.10 1.25 1.50	134 174 250	100 117 143	103 116 142	93 107 130	0.93 0.92 0.91	0.90 0.92 0.91	1.05 1.14 1.29	88 97 111	0.88 0.84 0.78	0.86 0.84 0.78	134 174 250	1.10 1.25 1.50	93 107 130	0.93 0.92 0.91	0.90 0.92 0.91
رة 475; ل	1.75 2.00 2.50	340 444 694	161 178 227	163 181 217	152 173 212	0.95 0.97 0.93	0.92 0.95 0.97	1.43 1.56 1.79	124 135 156	0.77 0.76 0.69	0.75 0.74 0.72	340 444 694	1.75 2.00 2.50	152 173 212	0.95 0.97 0.93	0.92 0.95 0.97
(L _{cr}	3.00 3.25 3.50 1.00	999 1173 1360 183	277 305 329 143	284 303 331 145	250 268 286 138	0.90 0.88 0.87 0.96	0.87 0.88 0.86 0.94	2.01 2.12 2.22 0.97	174 182 190 134	0.63 0.60 0.58 0.94	0.61 0.60 0.57 0.92	999 1173 1360 183	3.00 3.25 3.50 0.99	250 268 286 138	0.90 0.88 0.87 0.96	0.87 0.88 0.86 0.94
sri=110)	1.10 1.25 1.50	221 286 412	160 187 228	161 184 226	154 178 216	0.96 0.95 0.95	0.95 0.96 0,95	1.04 1.13 1.28	145 160 183	0.91 0.86 0.80	0.89 0.86 0.80	221 284 407	1.09 1.24 1.48	154 178 214	0.96 0.95 0.94	0.95 0.96 0.92
C7 ∂=525; L _c	1.75 2.00 2.50	560 732 1144	259 293 368	258 291 366	251 286 352	0.97 0.98 0.96	0.97 0.97 0.95	1.41 1.54 1.77	204 223 256	0.79 0.76 0.70	0.78 0.76 0.69	552 720 1120	1.73 1.97 2.46	250 284 348	0.96 0.97 0.95	0.93 0.94 0.91
(L _{cr}	3.00 3.25 3.50	1933 2242	447 483 519	443 480 517	414 444 474	0.93 0.92 0.91	0.93 0.92 0.91	2.10 2.20	200 300 314	0.64 0.62 0.60	0.64 0.62 0.60	1886 2185	2.95 3.19 3.43	410 440 469	0.92 0.91 0.90	0.88 0.87 0.86

			SF	EA		DSM			N	DL				MNDI		
	$\lambda_{_d}$	f_y	f_u^H	f_u^Z	f_{nd}	$\frac{f_{nd}}{f_u^H}$	$\frac{f_{nd}}{f_u^Z}$	$\lambda_{_{dl}}$	f_{ndl}	$rac{f_{ndl}}{f_u^H}$	$\frac{f_{ndl}}{f_u^Z}$	f_{nl}^*	$\lambda^*_{_{dl}}$	$f_{\scriptscriptstyle mndl}$	$\frac{f_{\tiny mndl}}{f_{\scriptstyle u}^{{}^{H}}}$	$rac{f_{mndl}}{f_u^Z}$
C8 (L _{crd} =575; L _{crf} =125)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 2.55	150 181 234 337 459 599 937 1349	119 129 146 175 199 228 291 351	121 133 146 173 198 * 292 351 292	113 126 145 176 205 233 287 338 262	0.95 0.98 0.99 1.01 1.03 1.02 0.99 0.96	0.93 0.94 0.99 1.01 1.03 * 0.98 0.96	0.96 1.02 1.11 1.25 1.39 1.51 1.74 1.96	107 116 128 146 163 178 205 229	0.90 0.90 0.88 0.84 0.82 0.78 0.70 0.65	0.88 0.87 0.87 0.84 0.82 * 0.70 0.65	147 175 222 312 417 536 817 1156	0.99 1.08 1.21 1.44 1.66 1.89 2.33 2.77	113 126 145 169 196 221 269 315	0.95 0.98 0.99 0.97 0.98 0.97 0.93 0.90	0.93 0.94 0.99 0.99 1.00 * 0.94 0.92
	3.25 3.50 1.00	1583 1836 131	380 409 105	382 411 105	362 387 99	0.95 0.95 0.94	0.94 0.94 0.93	2.06 2.15 0.94	240 251 92	0.63 0.61 0.88	0.62 0.61 0.87	1347 1552 128	2.99 3.21 0.98	338 359 99	0.89 0.88 0.94	0.91 0.90 0.93
cr/=120)	1.10 1.25 1.50	159 205 295	113 126 147	116 127 146	110 127 154	0.98 1.01 1.05	0.94 0.99 1.05	1.01 1.10 1.23	100 110 126	0.88 0.87 0.86	0.85 0.86 0.86	152 193 272	1.08 1.21 1.44	110 127 148	0.98 1.01 1.00	0.94 0.99 1.00
_{/=600; L}	1.75 2.00 2.50	402 525 820	157 197 248	168 * 249	180 204 251	1.14 1.04 1.01	1.06 * 1.00	1.36 1.49 1.71	140 153 176	0.89 0.78 0.71	0.83 * 0.70	363 467 712	1.66 1.88 2.32	171 193 235	1.09 0.98 0.95	1.01 * 0.94
(L _{cra}	3.00 3.25 3.50	1181 1387 1608	299 324 349	301 326 350	296 317 339	0.99 0.98 0.97	0.98 0.97 0.96	1.92 2.02 2.12	197 207 216	0.66 0.64 0.62	0.65 0.63 0.61	1008 1175 1354	2.76 2.98 3.20	276 295 314	0.92 0.91 0.90	0.91 0.90 0.89
0 L _{cri} =120)	1.00 1.10 1.25 1.50 1.75	114 138 178 256 349	91 99 106 123 *	91 99 108 121 141	85 96 110 133 156	0.94 0.97 1.04 1.09 *	0.94 0.96 1.01 1.09 1 10	0.93 0.99 1.07 1.21 1 34	78 84 93 107 119	0.86 0.86 0.88 0.87 *	0.86 0.84 0.86 0.88 0.84	109 130 164 229 305	0.98 1.07 1.20 1.42 1.63	85 96 110 126 146	0.94 0.97 1.04 1.02 *	0.94 0.96 1.01 1.03 1.03
C1 (L _{crd} =625;	2.00 2.50 3.00 3.25	455 711 1024 1202	164 207 250 271	162 206 250 271	177 218 256 275	1.08 1.05 1.03 1.02	1.08 1.05 1.02 1.01	1.46 1.68 1.88 1.98	130 150 167 175	0.79 0.72 0.67 0.65	0.80 0.72 0.66 0.64	390 593 836 972	1.85 2.28 2.70 2.92	164 200 234 250	1.00 0.97 0.94 0.92	1.01 0.97 0.93 0.92

Table B2: H and Z columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - II

Table B3: H and Z columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - III

				SF	EA				DSM					NDL				I	MNDL	,	
	λ_l	f_y	$f_{u.D}^{H}$	$f_{u.L}^{H}$	$f_{u.D}^{Z}$	$f_{u.L}^{Z}$	f_{nl}	$\frac{f_{nl}}{f_{u.D}^{H}}$	$\frac{f_{nl}}{f_{u.L}^{H}}$	$\frac{f_{nl}}{f_{u.D}^{z}}$	$\frac{f_{nl}}{f_{u.L}^{z}}$	f_{ndl}	$\frac{f_{ndl}}{f_{u.D}^{^{H}}}$	$\frac{f_{ndl}}{f_{u.L}^{H}}$	$\frac{f_{ndl}}{f_{u.D}^{Z}}$	$rac{f_{ndl}}{f_{u.L}^{Z}}$	f_{mndl}	$\frac{f_{mudl}}{f_{u.D}^{H}}$	$\frac{f_{\tiny mndl}}{f_{\scriptstyle u.L}^{\scriptscriptstyle H}}$	$\frac{f_{nndl}}{f_{u.D}^Z}$	$\frac{f_{\tiny mndl}}{f_{\scriptstyle u.L}^{ Z}}$
	1.00	189	152	166	157	161	161	1.06	0.97	1.03	1.00	131	0.87	0.79	0.83	0.81	145	0.96	0.87	0.91	0.89
ŝ	1.10	229	169	187	175	180	183	1.09	0.98	1.04	1.01	142	0.84	0.76	0.80	0.78	163	0.97	0.87	0.91	0.89
100	1.25	296	189	208	197	201	216	1.15	1.04	1.10	1.07	157	0.83	0.76	0.79	0.77	188	0.99	0.91	0.94	0.92
Ĩ,	1.50	426	225	227	224	217	275	1.22	1.21	1.22	1.26	180	0.80	0.79	0.79	0.82	228	1.01	1.00	1.00	1.03
11	1.75	580	261	259	256	246	335	1.28	1.30	1.31	1.36	201	0.77	0.78	0.77	0.80	252	0.96	0.97	0.98	1.02
475 O	2.00	758	295	294	287	281	398	1.35	1.35	1.38	1.41	220	0.75	0.75	0.75	0.77	285	0.97	0.97	0.99	1.01
l,	2.50	1184	375	366	359	354	528	1.41	1.44	1.47	1.49	254	0.68	0.69	0.69	0.70	348	0.93	0.95	0.97	0.98
(Fc	3.00	1705	445	435	432	428	664	1.49	1.53	1.53	1.55	284	0.64	0.65	0.65	0.65	408	0.92	0.94	0.94	0.95
	3.25	2000	479	472	466	462	734	1.53	1.56	1.57	1.58	298	0.62	0.63	0.63	0.63	437	0.91	0.93	0.94	0.94
	3.50	2320	510	505	500	495	805	1.58	1.59	1.61	1.62	311	0.61	0.62	0.61	0.62	465	0.91	0.92	0.93	0.94
														0.90							
1.10 216 160 177 166 171 172 1.08 0.97 1.03 1.00 135 0.85 0.76 0.80 0.78 155 0.97 0.88 0.92 0.89 $\widehat{\S}$ 1.25 278 179 198 187 192 204 1.14 1.03 1.09 1.06 150 0.84 0.76 0.79 0.77 179 1.00 0.91 0.94 0.92														0.89							
§ 1.25 278 179 198 187 192 204 1.14 1.09 1.06 150 0.84 0.76 0.77 179 1.00 0.91 0.94 0.94 \$ 1.25 278 179 192 204 1.14 1.03 1.09 1.06 150 0.84 0.76 0.79 0.77 179 1.00 0.91 0.94 0.93														1.02							
	1.50	546	213	210	2/2	209	200	1.21	1.19	1.22	1.23	102	0.01	0.79	0.00	0.01	210	0.02	0.00	0.00	1.02
3.01	2.00	713	*	278	272	266	374	*	1 35	1.23	1.33	210	*	0.75	0.76	0.01	272	*	0.33	1 00	1.03
- 47	2.50	1114	*	347	340	336	497	*	1 43	1.07	1.40	243	*	0.70	0.70	0.70	333	*	0.96	0.98	0.99
-cra	3.00	1604	423	413	391	406	625	1 48	1.10	1.59	1.53	272	0.64	0.66	0.68	0.66	390	0.92	0.94	1 00	0.96
1)	3.25	1882	451	451	451	439	690	1.53	1.53	1.53	1.57	285	0.63	0.63	0.62	0.64	418	0.93	0.93	0.93	0.95
	3.50	2183	469	481	484	471	757	1.61	1.57	1.56	1.60	298	0.64	0.62	0.61	0.62	445	0.95	0.93	0.92	0.95
	1.00	80	69	66	68	64	68	0.99	1.02	1.00	1.05	57	0.83	0.85	0.83	0.88	63	0.92	0.95	0.92	0.98
	1.10	97	77	74	76	71	77	1.00	1.05	1.01	1.08	62	0.80	0.84	0.81	0.86	71	0.92	0.96	0.93	0.99
20)	1.25	125	81	83	81	80	91	1.12	1.10	1.12	1.15	68	0.84	0.82	0.84	0.86	82	1.01	0.99	1.01	1.03
Į.	1.50	180	88	93	88	88	116	1.32	1.25	1.32	1.31	78	0.89	0.85	0.89	0.89	99	1.13	1.07	1.13	1.12
13 : Lo	1.75	245	102	102	101	99	141	1.39	1.39	1.40	1.42	88	0.86	0.86	0.87	0.88	103	1.01	1.01	1.03	1.05
ΰĝ	2.00	319	117	117	116	115	168	1.43	1.43	1.44	1.46	96	0.82	0.82	0.83	0.83	115	0.98	0.98	1.01	1.02
14	2.50	499	147	150	148	148	222	1.51	1.48	1.50	1.50	111	0.75	0.74	0.75	0.75	139	0.95	0.93	0.96	0.96
(L _{cr}	3.00	719	178	184	179	180	280	1.57	1.52	1.56	1.55	124	0.70	0.68	0.69	0.69	162	0.91	0.88	0.93	0.92
	3.25	843	194	200	195	195	309	1.59	1.55	1.58	1.58	130	0.67	0.65	0.67	0.67	173	0.89	0.86	0.91	0.91
	3.50	978	209	216	210	210	339	1.62	1.57	1.61	1.61	136	0.65	0.63	0.65	0.65	183	0.88	0.85	0.90	0.90
* Due t	o num	erical d	ifficult	ies, no	ultima	ate stre	ngth co	ould be	e obtaiı	ned for	these	colum	ns.								

