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Abstract

The main goal of the present research is to findbwative and appropriate CFS shapes,
improving its structural behavior at the same tutmat are manufacturable and, if possible, cost
saving. Open cold-formed steel sections (CFS) apétion is obtained by integration of four
investigation fields: (i) modeling the search domaji) designing the fitness functions, (iii)
applying Artificial Intelligence and (iv) computatial implementation and visualization
integrates the three other investigation fieldse paper focuses innovative application of Shape
Grammar formalism, addressed to easy modeling asilide CFS sections. The original
developed algorithm is identified as CFS-Languagemposed by a set of sentences translating
each step of manufacturing by cold-forming - whwas combined with Genetic Algorithm in
order to select adequate shape, in accordancepvattiously selected objectives (Pareto's Front).
The results of the analysis for three fitness fiamst are presented: (i) axial compression and (ii)
flexural strength with the help of the Direct SgdmMethod and (iii) manufacturing costs. CFS-
language was firstly developed in a CAD platformrthier translated to MATLAB code and
finally integrated with GA procedure inside the ng®urce code CUFSM (v.4.0.5) for buckling
analysis based on constrained finite strip metiBaksed on the above described methodology,
CFS shapes were generated by combining fitnesgidmscand geometric modeling algorithms
through Genetic Algorithm. The paper presents itailéhe developed CFS-language, shows
how the computational algorithms were integrated famally presents the results of illustrative
examples.

1. Introduction

Design product for cold-formed steel profiles (CRS)a multidisciplinary optimization with
structural, manufacturing and assembling requirégsadrhe challenge is to decide how to fold a
flat plate of constant dimensions in order to gedjaon values of strength and to reduce
manufacturing costs. This investigation has fowmbhes: (i) search domain modeling defines
the set of all valid shapes for a specific appigatand just these, (ii) design of objective
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function evaluates shape fitness, (iii) some Agidi Intelligence (Al) technique is required to
improve fitness and (iv) computational implememtatiand visualization integrates the three
other investigation fields. This paper presentearch domain modeling for CFS desmgoduct
based on Shape Grammar (SG), where manufacturogggures are identified in order to get
geometrical rules for shape drawing. SG is a pangn@odeling technique developed at MIT
(Gips 1972) and is addressed to different kindslegign product (Gips 1999). SG is often
related as Artificial Intelligence approach, buhit an optimization algorithm. CFS-language is
an original SG implementation associated with agBerAlgorithm (GA) and addressed to CFS
strength improvement. CFS search domain subsetsnasgariables sizes from a few elements
until very large sets. Crashing of GA on this lastd of domains is expected and this behavior
was observed in this work. Despite of this, whargimeering experience has guided the choice
of subsets of search domain, tests have presergadingful improvement of fitness.

2. CFS search domain modeling by Shape Grammar

Parameterizing a product is to attribute a vectaeal numbers to the description of a particular
case inside a family of shapes. For example, just parameter={xeR:0<x<1} is enough to
describe any shape among all possible angle sedtidfigure 1, where perimeferand thicknestare
constants and cold bending radius is ignored. Asgéion is an example of one of three kinds of CFS
search domain illustrated in Fig. 2: (i) €=aire fixed typologies, (i) s& are constrained free-form and
(iii) set C are free-form, wher€CBCA.
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Figure 1: “Angle section” parameterization
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Figure 2: Fundamental CFS search's subdomains.

2.1 Precedent works

Optimization of cold-formed steel profiles fromdtk typologies (s&f in Fig. 2) has been investigated by
almost two decades. Karim (1999) as performed Hegies beams section optimization by Neural
Networks and effective width concept to computedigacities of shapes; Tran (2006) has optimized
channel sections by the trust-region method baseateofailure modes of yielding strength, deflactio



limitation, local buckling, distortional bucklinghd lateral-torsional buckling by a standard MATLAB®
optimization tool.