				SF	EA				DSM					NDL]	MNDL		
	λ_l	f_y	$f_{u.D}^{H}$	$f_{u.L}^H$	$f_{u.D}^Z$	$f_{u.L}^Z$	f_{nl}	$\frac{f_{nl}}{f_{u.D}^{H}}$	$\frac{f_{nl}}{f_{u.L}^{H}}$	$\frac{f_{nl}}{f_{u.D}^Z}$	$\frac{f_{nl}}{f_{u.L}^{Z}}$	f_{ndl}	$\frac{f_{ndl}}{f_{u.D}^{H}}$	$\frac{f_{ndl}}{f_{u.L}^{H}}$	$\frac{f_{ndl}}{f_{u.D}^Z}$	$\frac{f_{ndl}}{f_{u.L}^{Z}}$	f_{mndl}	$\frac{f_{mndl}}{f_{u.D}^H}$	$\frac{f_{mndl}}{f_{u.L}^{H}}$	$\frac{f_{mndl}}{f_{u.D}^Z}$	$\frac{f_{mndl}}{f_{u.L}^{Z}}$
	1.00	137 166	116 131	121 137	118	119 135	116 132	1.00	0.96	0.98	0.98	100 109	0.86	0.82	0.84	0.83	111 125	0.96	0.92	0.93	0.93
(00)	1.25	214	146	160	147	156	156	1.07	0.98	1.06	1.00	121	0.83	0.75	0.81	0.77	145	0.99	0.91	0.98	0.92
t -	1.50	308	168	187	169	178	198	1.18	1.06	1.17	1.11	139	0.83	0.74	0.82	0.77	177	1.05	0.95	1.04	0.98
C1 ²	2.00	547	221	216	224	210	287	1.30	1.33	1.23	1.37	171	0.80	0.79	0.75	0.80	222	1.00	1.00	0.97	1.02
g=n	2.50	855	276	274	286	266	381	1.38	1.39	1.33	1.43	198	0.72	0.72	0.68	0.74	272	0.99	0.99	0.92	0.99
(Fc	3.00	1231 1445	326 348	328 355	345 374	323 351	479 530	1.47 1.52	1.46 1.49	1.39	1.48 1.51	222	0.68	0.68	0.64	0.68	320 343	0.98	0.97	0.90	0.96
	3.50	1676	373	381	404	377	581	1.56	1.53	1.44	1.54	243	0.65	0.64	0.60	0.64	365	0.98	0.96	0.87	0.94
	1.00	127	110	111	111	112	108	0.99	0.97	0.97	0.97	95 104	0.87	0.86	0.85	0.84	106	0.97	0.96	0.95	0.94
(00	1.25	199	139	146	140	146	145	1.05	1.00	1.00	0.99	116	0.83	0.02	0.82	0.78	139	1.01	0.96	0.99	0.94
er = 1	1.50	286	158	165	164	169	185	1.17	1.12	1.12	1.09	134	0.85	0.81	0.80	0.78	171	1.08	1.03	1.03	1.00
C15 25; L	1.75	390 509	183 208	180 205	183	179 197	225	1.23	1.25	1.23	1.26	150 164	0.82	0.83	0.81	0.82	183 208	1.00	1.02	1.00	1.03
n=5.	2.50	795	259	259	268	250	355	1.37	1.37	1.32	1.42	191	0.74	0.74	0.70	0.75	254	0.98	0.98	0.95	1.02
(L _c	3.00	1145 1344	307 329	308	323	304 330	446 493	1.45	1.45	1.38	1.47 1.49	214 225	0.70	0.70	0.65	0.70	297 318	0.97	0.96	0.92	0.98
	3.50	1559	351	354	378	*	541	1.54	1.53	1.43	*	236	0.67	0.67	0.61	*	339	0.96	0.96	0.90	*
	1.00	118	103	103	104	104	100	0.97	0.97	0.96	0.96	89 08	0.87	0.87	0.85	0.85	100	0.97	0.97	0.95	0.95
(00	1.25	145	131	137	132	137	135	1.03	0.97	1.02	0.90	109	0.83	0.83	0.83	0.02	132	1.00	0.90	0.90	0.94
orF 1	1.50	266	148	157	154	160	171	1.16	1.09	1.11	1.07	126	0.85	0.80	0.81	0.78	161	1.09	1.03	1.03	0.99
C16 50; L	1.75	362 472	171 194	168 192	172	171 185	209	1.22	1.24	1.21	1.22	141 155	0.83	0.84	0.81	0.81	190 196	1.11	1.13	0.99	1.00
n=5ł	2.50	738	242	242	246	234	329	1.36	1.36	1.34	1.40	181	0.75	0.75	0.72	0.76	240	0.99	0.99	0.96	1.01
(L _c	3.00	1063	288	289 308	298	284	414	1.44	1.43	1.39	1.45	203	0.70	0.70	0.67	0.70	282	0.98	0.97	0.93	0.97
	3.50	1446	329	339	365	330	502	1.52	1.48	1.37	1.52	213	0.68	0.66	0.60	0.66	321	0.98	0.95	0.86	0.96
	1.00	109	96 110	96 100	97 100	96 110	93 105	0.97	0.97	0.95	0.96	84	0.87	0.87	0.85	0.86	94	0.98	0.98	0.95	0.96
(00	1.25	171	123	127	122	128	125	1.01	0.97	1.02	0.90	102	0.83	0.80	0.83	0.82	124	1.01	0.97	1.00	0.95
orF 1	1.50	246	140	148	139	150	158	1.13	1.07	1.14	1.05	118	0.85	0.80	0.84	0.78	152	1.09	1.03	1.08	1.00
C17 50; L	1.75	334 437	160 181	157 178	154 174	163 173	193 229	1.21	1.23	1.25	1.18	133 146	0.83	0.85	0.85	0.80	179	1.12	1.14	1.14	1.08
n=5ł	2.50	683	225	225	220	218	304	1.35	1.35	1.38	1.39	170	0.76	0.76	0.76	0.77	227	1.01	1.01	1.01	1.02
(L _c	3.00	983 1154	269 290	270 291	268	264 288	383	1.42	1.42	1.43	1.45	192 201	0.71	0.71	0.70	0.71	266 285	0.99	0.99	0.98	0.99
	3.50	1338	310	*	316	310	464	1.50	*	1.47	1.49	211	0.68	*	0.66	0.67	304	0.98	*	0.94	0.96
	1.00	101	89 104	88	91 103	89 102	86	0.96	0.97	0.94	0.96	78	0.87	0.88	0.85	0.87	88	0.98	0.99	0.95	0.97
(00	1.25	157	120	118	103	119	115	0.95	0.90	1.01	0.95	96	0.80	0.83	0.82	0.83	116	0.90	0.90	1.00	0.96
arF 1	1.50	227	140	139	131	141	146	1.04	1.05	1.11	1.03	111	0.79	0.80	0.84	0.78	143	1.02	1.03	1.07	1.00
C18 50; L	2.00	308 403	151	148	144	161	211	1.18	1.20	1.24	1.15	125	0.83	0.84	0.85	0.79	175	1.12	1.14	1.15	1.07
19 19	2.50	629	216	209	205	203	281	1.30	1.34	1.37	1.38	160	0.74	0.77	0.77	0.78	214	0.99	1.03	1.03	1.04
(Fc	3.00	906 1064	256 281	252	249	247	353	1.38	1.40 1.44	1.42	1.43 1.45	181 190	0.71	0.72	0.71	0.72	251 269	0.98	1.00	0.99	1.00
	3.50	1234	306	287	294	288	428	1.40	1.49	1.45	1.48	199	0.65	0.69	0.66	0.68	287	0.94	1.00	0.96	0.98
	1.00	93 112	83 95	82 93	83 95	82 95	79 89	0.95	0.97	0.95	0.96 0.94	73 80	0.88	0.89	0.87	0.88	82 93	0.98	1.00	0.98	0.98
(00)	1.25	145	109	111	109	110	106	0.97	0.96	0.97	0.96	89	0.82	0.81	0.81	0.81	109	1.00	0.98	0.99	0.98
er E	1.50	208	129	130	128	131	134	1.04	1.04	1.05	1.03	104	0.81	0.80	0.80	0.78	134	1.04	1.04	1.03	1.01
C19 75; I	2.00	370	140	155	157	140	194	1.34	1.17	1.15	1.30	129	0.89	0.83	0.81	0.85	158	1.08	1.02	1.09	1.06
2= ²⁰	2.50	578	189	194	197	189	258	1.36	1.33	1.31	1.37	151	0.80	0.78	0.75	0.78	193	1.02	0.99	0.98	1.03
(Fc	3.00	833 977	228 247	233 252	239	231 252	324 358	1.42 1.45	1.39	1.36	1.41 1.42	170 178	0.74	0.73	0.70	0.72	225 241	0.99	0.97	0.95	0.98
	3.50	1133	267	266	281	272	393	1.48	1.48	1.40	1.44	187	0.70	0.70	0.65	0.67	256	0.96	0.96	0.92	0.95
	1.00	85 102	77 87	75 86	78 87	75 86	72 82	0.93	0.96	0.92	0.96	67 74	0.87	0.90	0.85	0.89	76 86	0.98	1.01	0.96	1.00 0.99
(00)	1.25	132	100	101	101	101	97	0.97	0.96	0.96	0.96	83	0.83	0.82	0.81	0.81	101	1.01	1.00	0.99	0.99
- <i>cr</i> =1	1.50	191	120	120	120	121	123	1.02	1.02	1.02	1.01	97	0.81	0.81	0.79	0.79	125	1.04	1.04	1.03	1.02
C2(75;1	2.00	339	138	143	145	132	178	1.29	1.24	1.23	1.29	120	0.87	0.84	0.82	0.86	147	1.07	1.03	1.02	1.07
3 ⁻⁰²	2.50	529	176	179	182	174	236	1.34	1.32	1.30	1.35	141	0.80	0.79	0.76	0.79	180	1.02	1.01	0.99	1.04
(F°	3.00 3.25	762 895	210 229	215 233	221 240	213 232	297 328	1.41	1.38	1.34	1.39	158	0.75	0.74	0.70	0.73	211 226	0.98	0.98	0.96	0.98
	3.50	1038	247	246	255	252	360	1.46	1.46	1.41	1.43	175	0.71	0.71	0.67	0.68	240	0.97	0.98	0.95	0.96

Table B4: H and Z columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - IV

* Due to numerical difficulties, no ultimate strength could be obtained for these columns.

				SFI	EA				DSM					NDL		-		1	MNDL		_
	λ_l	f_y	$f_{u.D}^{H}$	$f_{u.L}^{H}$	$f_{u.D}^Z$	$f_{u.L}^{Z}$	f_{nl}	$\frac{f_{nl}}{f_{u.D}^{H}}$	$\frac{f_{nl}}{f_{u.L}^{H}}$	$\frac{f_{nl}}{f_{u.D}^Z}$	$\frac{f_{nl}}{f_{u.L}^{Z}}$	$f_{\it ndl}$	$\frac{f_{ndl}}{f_{u.D}^{H}}$	$\frac{f_{ndl}}{f_{u.L}^{H}}$	$\frac{f_{ndl}}{f_{u.D}^Z}$	$\frac{f_{ndl}}{f_{u.L}^Z}$	f_{mndl}	$\frac{f_{nundl}}{f_{u.D}^{H}}$	$\frac{f_{mndl}}{f_{u.L}^{H}}$	$rac{f_{mndl}}{f_{u.D}^Z}$	$\frac{f_{\tiny mndl}}{f_{\scriptstyle u.L}^{ Z}}$
C21 (L _{cro} =775; L _{cr} =110)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25	47 57 73 106 144 188 293 422 496	44 48 53 61 68 75 94 113 123	41 46 52 61 69 77 95 114 124	44 48 53 62 71 78 93 113 124	41 46 52 63 72 79 97 117 127	40 45 54 68 83 99 131 164 182	0.91 0.95 1.01 1.11 1.21 1.32 1.40 1.46 1.48	0.98 1.00 1.03 1.11 1.21 1.29 1.38 1.44 1.47	0.91 0.95 1.01 1.09 1.17 1.27 1.41 1.45 1.47	0.98 1.00 1.03 1.08 1.16 1.25 1.34 1.41 1.43	37 41 46 54 61 67 79 89 93	0.85 0.86 0.87 0.88 0.89 0.90 0.84 0.78 0.76	0.92 0.90 0.89 0.88 0.88 0.88 0.83 0.78 0.75	0.85 0.85 0.86 0.86 0.85 0.86 0.84 0.78 0.75	0.92 0.90 0.88 0.85 0.84 0.84 0.80 0.75 0.73	47 48 57 70 83 75 91 105 111	1.07 1.00 1.07 1.14 1.21 1.01 0.97 0.93 0.91	1.16 1.09 1.14 1.20 0.98 0.95 0.92 0.90	0.96 1.00 1.06 1.12 1.15 0.96 0.96 0.91 0.89	1.04 1.05 1.07 1.11 1.14 0.94 0.92 0.88 0.86
C22 (L _{cra} =800; L _{cr} =110)	3.50 1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	575 42 50 65 94 127 166 260 374 439 510	133 39 43 47 55 62 68 84 101 110 119	133 36 40 46 55 63 69 85 103 111 120	134 39 43 47 56 65 72 83 102 111 120	137 36 40 47 56 65 71 88 105 114 123	199 35 40 48 60 74 87 116 146 161 177	1.50 0.90 0.94 1.01 1.10 1.18 1.28 1.38 1.44 1.46 1.49	1.50 0.98 0.99 1.03 1.10 1.18 1.26 1.36 1.42 1.45 1.47	1.49 0.90 0.94 1.00 1.08 1.14 1.22 1.39 1.43 1.45 1.47	1.45 0.98 0.99 1.02 1.07 1.13 1.22 1.32 1.39 1.41 1.44	98 34 37 42 49 55 61 71 80 85 89	0.73 0.86 0.87 0.88 0.88 0.88 0.89 0.85 0.79 0.77 0.74	0.73 0.93 0.91 0.90 0.88 0.88 0.88 0.88 0.83 0.78 0.76 0.74	0.72 0.85 0.86 0.88 0.87 0.85 0.85 0.85 0.79 0.76 0.74	0.71 0.93 0.91 0.89 0.86 0.85 0.85 0.85 0.81 0.76 0.74 0.72	118 42 43 51 63 75 67 80 92 98 103	0.89 1.06 1.02 1.08 1.15 1.20 0.98 0.95 0.91 0.89 0.87	0.89 1.16 1.07 1.10 1.15 1.20 0.96 0.93 0.89 0.88 0.88	0.87 1.06 1.01 1.07 1.13 1.16 0.92 0.95 0.89 0.87 0.85	0.85 1.16 1.07 1.09 1.12 1.15 0.93 0.90 0.87 0.85 0.83
C23 (L _{cro} =825; L _{cr} =110)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	37 44 57 82 112 146 229 329 386 448	35 40 44 52 60 66 79 95 99 111	32 36 41 49 56 62 76 92 100 107	35 37 42 50 58 65 74 91 99 107	32 36 41 50 58 65 79 94 102 110	31 35 42 53 65 77 102 128 142 155	0.90 0.89 0.95 1.03 1.08 1.17 1.29 1.35 1.43 1.40	0.98 0.99 1.02 1.08 1.15 1.24 1.34 1.40 1.42 1.45	0.89 0.95 1.00 1.07 1.12 1.18 1.37 1.41 1.44 1.45	0.98 0.99 1.02 1.06 1.11 1.19 1.30 1.36 1.39 1.41	30 33 37 44 50 55 65 73 77 81	0.87 0.84 0.85 0.85 0.84 0.84 0.82 0.77 0.78 0.73	0.95 0.93 0.92 0.90 0.89 0.89 0.85 0.80 0.78 0.76	0.85 0.88 0.89 0.88 0.85 0.84 0.86 0.80 0.78 0.75	0.94 0.92 0.91 0.87 0.85 0.85 0.82 0.77 0.75 0.73	37 39 46 58 68 79 70 80 85 90	$\begin{array}{c} 1.06\\ 0.98\\ 1.05\\ 1.11\\ 1.14\\ 1.19\\ 0.89\\ 0.85\\ 0.86\\ 0.81\end{array}$	1.15 1.09 1.13 1.18 1.21 1.27 0.92 0.88 0.86 0.84	1.04 1.09 1.15 1.17 1.19 0.93 0.88 0.86 0.83	1.15 1.09 1.12 1.14 1.16 1.20 0.88 0.84 0.83 0.81
C24 (L _{cro} =850; L _{cr} =110)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	32 39 50 72 98 128 199 287 337 391	31 35 38 46 53 60 70 84 91 98	28 31 36 43 50 56 68 81 88 95	31 33 37 44 51 58 67 80 87 95	28 31 36 44 52 58 70 84 90 97	27 31 36 46 56 67 89 112 123 135	0.89 0.95 1.02 1.06 1.12 1.26 1.33 1.36 1.38	0.98 0.99 1.02 1.07 1.13 1.20 1.31 1.37 1.40 1.42	0.88 0.94 0.99 1.06 1,10 1.15 1.33 1.40 1.41 1.43	0.98 0.99 1.02 1.06 1.10 1.15 1.27 1.34 1.37 1.39	26 29 33 39 45 49 58 66 69 73	0.87 0.85 0.87 0.86 0.83 0.83 0.83 0.83 0.78 0.76 0.74	0.95 0.94 0.93 0.91 0.89 0.88 0.86 0.81 0.79 0.76	0.86 0.89 0.90 0.89 0.86 0.84 0.86 0.82 0.79 0.76	0.95 0.94 0.92 0.89 0.86 0.85 0.83 0.78 0.76 0.74	32 39 41 51 61 71 61 69 73 77	1.05 1.11 1.07 1.13 1.15 1.18 0.86 0.83 0.81 0.79	1.15 1.24 1.15 1.19 1.23 1.26 0.90 0.85 0.83 0.81	1.04 1.05 1.11 1.17 1.18 1.20 0.90 0.86 0.83 0.81	1.15 1.11 1.14 1.17 1.18 1.21 0.86 0.82 0.81 0.79
C25 (L _{crd} =875; L _{cr} =110)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	28 33 43 62 84 110 172 248 291 337	27 30 33 39 47 53 62 74 80 84	24 27 31 38 44 50 60 71 77 84	27 28 32 38 45 52 62 70 76 83	24 27 31 38 45 51 62 74 80 86	23 27 31 40 49 58 77 96 107 117	0.88 0.89 0.95 1.02 1.04 1.09 1.23 1.31 1.34 1.39	0.98 0.99 1.01 1.06 1.11 1.16 1.29 1.35 1.38 1.40	0.88 0.94 0.99 1.05 1.08 1.12 1.24 1.37 1.39 1.41	0.98 0.99 1.02 1.05 1.08 1.13 1.25 1.31 1.34 1.37	23 26 29 35 39 44 52 59 62 65	0.87 0.86 0.88 0.88 0.84 0.82 0.83 0.79 0.77 0.77	0.96 0.94 0.92 0.90 0.88 0.87 0.82 0.80 0.78	0.86 0.91 0.91 0.87 0.84 0.83 0.83 0.83 0.80 0.78	0.96 0.95 0.94 0.91 0.87 0.85 0.83 0.79 0.77 0.75	28 33 36 46 54 63 52 59 62 65	1.04 1.12 1.09 1.16 1.16 1.18 0.83 0.79 0.77 0.77	1.15 1.24 1.17 1.21 1.24 1.27 0.87 0.82 0.80 0.78	1.03 1.18 1.14 1.19 1.20 1.21 0.84 0.84 0.81 0.79	1.15 1.24 1.17 1.20 1.20 1.22 0.84 0.80 0.78 0.76
C26 (L _{crd} =900; L _{cr} =110)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	25 30 39 56 77 100 156 225 264 307	24 26 29 35 40 46 55 66 71 77	22 24 28 34 40 46 55 66 71 77	24 26 29 35 41 48 58 64 70 76	22 24 28 35 41 47 57 68 73 79	21 24 29 36 44 53 70 88 97 106	0.88 0.94 0.99 1.05 1.10 1.15 1.27 1.33 1.36 1.38	0.98 0.99 1.01 1.06 1.10 1.14 1.27 1.34 1.37 1.39	0.88 0.94 0.99 1.04 1.07 1.10 1.21 1.36 1.38 1.40	0.98 0.99 1.01 1.05 1.07 1.11 1.23 1.30 1.32 1.35	21 23 27 32 36 40 48 54 57 60	0.87 0.91 0.92 0.92 0.90 0.89 0.87 0.82 0.80 0.78	0.97 0.96 0.95 0.92 0.90 0.88 0.87 0.82 0.81 0.78	0.86 0.91 0.92 0.91 0.88 0.84 0.82 0.84 0.82 0.84 0.81 0.78	0.97 0.96 0.95 0.92 0.88 0.85 0.83 0.79 0.78 0.76	25 30 33 42 50 58 48 54 57 60	1.03 1.18 1.15 1.22 1.25 1.27 0.87 0.82 0.80 0.78	1.15 1.24 1.19 1.22 1.24 1.26 0.87 0.82 0.81 0.78	1.03 1.18 1.15 1.20 1.21 1.21 0.82 0.84 0.81 0.78	1.16 1.24 1.18 1.21 1.21 1.22 0.83 0.79 0.78 0.76
C27 (L _{crd} =950; L _{crl} =110)	1.00 1.10 1.25 1.50 1.75 2.00 2.50 3.00 3.25 3.50	20 24 31 44 60 79 123 177 208 241	19 21 24 28 34 40 50 56 60 64	17 19 22 27 33 38 46 53 58 62	19 20 23 28 33 * * * 61 66	17 19 22 27 33 38 48 55 60 64	17 19 23 29 35 41 55 69 76 84	0.88 0.89 0.94 1.01 1.03 1.04 1.11 1.24 1.28 1.31	0.98 0.99 1.01 1.05 1.07 1.10 1.19 1.29 1.32 1.35	0,87 0,94 0,99 1,04 1,06 * * 1,26 1,28	0,99 0,99 1,01 1,05 1,06 1,08 1,15 1,25 1,28 1,32	17 19 21 26 29 33 39 44 47 49	0.87 0.87 0.90 0.90 0.86 0.82 0.78 0.78 0.79 0.78	0.98 0.97 0.96 0.94 0.90 0.87 0.84 0.83 0.81 0.79	0.87 0.92 0.94 0.92 0.88 * * * 0.76 0.74	0.98 0.97 0.96 0.93 0.89 0.85 0.81 0.80 0.78 0.76	20 24 27 34 41 47 39 44 47 49	1.03 1.11 1.13 1.21 1.20 1.19 0.78 0.79 0.78 0.76	1.15 1.24 1.21 1.25 1.26 1.26 0.84 0.83 0.81 0.79	1.03 1.18 1.18 1.23 1.23 * * * * 0.76 0.74	1.16 1.24 1.21 1.24 1.23 0.81 0.80 0.78 0.76