Free-form is a more recent investigation on CF8nigation (setA in Fig. 2). Leng (2011) proposed a
search domain based on discrete shapes by camstabér of elements with equal length, where angles
between adjacent segments are variables and this wé angles is a chromosome for GA and other Al
algorithms. Resulting shapes (as exemplified in F&j present a meaningful improvement of strength,
but require a great effort for manufacturing argbasling. On other hand, important characteristics
CFS manufacturing are not included, as cold bendidigis and intermediate stiffeners. Gilbert (2012a
2012b) developed a shape generator based on reetiomiof random open discrete shapes, a very
interesting GA approach where operators are appliedphenotype. However, resulting shapes are also
difficult to manufacture, as presented in Fig. 3b.

Leng (2013) proposed a generator with manufactwamgtraints. His work represents a great advance
on constrained free-form CFS optimization, wheneost all CFS characteristics are included on shape
generation (Fig. 3c), but the domain is still leditby constant number of bent corners. In the prrese
research, the modeling of a constrained free fearch domain for CFS (d8ton Fig. 2) is based on SG
and offers three main advantages: (i) the algorithquite simple, (ii) the search domain is conepfet

any selected machinery operations and (i) easii@ashoice subsets from complete domain addréssed
specific applications.
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Figure 3: Precedents work on CFS search domainlmgd@) (Lenget.al.2011), (b) (Gilbert 2012a, Gilbert 2012b), (c)
(Lenget.al.2013).

2.2 Implementation

A manufacturable shape has its origin from a rectian thin steel plate, subjected to a finite seqa®f
geometric transformations by cold-forming procdsse generic sequence of these transformations is
named vectolp; angles between consecutive walls are named véctarthird vectorsx indicates
proportion between walls and vectarepresents radius of folded corner. Thereforener shape is
represented by Eq. 1:

wW=W(¢p,k,0,p) 2)

The Shape Grammar approach defines all possiblkke CFS language. The methodology
closely follows the original model of generativeagmmars laid out in Chomsky (1972) to
describe syntactic features of natural languagesthe geometrical version of this grammar
(Gips 1972), where “language” and “grammar” are lraatatical concepts derived from the
theory of groups. The CFS language is a set ofesess, each being finite in length and



constructed out with a finite set of symbols callled CFS Alphabet. Each symbol is a different
instruction for shape generation, as presentecbierl.

All cold-formed member manufacture starts fromad fiteel sheet that is transformed into a new
shape through folding operations. This procesgpsesented by eewrite system, where a set

of rules changes substrings along a finite sequehggocedures. Alphabet and rules must be
derived from a finite set of sentences caltechbus. Cold-formed steel member structural design
standards and codes deal with usual shapes iliedtia Fig. 4 and provide a corpus for the

development of the CFS language.
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Figure 4: Usual shapes provisioned by cold-fornteel snember structural design standards and codes.

The proposed CFS grammar is a device for prodairgrammatical sequences of the CFS language
and no ungrammatical ones. This approach inhkdat€homsky's (1972) model warnings: (i) there is no
statistical approximation (whether a sentenceasngratically correct or not) and (ii) the grammatica
notion cannot be identified with “meaningful”. Firem means that it is impossible to generateapesk

by CFS grammar if it does not follow the manufantyirules; second item is important because a valid
sequence of symbols may result in cross-walledesh@psemantic CFS algorithm has been included to
identify and exclude these meaningless geometfiasunfolded plate is called axiom and valid
transformations are productions or grammaticalsrukerpreted agewrite X as Y as presented in
Table 2. Fig. 5 shows six rules obtained fi@nfAny shapev derived from the axiom following this set
of rules is a derivation of senterge

Derivation by the rewrite system based on chamapreduces strings difficult to be read by humaesey
For example, a simple lipped channel derivatioedas Tables 1 and 2 looks like the following, veher
two derivations are enough to generate a stringsepting it, but none particular shape is undauisto
from these strings by “naked eyes”:

Axiom: +F
derivation 1: +HF(_f.fd.f.f1.F)_f.fd.f.f.F}
derivation 2: +HF( f.fd.ff{F(f.fd.f.LF)_f.fd.f.F}) f.fd.f.f.F}

Many Computer Graphics (CG) applications offerpgitryy languages for simple grammar deployment
by turtle concept (Prusinkiewicz 1990). The tuilerepresented by a triplet; (y; ), where the
Cartesian coordinates; (y) represent the cursor's current position anda@®g is oriented by angte
called heading. Given an initial direction and size, the turtle responds to commands represbyted
symbols included in Table 1.