Table B5: H and Z columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) – V

* Due to numerical difficulties, no ultimate strength could be obtained for these columns.

ANNEX C – RACK-SECTION COLUMN RESULTS

Table C1: R columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - I

			SFEA		DSM			NDL			Ν	INDL	
	$\lambda_{_d}$	f_y	f_u	f_{nl}	f_{nd}	$rac{f_{nd}}{f_u}$	$\lambda_{_{dl}}$	f_{ndl}	$\frac{f_{ndl}}{f_u}$	f_{nl}^{*}	λ^*_{dl}	f_{mndl}	$rac{f_{mndl}}{f_u}$
(02)	1.00	112	93	112	84	0.91	0.99	84	0.91	112	0.99	84	0.91
	1.10	135	104	135	94	0.91	1.09	94	0.91	135	1.09	94	0.91
	1.25	174	124	171	109	0.88	1.23	107	0.87	174	1.24	109	0.88
C1 0; L _{cri} =1	1.50 1.75 2.00	251 342 447	161 177 195	219 269 321	131 153 174	0.82 0.87 0.89	1.39 1.54 1.69	123 136 149	0.76 0.77 0.76	251 342 447	1.49 1.74 1.99	131 153 174	0.82 0.87 0.89
(L _{crd} =60	2.50	698	242	430	214	0.89	1.95	171	0.71	698	2.48	214	0.89
	3.00	1005	294	543	253	0.86	2.19	191	0.65	1005	2.98	253	0.86
	3.25	1179	319	601	271	0.85	2.31	200	0.63	1179	3.23	271	0.85
-	3.50	1368 139	343 114	661 139	289 105	0.84	2.42	209 105	0.61	1368 139	3.48 0.99	289 105	0.84
_{cri} =150)	1.10	168	129	168	117	0.91	1.09	117	0.91	168	1.09	117	0.91
	1.25	217	154	203	135	0.88	1.20	130	0.85	216	1.24	135	0.88
	1.50	312	196	259	164	0.84	1.36	149	0.76	311	1.48	163	0.83
C2 ⊨620; L	1.75 2.00 2.50	425 555 868	215 236 292	318 379 506	191 217 267	0.89 0.92 0.92	1.50 1.64 1.89	165 181 208	0.77 0.76 0.71	422 549 856	1.73 1.97 2.46	190 216 265	0.88 0.92 0.91
(L _{crc}	3.00	1250	353	639	315	0.89	2.13	232	0.66	1229	2.95	312	0.89
	3.25	1466	381	707	338	0.89	2.24	243	0.64	1441	3.20	335	0.88
	3.50	1701	409	777	360	0.88	2.35	254	0.62	1670	3.44	358	0.87
=140)	1.00	129	106	129	98	0.92	0.99	98	0.92	129	0.99	98	0.92
	1.10	156	120	155	109	0.91	1.09	109	0.90	156	1.09	109	0.91
	1.25	202	142	185	126	0.89	1.19	120	0.84	199	1.23	126	0.89
C3 340; L _{cri} ≂	1.50 1.75 2.00	291 396 517	179 195 215	236 289 344	152 178 202	0.85 0.91 0.94	1.34 1.48 1.62	137 152 166	0.76 0.78 0.77	283 381 492	1.47 1.70 1.94	150 174 198	0.84 0.89 0.92
(L _{crd} =6	2.50	808	257	459	249	0.97	1.87	191	0.74	758	2.40	242	0.94
	3.00	1163	322	580	293	0.91	2.10	213	0.66	1080	2.87	283	0.88
	3.25	1365	349	642	314	0.90	2.21	224	0.64	1262	3.10	304	0.87
6	1.00 1.10	61 74	48	61 71	46	0.90	1.00	46 50	0.02	61 73	1.00 1.09	46 51	0.96
-orF=23	1.25	95	63	84	59	0.94	1.17	55	0.88	94	1.23	59	0.94
	1.50	137	77	108	72	0.93	1.32	63	0.82	133	1.47	71	0.91
C4 1050; L	1.75 2.00 2.50	187 244 382	85 96 121	132 157 209	84 95 117	0.99 1.00 0.97	1.46 1.60	70 77 88	0.83 0.80 0.73	179 232 357	1.71 1.94 2.41	82 93 114	0.96 0.97 0.94
(L _{crd} =	3.00	550	147	264	138	0.94	2.07	99	0.67	509	2.87	133	0.91
	3.25	645	160	292	148	0.93	2.18	104	0.65	595	3.11	143	0.89
	3.50	748	173	321	158	0.91	2.28	108	0.63	688	3.34	152	0.88
6	1.00	85 103	69 77	85 97	64 72	0.93	0.99	64 69	0.93 0.90	85 102	0.99	64 72	0.93 0.93
_ _{cr} =19	1.25 1.50	134 192	91 115	115 146	83 100	0.91 0.87	1.15 1.30	76 87	0.84	129 181	1.22 1.45	83 97	0.91 0.85
C5	2.00	342	133	213	133	1.00	1.57	106	0.80	310	1.90	127	0.96 0.92
=950; i	2.50	534	168	284	164	0.98	1.82	122	0.73	472	2.34	155	
(L _{crc}	3.00	769	203	358	193	0.95	2.04	136	0.67	666	2.78	181	0.89
	3.25	903	220	396	207	0.94	2.14	143	0.65	776	3.00	194	0.88
	3.50	1047	236	435	221	0.94	2.25	149	0.63	894	3.22	206	0.87
(0)	1.00	110	90	107	83	0.93	0.98	82	0.91	110	0.99	83	0.93
	1.10	133	101	122	93	0.92	1.04	88	0.87	131	1.08	93	0.92
3 L _{cr} =1ε	1.25 1.50 1.75	172 248 338	119 148 157	145 184 225	107 130 151	0.90 0.88 0.96	1.14 1.29 1.42	97 111 124	0.82 0.75 0.79	167 235 314	1.22 1.45 1.68	107 126 146	0.90 0.85 0.93
_л =870;	2.00	441	173	268	172	1.00	1.55	135	0.78	405	1.91	165	0.96
	2.50	689	216	357	212	0.98	1.79	156	0.72	620	2.36	202	0.93
(L _{cn}	3.00	993	259	450	249	0.96	2.01	174	0.67	880	2.81	236	0.91
	3.25	1165	280	498	268	0.96	2.11	182	0.65	1026	3.03	253	0.90
	3.50	1351	300	546	286	0.95	2.21	190	0.63	1183	3.26	270	0.90
(02	1.00	105	85	100	79	0.93	0.97	77	0.91	104	0.99	79	0.93
	1.10	127	95	114	88	0.93	1.04	83	0.87	123	1.08	88	0.93
	1.25	164	113	136	102	0.90	1.13	92	0.81	155	1.21	102	0.90
; L _{cr} ≓1	1.50 1.75	236 322	138 145	173 211	124 144	0.90 0.99	1.28 1.41	105 117	0.76	217 288	1.43 1.65	118 136	0.86 0.94
С	2.00	420	160	251	164	1.02	1.54	128	0.80	368	1.86	154	0.96
1	2.50	656	203	334	202	0.99	1.77	147	0.72	557	2.29	187	0.92
1000	3.00	945	240	421	237	0.99	1 99	164	0.68	783	2.72	218	0.91
(L _c	3.25 3.50	1109 1286	263 282	466 511	255 272	0.97 0.96	2.09	172 180	0.65 0.64	910 1047	2.93 3.14	234 248	0.89

			SFEA		DSM			NDL			Ν	INDL	
	$\lambda_{_d}$	f_y	f_u	f_{nl}	f_{nd}	$rac{f_{nd}}{f_u}$	$\lambda_{_{dl}}$	f_{ndl}	$rac{f_{ndl}}{f_u}$	f_{nl}^{*}	λ^*_{dl}	$f_{\scriptscriptstyle mndl}$	$rac{f_{mndl}}{f_u}$
	1.00	96	77	89	72	0.94	0.96	69	0.90	93	0.98	72	0.94
ଚ	1.10	116	86	101	81	0.94	1.02	75	0.87	111	1.07	81	0.94
17	1.25	150	102	120	93	0.91	1.11	82	0.81	139	1.20	93	0.91
Ē	1.50	216	120	153	113	0.94	1.25	94	0.78	192	1.41	106	0.89
ت- 8	1.75	294	127	187	132	1.04	1.39	105	0.82	254	1.62	123	097
ЗġС	2.00	383	143	222	150	1.05	1.51	114	0.80	324	1.83	138	0.97
ĥ	2.50	599	180	295	184	1.02	1.74	132	0.73	487	2.24	167	0.93
crd	3.00	863	215	371	217	1.01	1.96	147	0.69	682	2.65	195	0.91
E	3.25	1012	233	410	233	1.00	2.06	155	0.66	791	2.86	209	0.90
	3.50	1174	250	450	248	0.99	2.16	161	0.65	908	3.06	222	0.89
	1.00	88	70	79	66	0.95	0.94	62	0.89	84	0.97	66	0.95
9 L _{cr/} =170)	1.10	107	78	90	74	0.95	1.00	67	0.86	99	1.05	74	0.95
	1.25	138	91	106	86	0.94	1.09	74	0.82	124	1.18	86	0.94
	1.50	198	104	135	104	1.00	1.23	85	0.82	170	1.38	96	0.92
	1.75	270	113	165	121	1.07	1.36	94	0.84	224	1.58	110	0.98
ΰ Ċ	2.00	352	127	196	138	1.08	1.48	103	0.81	283	1.78	124	0.98
ရှိ	2.50	551	160	261	169	1.06	1.71	119	0.74	423	2.18	150	0.94
crd	3.00	793	193	328	199	1.03	1.92	133	0.69	588	2.57	174	0.90
E	3.25	930	208	363	214	1.03	2.02	139	0.67	680	2.76	186	0.89
	3.50	1079	223	398	228	1.02	2.11	146	0.65	779	2.96	198	0.89
	1.00	146	117	126	110	0.94	0.92	101	0.86	135	0.95	110	0.94
0	1.10	177	127	144	123	0.97	0.98	109	0.86	159	1.03	123	0.97
17	1.25	228	144	170	142	0.99	1.07	121	0.84	196	1.15	142	0.99
L.	1.50	328	163	216	172	1.06	1.20	138	0.85	267	1.34	155	0.95
2 2	1.75	447	175	264	201	1.15	1.33	154	0.88	347	1.53	177	1.01
sc c	2.00	584	198	313	229	1.16	1.45	168	0.85	436	1.71	199	1.00
=10	2.50	912	248	415	281	1.13	1.67	194	0.78	642	2.08	239	0.96
, L	3.00	1313	295	522	332	1.12	1.87	217	0.74	883	2.44	277	0.94
(L _c	3.25	1541	317	577	356	1.12	1.97	228	0.72	1017	2.61	296	0.93
	3.50	1787	337	633	380	1.13	2.06	238	0.71	1160	2.79	314	0.93

Table C2: R columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - II

Table C3: R columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - III

			SF	EA		I	DSM			NDL			MNDL	
	λ_l	f_y	$f_{u.D}$	$f_{u.L}$	f_{nl}	f_{nd}	$\frac{f_{nl}}{f_{u.D}}$	$\frac{f_{nl}}{f_{u.L}}$	f_{ndl}	$\frac{f_{ndl}}{f_{u.D}}$	$\frac{f_{ndl}}{f_{u.L}}$	$f_{\scriptscriptstyle mndl}$	$rac{f_{mndl}}{f_{u.D}}$	$rac{f_{mndl}}{f_{u.L}}$
	1.00	138	112	118	117	105	1.05	0.99	95	0.85	0.80	105	0.94	0.89
0	1.10	167	122	132	133	118	1.09	1.01	103	0.84	0.78	118	0.96	0.89
17	1.25	216	134	145	158	136	1.18	1.09	114	0.85	0.78	136	1.01	0.94
Ē.	1.50	310	152	156	200	164	1.32	1.28	130	0.86	0.83	164	1.08	1.05
<u>1</u>	1.75	423	163	165	244	192	1.50	1.48	145	0.89	0.88	168	1.03	1.02
ည်ည်	2.00	552	184	175	290	218	1.57	1.66	159	0.86	0.91	189	1.03	1.08
=10	2.50	862	232	222	384	269	1.66	1.73	183	0.79	0.83	228	0.98	1.02
Ę.	3.00	1242	276	269	483	317	1.75	1.80	205	0.74	0.76	264	0.96	0.98
(F	3.25	1457	295	292	534	340	1.81	1.83	215	0.73	0.74	281	0.95	0.96
	3.50	1690	314	312	586	363	1.87	1.88	225	0.72	0.72	299	0.95	0.96
	1.00	130	107	111	110	100	1.03	0.99	90	0.84	0.81	100	0.93	0.90
0	1.10	157	118	125	125	112	1.06	1.00	98	0.83	0.78	112	0.95	0.89
=17	1.25	203	128	139	148	129	1.16	1.07	108	0.84	0.78	129	1.01	0.93
-cul	1.50	292	145	151	188	157	1.30	1.25	124	0.85	0.82	157	1.08	1.04
; r	1.75	398	156	164	230	183	1.47	1.40	138	0.88	0.84	160	1.03	0.98
S S	2.00	519	175	182	273	208	1.56	1.50	151	0.86	0.83	180	1.03	0.99
=1(2.50	811	220	225	362	256	1.64	1.61	174	0.79	0.78	217	0.99	0.96
crd	3.00	1168	262	266	455	302	1.74	1.71	195	0.74	0.73	251	0.96	0.95
(F	3.25	1371	281	285	503	324	1.79	1.76	205	0.73	0.72	268	0.95	0.94
	3.50	1590	299	303	552	346	1.84	1.82	214	0.72	0.71	285	0.95	0.94
	1.00	157	141	134	133	123	0.95	1.00	111	0.79	0.83	123	0.87	0.92
30)	1.10	190	156	150	151	138	0.97	1.01	121	0.77	0.80	138	0.89	0.92
= 18	1.25	245	166	164	179	160	1.08	1.09	134	0.81	0.82	160	0.97	0.98
-cu	1.50	353	177	177	228	195	1.29	1.29	154	0.87	0.87	195	1.10	1.10
13); L	1.75	481	189	190	278	228	1.47	1.46	172	0.91	0.90	193	1.02	1.01
υõ	2.00	628	209	206	329	259	1.58	1.60	188	0.90	0.91	215	1.03	1.04
= 1	2.50	981	262	258	437	320	1.67	1.69	217	0.83	0.84	258	0.98	1.00
-crd	3.00	1412	309	308	550	377	1.78	1.79	243	0.79	0.79	297	0.96	0.97
E	3.25	1657	330	329	608	405	1.84	1.85	255	0.77	0.78	316	0.96	0.96
1	3.50	1922	350	350	667	432	1.91	1.91	267	0.76	0.76	335	0.96	0.96

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				SF	EA		I	DSM			NDL			MNDL	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		c.			<i>c</i>	-		f	f		$f_{n,n}$	$f_{n,n}$		f	f
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		λ_l	f_y	$f_{u.D}$	$f_{u.L}$	f_{nl}	f_{nd}	$\frac{J nl}{f}$	$\frac{J nl}{f}$	f_{ndl}	<u>f</u>	$\frac{J nal}{f}$	f_{mndl}	$\frac{J mndl}{L}$	$\frac{J mndl}{L}$
$ \begin{array}{c} 1.00 & 133 & 123 & 114 & 113 & 107 & 0.492 & 0.493 & 97 & 0.78 & 0.485 & 107 & 0.87 & 0.84 & 0.49 \\ 1.25 & 208 & 146 & 143 & 152 & 140 & 1.04 & 1.07 & 117 & 0.00 & 0.81 & 140 & 0.98 & 0.99 \\ 1.25 & 208 & 146 & 143 & 152 & 140 & 1.04 & 1.07 & 117 & 0.00 & 0.81 & 140 & 0.98 & 0.99 \\ 1.25 & 208 & 0.33 & 161 & 162 & 230 & 228 & 1.55 & 1.54 & 156 & 0.09 & 0.90 & 177 & 0.98 & 0.97 \\ 1.2 & 2.50 & 533 & 161 & 162 & 230 & 228 & 1.55 & 1.54 & 156 & 0.09 & 0.90 & 0.92 & 0.93 \\ 1.2 & 2.50 & 533 & 227 & 224 & 377 & 281 & 1.56 & 1.80 & 1.80 & 224 & 0.77 & 0.78 & 0.80 & 2.38 & 0.88 & 0.89 \\ 1.00 & 122 & 114 & 105 & 104 & 101 & 0.91 & 0.99 & 91 & 0.79 & 0.86 & 101 & 0.88 & 0.99 \\ 1.10 & 122 & 114 & 105 & 104 & 101 & 0.91 & 0.99 & 91 & 0.79 & 0.86 & 101 & 0.88 & 0.96 \\ 0.1 & 10 & 122 & 114 & 105 & 110 & 1.02 & 1.02 & 1.02 & 1.07 & 1.080 & 1.80 & $								$J_{u.D}$	$J_{u.L}$		$J_{u.D}$	$J_{u.L}$		J _{u.D}	$J_{u.L}$
$ \begin{array}{c} \begin{array}{c} 1.25 \\ 1.2$	6	1.00	133	123	114	113	107 121	0.92	0.99	97 105	0.78	0.85	107	0.87	0.94
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	17(1.25	208	146	143	152	140	1.04	1.07	103	0.80	0.81	140	0.05	0.94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.50	300	158	157	193	170	1.22	1.23	134	0.85	0.85	170	1.08	1.09
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	C14 50; I	1.75	408	167	169	236	200	1.41	1.40	150	0.90	0.89	159	0.95	0.94
$ \begin{bmatrix} 9 \\ 9 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 9 \\ 1 \\ 1$	125	2.50	833	227	224	372	281	1.64	1.66	190	0.91	0.90	209	0.98	0.97
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	crd	3.00	1200	269	268	467	331	1.74	1.74	213	0.79	0.80	238	0.88	0.89
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1	3.25	1408	287 305	287 305	517 567	356 380	1.80	1.80	224 234	0.78	0.78	252 266	0.88	0.88
$ \begin{bmatrix} 0 & 1.10 & 148 & 125 & 117 & 118 & 114 & 0.94 & 1.01 & 99 & 0.79 & 0.84 & 114 & 0.91 & 0.97 \\ 1.50 & 275 & 149 & 148 & 177 & 152 & 1.02 & 1.05 & 110 & 0.80 & 0.83 & 132 & 0.96 & 0.99 \\ 1.50 & 275 & 149 & 148 & 177 & 152 & 1.19 & 1.20 & 127 & 0.86 & 0.89 & 147 & 0.89 & 0.92 \\ 2.00 & 489 & 180 & 170 & 257 & 216 & 1.43 & 1.51 & 156 & 0.86 & 0.92 & 162 & 0.90 & 0.95 \\ 2.00 & 489 & 180 & 170 & 257 & 216 & 1.43 & 1.51 & 156 & 0.86 & 0.92 & 162 & 0.90 & 0.95 \\ 3.00 & 1100 & 255 & 249 & 428 & 316 & 1.66 & 1.72 & 203 & 0.79 & 0.81 & 216 & 0.85 & 0.87 \\ 3.50 & 1497 & 288 & 283 & 519 & 362 & 1.80 & 1.84 & 223 & 0.77 & 0.80 & 228 & 0.84 & 0.86 \\ 1.10 & 285 & 273 & 254 & 424 & 240 & 0.89 & 0.96 & 215 & 0.79 & 0.85 & 240 & 0.88 & 0.94 \\ 1.10 & 345 & 303 & 292 & 275 & 270 & 0.91 & 0.94 & 234 & 0.77 & 0.80 & 227 & 0.89 & 0.38 \\ 1.10 & 285 & 293 & 549 & 326 & 315 & 0.94 & 0.94 & 234 & 0.77 & 0.85 & 240 & 0.88 & 0.94 \\ 1.10 & 345 & 303 & 395 & 404 & 505 & 453 & 1.28 & 1.25 & 338 & 0.86 & 0.84 & 351 & 0.94 & 0.94 \\ 1.50 & 642 & 383 & 386 & 414 & 386 & 1.08 & 1.07 & 302 & 0.79 & 0.78 & 386 & 1.01 & 1.00 \\ 1.10 & 345 & 505 & 505 & 795 & 614 & 1.57 & 1.43 & 1.80 & 6.84 & 361 & 0.99 & 0.87 \\ 1.10 & 285 & 276 & 1783 & 505 & 505 & 795 & 614 & 1.57 & 1.28 & 0.84 & 0.88 & 388 & 0.91 & 0.92 \\ 1.50 & 642 & 383 & 386 & 414 & 386 & 1.08 & 1.07 & 302 & 0.78 & 0.88 & 248 & 0.89 & 0.89 \\ 1.00 & 269 & 258 & 240 & 229 & 229 & 0.89 & 0.96 & 1.60 & 0.83 & 0.83 & 576 & 0.89 & 0.89 \\ 1.00 & 269 & 258 & 246 & 229 & 229 & 0.89 & 0.96 & 0.96 & 0.80 & 3.83 & 576 & 0.89 & 0.89 \\ 1.10 & 326 & 268 & 276 & 269 & 269 & 0.91 & 0.94 & 224 & 0.78 & 0.88 & 368 & 0.91 & 0.92 \\ 1.50 & 605 & 369 & 372 & 300 & 372 & 1.06 & 1.05 & 1.03 & 0.81 & 259 & 0.91 & 0.94 \\ 1.50 & 205 & 1783 & 546 & 427 & 229 & 0.89 & 0.96 & 180 & 0.78 & 0.88 & 546 & 0.89 & 0.89 \\ 1.00 & 269 & 258 & 246 & 259 & 269 & 0.99 & 0.94 & 0.94 & 0.84 & 0.89 & 0.90 \\ 1.10 & 268 & 228 & 248 & 347 & 374 & 1.28 & 1.36 & 1.48 & 1.38 & 516 & 0.86 & 0.88 & 0.89 & 0.99 \\ 1.00 & 269 & 268 & 248 & 247 & 229$		1.00	122	114	105	104	101	0.91	0.99	91	0.79	0.86	101	0.88	0.96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02	1.10	148	125	117	118	114	0.94	1.01	99	0.79	0.84	114	0.91	0.97
$ \begin{array}{c} 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 \\ 91 $	ri=1	1.25	275	137	133	140	132	1.02	1.05	110	0.80	0.83	132	0.96	0.99
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	15); L _c	1.75	374	164	159	216	189	1.32	1.36	142	0.86	0.89	147	0.89	0.92
$ \begin{bmatrix} 1 & 2.50 & 7.64 & 2.18 & 207 & 3.41 & 2.67 & 1.56 & 1.65 & 1.81 & 0.83 & 0.87 & 1.90 & 0.87 & 0.92 \\ 3.25 & 1291 & 272 & 266 & 474 & 339 & 1.74 & 1.78 & 213 & 0.77 & 0.80 & 228 & 0.84 & 0.86 \\ 0.00 & 1407 & 288 & 283 & 519 & 362 & 1.80 & 1.84 & 223 & 0.77 & 0.79 & 0.85 & 240 & 0.88 & 0.86 \\ 1.00 & 285 & 273 & 254 & 242 & 240 & 0.89 & 0.96 & 215 & 0.79 & 0.85 & 240 & 0.88 & 0.94 \\ 1.25 & 446 & 347 & 347 & 326 & 315 & 0.94 & 0.94 & 254 & 0.77 & 0.80 & 228 & 0.94 & 0.94 \\ 1.25 & 446 & 347 & 347 & 326 & 315 & 0.94 & 0.94 & 261 & 0.75 & 0.75 & 315 & 0.91 & 0.91 \\ 1.25 & 446 & 347 & 347 & 326 & 315 & 1.28 & 1.25 & 338 & 0.86 & 0.84 & 351 & 0.89 & 0.87 \\ 1.20 & 142 & 150 & 642 & 383 & 366 & 144 & 366 & 1.07 & 302 & 0.79 & 0.78 & 366 & 1.01 & 1.00 \\ 1.75 & 873 & 395 & 404 & 505 & 453 & 1.28 & 1.27 & 338 & 0.86 & 0.84 & 351 & 0.89 & 0.87 \\ 2.00 & 178 & 505 & 505 & 795 & 618 & 1.41 & 1.41 & 372 & 0.87 & 0.88 & 388 & 0.91 & 0.92 \\ 3.00 & 2667 & 580 & 580 & 999 & 758 & 1.72 & 1.77 & 485 & 0.84 & 0.84 & 518 & 0.89 & 0.89 \\ 3.50 & 3494 & 645 & 645 & 1212 & 870 & 1.88 & 533 & 0.83 & 0.83 & 576 & 0.89 & 0.89 \\ 3.50 & 3494 & 645 & 645 & 1212 & 870 & 1.88 & 533 & 0.83 & 0.83 & 576 & 0.89 & 0.89 \\ 1.10 & 269 & 228 & 226 & 229 & 0.99 & 0.94 & 224 & 0.78 & 0.83 & 576 & 0.89 & 0.89 \\ 1.10 & 269 & 258 & 240 & 229 & 2.90 & 0.94 & 0.94 & 224 & 0.78 & 0.83 & 576 & 0.89 & 0.94 \\ 1.10 & 269 & 258 & 240 & 229 & 0.39 & 0.94 & 225 & 0.76 & 0.76 & 0.33 & 0.91 & 0.94 \\ 1.50 & 605 & 369 & 372 & 300 & 372 & 1.06 & 1.05 & 250 & 0.79 & 0.78 & 372 & 1.01 & 1.00 \\ 1.10 & 259 & 254 & 423 & 370 & 619 & 1.55 & 1.55 & 1.55 & 416 & 0.86 & 434 & 0.89 & 0.95 \\ 1.10 & 235 & 228 & 289 & 267 & 0.93 & 0.93 & 0.93 & 221 & 0.77 & 0.76 & 267 & 0.93 & 0.92 \\ 1.00 & 2452 & 557 & 546 & 943 & 750 & 619 & 1.55 & 1.55 & 1.56 & 0.86 & 0.86 & 434 & 0.89 & 0.90 \\ 1.00 & 2452 & 257 & 546 & 943 & 750 & 619 & 1.55 & 1.55 & 1.68 & 0.86 & 456 & 0.88 & 0.89 \\ 1.00 & 2452 & 257 & 546 & 943 & 750 & 619 & 1.55 & 1.55 & 1.56 & 0.78 & 0.88 & 346 & 1.14 & 1.11 \\ 1.00 & 245 & 228$	30C	2.00	489	180	170	257	216	1.43	1.51	156	0.86	0.92	162	0.90	0.95
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	њ1	2.50	764 1100	218	207	341 428	267	1.56	1.65	203	0.83	0.87	216	0.87	0.92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Lo	3.25	1291	272	266	474	339	1.74	1.78	213	0.78	0.80	228	0.84	0.86
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>	3.50	1497	288	283	519	362	1.80	1.84	223	0.77	0.79	240	0.83	0.85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	1.10	285 345	303	∠54 292	242	240 270	0.89	0.96	∠15 234	0.79	0.85	240 270	0.88	0.94
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$:110	1.25	446	347	347	326	315	0.94	0.94	261	0.75	0.75	315	0.91	0.91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.50	642 872	383	386	414	386	1.08	1.07	302	0.79	0.78	386	1.01	1.00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 (2.00	1141	425	424	599	518	1.41	1.41	372	0.87	0.88	388	0.03	0.92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Å.	2.50	1783	505	505	795	641	1.57	1.57	432	0.86	0.86	456	0.90	0.90
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(L _{cn}	3.00	2567 3012	580 615	580 615	999 1105	758 814	1.72	1.72	485 510	0.84	0.84	518 547	0.89	0.89
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.50	3494	645	645	1212	870	1.88	1.88	533	0.83	0.83	576	0.89	0.89
$ \begin{bmatrix} 0 & 1.10 & 326 & 286 & 276 & 260 & 259 & 0.91 & 0.94 & 224 & 0.78 & 0.81 & 259 & 0.91 & 0.94 \\ 1.25 & 420 & 331 & 329 & 308 & 303 & 0.93 & 0.93 & 250 & 0.76 & 0.76 & 303 & 0.91 & 0.94 \\ 1.50 & 605 & 369 & 372 & 390 & 372 & 1.06 & 1.05 & 290 & 0.79 & 0.78 & 372 & 1.01 & 1.00 \\ 1.7 & 1.75 & 824 & 387 & 392 & 476 & 437 & 1.23 & 1.21 & 325 & 0.84 & 0.83 & 437 & 1.13 & 1.11 \\ 0.92 & 2.00 & 1076 & 441 & 404 & 565 & 500 & 1.28 & 1.40 & 358 & 0.81 & 0.89 & 370 & 0.84 & 0.92 \\ 0.92 & 2.50 & 1682 & 485 & 483 & 750 & 619 & 1.55 & 1.55 & 416 & 0.86 & 0.86 & 434 & 0.89 & 0.90 \\ 0.92 & 2.50 & 1682 & 485 & 483 & 750 & 619 & 1.73 & 468 & 0.84 & 0.86 & 434 & 0.89 & 0.90 \\ 3.25 & 2842 & 589 & 587 & 1042 & 787 & 1.77 & 1.78 & 468 & 0.84 & 0.86 & 492 & 0.88 & 0.89 \\ 3.50 & 3296 & 619 & 616 & 1143 & 841 & 1.85 & 1.86 & 515 & 0.83 & 0.84 & 519 & 0.88 & 0.88 \\ 3.50 & 3296 & 619 & 616 & 1143 & 841 & 1.85 & 1.86 & 515 & 0.83 & 0.84 & 519 & 0.88 & 0.89 \\ \hline 1.00 & 235 & 228 & 209 & 200 & 202 & 0.088 & 0.96 & 180 & 0.79 & 0.86 & 202 & 0.89 & 0.97 \\ 1.10 & 285 & 248 & 242 & 227 & 229 & 0.92 & 0.94 & 197 & 0.80 & 0.81 & 229 & 0.92 & 0.94 \\ 1.25 & 367 & 288 & 289 & 269 & 267 & 0.93 & 0.93 & 221 & 0.77 & 0.76 & 267 & 0.93 & 0.92 \\ 0.94 & 1.25 & 367 & 288 & 289 & 269 & 267 & 0.93 & 0.93 & 221 & 0.77 & 0.76 & 267 & 0.93 & 0.92 \\ 0.94 & 1.55 & 1.55 & 1470 & 410 & 406 & 655 & 548 & 1.05 & 1.02 & 287 & 0.85 & 0.83 & 386 & 1.14 & 1.11 \\ 0.96 & 2.00 & 941 & 350 & 360 & 494 & 442 & 1.41 & 1.37 & 316 & 0.90 & 0.88 & 316 & 0.90 & 0.88 \\ 0.90 & 0.91 & 3.68 & 0.90 & 0.91 & 368 & 0.90 & 0.91 & 368 & 0.90 & 0.91 \\ 3.25 & 2484 & 503 & 499 & 911 & 697 & 1.81 & 1.83 & 435 & 0.86 & 0.87 & 435 & 0.86 & 0.87 \\ 3.50 & 2800 & 531 & 527 & 999 & 745 & 1.88 & 1.90 & 0.81 & 0.87 & 214 & 0.91 & 0.98 \\ 0.00 & 1.10 & 296 & 262 & 251 & 236 & 214 & 0.88 & 0.95 & 190 & 0.81 & 0.87 & 214 & 0.91 & 0.98 \\ 0.01 & 1.00 & 245 & 236 & 218 & 208 & 244 & 0.88 & 0.95 & 190 & 0.81 & 0.87 & 244 & 0.94 & 0.94 \\ 0.57 & 0.551 & 346 & 348 & 355 & 349 & 1.03 & 1.02 & 271 & 0.78 & 0.83 $		1.00	269	258	240	229	229	0.89	0.95	205	0.79	0.85	229	0.89	0.96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10)	1.10	326 420	286	329	260 308	259 303	0.91	0.94	224	0.78	0.81	259 303	0.91	0.94
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	l f	1.50	605	369	372	390	372	1.06	1.05	290	0.79	0.78	372	1.01	1.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	317 3; L	1.75	824	387	392	476	437	1.23	1.21	325	0.84	0.83	437	1.13	1.11
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-85	2.00	1682	441	404 483	750	619	1.20	1.40	416	0.81	0.89	434	0.84	0.92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	crd	3.00	2422	557	546	943	732	1.69	1.73	468	0.84	0.86	492	0.88	0.90
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	3.25	2842	589 619	587 616	1042	787 841	1.77	1.78	492 515	0.83	0.84	519 546	0.88	0.88
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.00	235	228	209	200	202	0.88	0.96	180	0.79	0.86	202	0.89	0.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0)	1.10	285	248	242	227	229	0.92	0.94	197	0.80	0.81	229	0.92	0.94
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.25	367 529	288	289	269 341	267 328	0.93	0.93	221	0.77	0.76	267	0.93	0.92
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18 · L _{cr}	1.75	720	338	348	416	386	1.23	1.20	287	0.85	0.83	386	1.14	1.11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	380 C	2.00	941	350	360	494	442	1.41	1.37	316	0.90	0.88	316	0.90	0.88
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2.50	1470 2116	410 473	406	655 824	548 648	1.60 1.74	1.61 1.76	368	0.90	0.91	368	0.90	0.91
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Fč	3.25	2484	503	499	911	697	1.81	1.83	435	0.86	0.87	435	0.86	0.87
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L	3.50	2880	531	527	999	745	1.88	1.90	455	0.86	0.86	455	0.86	0.86
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\$	1.10	∠45 296	236 262	218 251	208 236	∠14 242	0.88	0.95	209	0.81	0.87	∠14 242	0.91	0.98
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$:110	1.25	382	303	301	280	284	0.92	0.93	234	0.77	0.78	284	0.94	0.94
$ \begin{bmatrix} 5 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	9 L _{cr/} =	1.50	551 750	346 366	348	355 433	349 412	1.03	1.02	271	0.78	0.78	349 412	1.01	1.00
	ΰĝ	2.00	979	409	382	514	472	1.26	1.35	336	0.82	0.88	340	0.83	0.89
2.50 1530 463 449 682 585 1.47 1.52 392 0.85 0.87 398 0.86 0.89	.8≓	2.50	1530	463	449	682	585	1.47	1.52	392	0.85	0.87	398	0.86	0.89
$\begin{bmatrix} 3 & 3.00 & 2203 & 518 & 517 & 858 & 693 & 1.66 & 1.66 & 441 & 0.85 & 0.85 & 449 & 0.87 & 0.87 \\ \hline 3.25 & 2586 & 548 & 548 & 948 & 745 & 1.73 & 1.73 & 464 & 0.85 & 0.85 & 473 & 0.86$	(L _{cn}	3.00 3.25	2203 2586	518 548	517 548	858 948	693 745	1.66 1.73	1.66 1.73	441 464	0.85	0.85 0.85	449 473	0.87	0.87
<u>3.50 2999 577 576 1040 797 1.80 1.81 486 0.84 0.84 496 0.86 0.86</u>		3.50	2999	577	576	1040	797	1.80	1.81	486	0.84	0.84	496	0.86	0.86
1.00 224 217 200 190 199 0.88 0.95 177 0.81 0.88 199 0.92 0.99 110 271 240 230 216 236 0.00 0.04 104 0.84 236 0.04 0.04	_	1.00	224	217	200	190	199	0.88	0.95	177	0.81	0.88	199	0.92	0.99
$\begin{bmatrix} 2 & 1.10 & 2/1 & 240 & 230 & 210 & 226 & 0.90 & 0.94 & 194 & 0.81 & 0.84 & 226 & 0.94 & 0.98 \\ 1.25 & 350 & 280 & 276 & 256 & 265 & 0.91 & 0.93 & 218 & 0.78 & 0.79 & 265 & 0.95 & 0.96 \end{bmatrix}$	110)	1.10	271 350	240 280	230	216 256	226	0.90	0.94	218	0.81	0.84	226	0.94	0.98
<u><u><u></u></u> 1.50 504 322 325 325 328 1.01 1.00 254 0.79 0.78 328 1.02 1.01</u>	cri= 1	1.50	504	322	325	325	328	1.01	1.00	254	0.79	0.78	328	1.02	1.01
0.7 1.75 686 332 346 396 387 1.19 1.15 286 0.86 0.83 387 1.16 1.12 0.0 0.00 0.00 0.00 0.00 0.00 0.00	C20 0; L	1.75	686 806	332	346	396	387	1.19	1.15	286	0.86	0.83	387	1.16	1.12
$\begin{bmatrix} 2 & 0 \\ 0 \\ 0 \\ 2.50 \end{bmatrix} \begin{bmatrix} 2.00 \\ 1399 \end{bmatrix} \begin{bmatrix} 307 \\ 414 \\ 418 \\ 624 \\ 551 \\ 1.51 \\ 1.51 \end{bmatrix} \begin{bmatrix} 1.20 \\ 1.20 \\ 368 \\ 0.89 \\ 0.88 \\ 0.89 \\ 0.88 \\ 368 \\ 0.89 \end{bmatrix} \begin{bmatrix} 0.90 \\ 0.80 \\ 313 \\ 0.90 \\ 0.88 \\ 368 \\ 0.89 \\ 0.88 \end{bmatrix}$, 89	2.00	1399	414	418	624	551	1.54	1.49	368	0.89	0.88	368	0.89	0.88
b 3.00 2015 477 482 785 653 1.64 1.63 415 0.87 0.86 415 0.87 0.86	Lerd	3.00	2015	477	482	785	653	1.64	1.63	415	0.87	0.86	415	0.87	0.86
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3.25	2365	509 538	512 539	867 951	703	1.70 1.77	1.69	436 457	0.86	0.85	436 457	0.86	0.85

Table C4: R columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - IV

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				SF	EA		I	DSM			NDL			MNDL	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0					f_{ml}	f_{ml}		$f_{n,dl}$	f_{ndl}		f "	f "
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		λ_l	f_y	$f_{u.D}$	$f_{u.L}$	f_{nl}	f_{nd}	$\frac{J}{f}$	$\frac{J}{f}$	f_{ndl}	$\frac{5 \text{ nal}}{f}$	$\frac{5 \text{ man}}{f}$	f_{mndl}	$\frac{J mndl}{f}$	$\frac{J mndl}{f}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.00	040	0.07	100	101	040	$J_{u.D}$	$J_{u.L}$	100	$J_{u.D}$	$J_{u.L}$	040	$J_{u.D}$	$J_{u.L}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝ	1.00	213	207	219	205	213	0.87	0.95	169	0.82	0.89	213	0.97	0.99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$:110	1.25	332	266	263	243	256	0.91	0.93	209	0.79	0.80	256	0.96	0.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.50	478	311	313	308	316	0.99	0.99	244	0.78	0.78	316	1.02	1.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0; C2	2.00	851	351	354	446	429	1.13	1.13	304	0.83	0.85	304	0.87	0.86
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16≓	2.50	1329	402	401	593	533	1.47	1.48	355	0.88	0.89	355	0.88	0.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(L _{cre}	3.00	1914 2246	464 492	464 492	745 824	632 680	1.61	1.61	401 422	0.86	0.86	401 422	0.86	0.86
$ \begin{bmatrix} 1.00 & 195 & 191 & 175 & 166 & 195 & 0.87 & 0.95 & 158 & 0.82 & 0.90 & 195 & 1.02 & 1.12 \\ 0.110 & 236 & 214 & 201 & 189 & 203 & 0.88 & 0.94 & 173 & 0.81 & 0.86 & 203 & 0.95 & 1.01 \\ 1.25 & 305 & 251 & 241 & 223 & 240 & 0.89 & 0.93 & 196 & 0.78 & 0.81 & 240 & 0.96 & 0.99 \\ 1.50 & 439 & 298 & 291 & 283 & 297 & 0.95 & 0.97 & 229 & 0.77 & 0.79 & 297 & 1.00 & 1.02 \\ 1.75 & 598 & 321 & 315 & 346 & 352 & 1.08 & 1.10 & 259 & 0.81 & 0.82 & 352 & 1.10 & 1.12 \\ 2.06 & 2.00 & 781 & 333 & 333 & 410 & 405 & 1.23 & 1.23 & 286 & 0.86 & 0.86 & 286 & 0.86 & 0.86 \\ \end{bmatrix} $		3.50	2605	519	520	904	728	1.74	1.74	442	0.85	0.85	442	0.85	0.85
$ \begin{bmatrix} 0 & 1.10 & 236 & 214 & 201 & 189 & 203 & 0.88 & 0.94 & 173 & 0.81 & 0.86 & 203 & 0.95 & 1.01 \\ 1.25 & 305 & 251 & 241 & 223 & 240 & 0.89 & 0.93 & 196 & 0.78 & 0.81 & 240 & 0.96 & 0.99 \\ 1.50 & 439 & 298 & 291 & 283 & 297 & 0.95 & 0.97 & 229 & 0.77 & 0.79 & 297 & 1.00 & 1.02 \\ 1.75 & 598 & 321 & 315 & 346 & 352 & 1.08 & 1.10 & 259 & 0.81 & 0.82 & 352 & 1.10 & 1.12 \\ 2.53 & 2.00 & 781 & 333 & 333 & 410 & 405 & 1.23 & 1.23 & 286 & 0.86 & 0.86 & 286 & 0.86 & 0.86 \\ \end{bmatrix} $		1.00	195	191	175	166	195	0.87	0.95	158	0.82	0.90	195	1.02	1.12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10)	1.10	236	214	201	223	203	0.88	0.94	173	0.81	0.86	203	0.95	0.99
$ \begin{bmatrix} n \\ -1 \end{bmatrix} \begin{bmatrix} n \\ -1$	(1.50	439	298	291	283	297	0.95	0.97	229	0.77	0.79	297	1.00	1.02
	322 0; L	1.75	598	321	315	346	352	1.08	1.10	259	0.81	0.82	352	1.10	1.12
9 2.50 1220 367 371 544 504 1.48 1.47 335 0.91 0.90 335 0.91 0.90	=92	2.50	1220	367	371	544	403 504	1.48	1.47	335	0.80	0.80	335	0.80	0.80
b 3.00 1757 424 434 684 598 1.61 1.58 378 0.89 0.87 378 0.89 0.87	Lerð	3.00	1757	424	434	684	598	1.61	1.58	378	0.89	0.87	378	0.89	0.87
$ - 3.25 \ 2063 \ 452 \ 461 \ 756 \ 644 \ 1.67 \ 1.64 \ 398 \ 0.88 \ 0.86 \ 398 \ 0.86 \ 417 \ 0.87 \ 0.86 \$	<u> </u>	3.25	2063	452 479	461 486	756 830	644 689	1.67 1.73	1.64 1.71	398 417	0.88	0.86	398	0.88	0.86
1.00 181 177 162 154 181 0.87 0.95 147 0.83 0.91 181 1.02 1.12		1.00	181	177	162	154	181	0.87	0.95	147	0.83	0.91	181	1.02	1.12
© 1.10 219 194 186 174 191 0.90 0.94 163 0.84 0.87 191 0.99 1.03 © 1.10 219 194 186 174 191 0.90 0.94 163 0.84 0.87 191 0.99 1.03	10)	1.10	219	194	186	174	191	0.90	0.94	163	0.84	0.87	191	0.99	1.03
1.25 262 226 224 207 226 0.91 0.92 184 0.81 0.62 226 0.99 1.01	Ť=1	1.25	406	228	272	207	226	0.91	0.92	216	0.81	0.82	226	1.03	1.01
m - 1 1.75 553 292 298 320 334 1.09 1.07 244 0.84 0.82 334 1.14 1.12	23 ; L _{ci}	1.75	553	292	298	320	334	1.09	1.07	244	0.84	0.82	334	1.14	1.12
$\bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	940 C	2.00	723	315	315	379 503	384 479	1.20	1.21	270 317	0.86	0.86	384 317	1.22	1.22
3.00 1626 409 408 633 569 1.55 1.55 358 0.88 0.88 358 0.88 0.88	crd₽	3.00	1626	409	408	633	569	1.55	1.55	358	0.88	0.88	358	0.88	0.88
³ 3.25 1908 434 434 700 613 1.61 1.61 377 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.	(F	3.25	1908	434	434	700	613	1.61	1.61	377	0.87	0.87	377	0.87	0.87
3.50 2213 459 458 768 655 1.67 1.68 396 0.86 0.86 396 0.86 0.86 0.86 0.86 0.86		3.50	2213	459	458 144	768 137	655 161	1.67	1.68	396 133	0.86	0.86	396	0.86	0.86
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	1.10	195	170	166	155	174	0.91	0.93	147	0.87	0.89	174	1.02	1.05
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	=11	1.25	251	202	199	184	207	0.91	0.92	167	0.83	0.84	207	1.02	1.04
$ _{2} = 1.50$ $ _{256}$ $ _{245}$ $ _{245}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ _{256}$ $ $	24 L _{cri}	1.75	492	243	243	233	307	1.04	1.04	224	0.80	0.81	307	1.13	1.12
<u><u>Ö</u><u>Ř</u> 2.00 643 288 290 337 354 1.17 1.16 248 0.86 0.86 354 1.23 1.22</u>	02 20	2.00	643	288	290	337	354	1.17	1.16	248	0.86	0.86	354	1.23	1.22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S≜ ^r	2.50	1005 1447	313 354	333 384	448 563	443 527	1.43 1.59	1.35 1.47	292 330	0.93	0.88	292 330	0.93	0.88
\vec{J} 3.25 1698 378 408 623 567 1.65 1.53 348 0.92 0.85 348 0.92 0.85	(L _c	3.25	1698	378	408	623	567	1.65	1.53	348	0.92	0.85	348	0.92	0.85
3.50 1969 402 431 683 607 1.70 1.58 365 0.91 0.85 365 0.91 0.85		3.50	1969	402	431	683	607	1.70	1.58	365	0.91	0.85	365	0.91	0.85
1.00 144 141 128 122 144 0.87 0.95 120 0.85 0.94 144 1.02 1.12 \odot 1.10 174 159 148 139 174 0.87 0.94 134 0.84 0.90 174 1.09 1.18	6	1.10	144	141	128	139	144	0.87	0.95	120	0.85	0.94	144	1.02	1.12
<u><u><u></u></u> 1.25 225 194 177 164 189 0.85 0.93 152 0.78 0.86 189 0.98 1.07</u>	=110	1.25	225	194	177	164	189	0.85	0.93	152	0.78	0.86	189	0.98	1.07
$ \begin{bmatrix} 1.50 \\ 324 \end{bmatrix} 237 \end{bmatrix} 220 \end{bmatrix} 209 \end{bmatrix} 238 \end{bmatrix} 0.88 \end{bmatrix} 0.95 \end{bmatrix} 180 \end{bmatrix} 0.76 \end{bmatrix} 0.82 \end{bmatrix} 238 \end{bmatrix} 1.00 \end{bmatrix} 1.08 \\ 1.05 \end{bmatrix} 1.75 \end{bmatrix} 440 \end{bmatrix} 256 \end{bmatrix} 251 \end{bmatrix} 254 \end{bmatrix} 284 \end{bmatrix} 0.99 \end{bmatrix} 1.01 \end{bmatrix} 205 \end{bmatrix} 0.80 \end{bmatrix} 0.82 \end{bmatrix} 284 \end{bmatrix} 1.11 \end{bmatrix} 1.13 \\ 1.05 \end{bmatrix} 1.05 \end{bmatrix} 1.05 \end{bmatrix} 1.05 \end{bmatrix} 1.05 \end{bmatrix} 1.05 \end{bmatrix} 1.05] 1.05$	5 L _{cr} F	1.50	324 440	237 256	220 251	209 254	238 284	0.88	0.95	180 205	0.76	0.82	238 284	1.00	1.08
$\begin{vmatrix} 3 \\ 6 \end{vmatrix}$ 2.00 575 276 269 302 327 1.09 1.12 228 0.83 0.85 327 1.19 1.22	30 C	2.00	575	276	269	302	327	1.09	1.12	228	0.83	0.85	327	1.19	1.22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	2.50	899	316	305	401	410	1.27	1.31	269	0.85	0.88	269	0.85	0.88
305 300 1294 362 351 504 489 1.39 1.44 305 0.84 0.87 305 0.84 0.87	(L _{cr}	3.00	1294	362	351	504 557	489 527	1.39	1.44	305	0.84	0.87	305	0.84	0.87
3.50 1762 404 395 611 564 1.51 1.55 338 0.84 0.86 338 0.84 0.86		3.50	1762	404	395	611	564	1.51	1.55	338	0.84	0.86	338	0.84	0.86
$ \begin{bmatrix} 1.00 & 135 & 132 & 120 & 115 & 135 & 0.87 & 0.95 & 113 & 0.86 & 0.94 & 135 & 1.02 & 1.12 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 1.12 & 1.17 \\ \hline 0 & 110 & 163 & 145 & 139 & 130 & 163 & 0.90 & 0.94 & 126 & 0.87 & 0.91 & 163 & 0.91 & 0.91 \\ \hline 0 & 100 & 100 & 100 & 0.91 & $	6	1.00	135 163	132 145	120 139	115 130	135 163	0.87 0 90	0.95 0.94	113 126	0.86	0.94	135 163	1.02	1.12
$ \begin{bmatrix} 1.10 \\ 1.25 \\ 211 \\ 170 \\ 167 \\ 167 \\ 154 \\ 180 \\ 0.91 \\ 0.91 \\ 0.92 \\ 144 \\ 0.85 \\ 0.86 \\ 180 \\ 1.06 \\ 1.08 \\ 1.06 \\ 1.08 \\ 1.08 \\ 1.06 \\ 1.08 \\ 1.08 \\ 1.08 \\ 1.06 \\ 1.08 $	=11(1.25	211	170	167	154	180	0.91	0.92	144	0.85	0.86	180	1.06	1.08
1.50 303 210 207 195 226 0.93 0.94 171 0.81 0.83 226 1.08 1.09 1.75 1.75 143 207 207 209 209 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.) L _{cr} F	1.50	303	210	207	195	226	0.93	0.94	171	0.81	0.83	226	1.08	1.09
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 1.75 413 235 238 239 270 1.02 1.00 195 0.83 0.82 270 1.15 1.13 $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 200 539 251 257 283 312 113 110 217 0.86 0.84 312 124 121	C26 00;	1.75	413 539	235 251	238	239	270 312	1.02	1.00	195 217	0.83	0.82	270 312	1.15 1.24	1.13
$ \begin{bmatrix} 3 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ $	=10	2.50	842	291	290	376	391	1.29	1.30	256	0.88	0.88	256	0.88	0.88
$\begin{bmatrix} \frac{1}{2} & 3.00 & 1213 & 335 & 334 & 472 & 467 & 1.41 & 1.41 & 291 & 0.87 & 0.87 & 291 & 0.87 & 0.87 \\ \hline 3.25 & 1424 & 357 & 356 & 522 & 503 & 1.46 & 1.47 & 307 & 0.86 & 0.86 & 307 & 0.96 $	Lerð	3.00	1213 1424	335 357	334 356	472	467	1.41	1.41	291 307	0.87	0.87	291 307	0.87	0.87
<u>3.50</u> 1651 377 376 573 539 1.52 1.52 322 0.85 0.86 322 0.85 0.86		3.50	1651	377	376	573	539	1.52	1.52	322	0.85	0.86	322	0.85	0.86
1.00 121 119 108 103 121 0.86 095 102 0.86 0.95 121 1.02 1.12	~	1.00	121	119	108	103	121	0.86	095	102	0.86	0.95	121	1.02	1.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	1.10	146 189	133	125	117 138	146 165	0.88	0.93	114 131	0.86	0.92	146 165	1.10	1.17
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-cri	1.50	272	189	187	175	208	0.93	0.94	156	0.83	0.84	208	1.10	1.11
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	227 30; L	1.75	370	221	217	214	249	0.97	0.99	179	0.81	0.83	249	1.13	1.15
$ \begin{bmatrix} 2.00 & 707 & 242 \\ 0.04 & 273 \end{bmatrix} \begin{bmatrix} 2.07 & 207 & 203 \\ 2.50 & 756 \end{bmatrix} \begin{bmatrix} 2.07 & 203 & 203 \\ 2.50 & 756 \end{bmatrix} \begin{bmatrix} 2.07 & 203 & 203 \\ 2.07 & 337 \end{bmatrix} \begin{bmatrix} 1.03 & 1.07 & 200 & 0.02 \\ 2.08 & 1.07 & 200 \end{bmatrix} \begin{bmatrix} 0.02 & 0.04 & 209 \\ 0.08 & 0.087 \end{bmatrix} \begin{bmatrix} 1.19 & 1.21 \\ 0.89 & 236 \end{bmatrix} $	105	2.00	756	273	230	337	363	1.03	1.26	236	0.87	0.89	236	0.87	0.89
1 3.00 1089 311 308 424 434 1.36 1.38 269 0.86 0.87 269 0.86 0.87	-craf	3.00	1089	311	308	424	434	1.36	1.38	269	0.86	0.87	269	0.86	0.87
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1	3.25 3.50	1278	331 350	327 346	469 514	468 501	1.42 1.47	1.43	284 298	0.86	0.87	284 298	0.86	0.87

Table C5: R columns: SFEA ultimate strengths and corresponding DSM estimates (dimensions in mm, stresses in MPa) - V