Table 1: CFS alphabet end geometric interpretation.

CFS Alphabet Geometric Interpretation
1.F 1.wall
2V 2. Stiffener
3.+ 3.Angle between walls
4.* 4.Positive angle increment between stiffener walls
5.% 5.Negative angle increment between stiffener walls
6. 6. Start wall before a folding
7.] 7.End wall before a folding
8.< 8. Start wall after a folding
9.> 9.End wall after a folding
10. { 10. Start wall with two foldings
11.} 11. End wall with two foldings
12. ( 12. Start wall between two foldings
13.) 13. End wall between two foldings
14. F 14. Wall inside bending radius
15. . 15. Increment angle between walls inside curve
16.d 16. Computes arch length
17. u 17. Insert cold bending radius
Table 2: CFS grammar set of rules
CFS rules Geometric Interpretation
1. F->F 1. Keep this wall the same
2. F>[Fl<uF> 2. Fold wall at a single point
3. F—{FUuFuF} 3. Fold wall at two points
4. F-[F<%v*v%F> 4.  Apply a two-walled stiffener
5. F—{F©@ov*wW*v%)F} | 5. Apply a three-walled stiffener
6. u— ffd:ff: 6. Apply cold bending folding
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Figure 5: Set rules for CFS grammar: (a) identityfolding and (c) intermediate stiffeners

3. Design of objective function
Design of CFS as a product implies simultaneowecolgs, as maximum strength and minimal costs. In
fact, an exact functio@y(w) for manufacturing costs is dependent of variaitesspecific machinery,
scale of production and other particular conditiohsach manufacturer. For simplicity, as a fiteps
this work adopt€£y(w) as a linear function of number of foldings, witle fhurpose to demonstrate the
possibility to employCy(w) in CFS multi-objective optimization as a genenahgple. On the other



hand, strength computation is based on many dechdeternational research and represented in this
work by the functions in Eq. 2:

Axial force:w — H(w) — Neg(H(W)) 2
Bending momentyv — H(w) — Mg(H(W))

where H is the buckling analysis procedure and providécadr loads associated with buckling
deformation modes: Locdl), Global ) and Distortional@); Ncr provides nominal axial strengtz
provides nominal flexural strength. ComputatiomiVers forH are essential and free shared tools may
be found. The notation of composite functidlgH(w)) andMg(H(w)) will be simplified toN.gw) and
Mg(Ww).

3.1 Step 1: Elastic buckling analysis by FSM

Thin-walled structural members are sensitive tstielauckling phenomena affecting its behaviohfai
mechanism and final strength. This is the caseldfformed steel members, which develop failure by
combining elastic buckling deformation with mateyielding and oblige the designer to recognize the
dominant deformation with the help of previous tetdsuckling analysis. Open cross-section thin-gell
members may follow three main buckling modes,lastibted in Fig. 6: (i) local buckling.), in close
correspondence with uniaxially compressed rectangplates; (ii) distortional bucklingDj, a
combination of local plate bending with lateraptheements of almost one bent corner of the seatidn
(i) global buckling G), which includes flexural, torsional or flexuralgional buckling modes. The
former () develops with short longitudinal half-wave lergyfof the order of the larger cross-section wall
width by), distortional D) with longitudinal half-waves longer than local aeoand finally the global
buckling modes@®) developing much longer half-waves, in many casdeng as the member's length
(this is the case of member with pined-pined entlition). The lower buckling load identifies the
critical one and its mode deformation will contitee member's behavior with increasing amplification
until yielding lines develop and promote localiZadure. In addition, different buckling modes may
develop in elastic interaction especially in thespnt case of thin-walled cold-formed membersgiokyi
researchers to acquire in deep comprehension géhteeomenon in order to find accurate strength
equation addressed to practical structural design.

120

100 -

80

60 -

load factor

40+ 760.5,44.17

20+ st
108.6,15.94

oLt L R S A

length

Figure 6: Results of the buckling analysis by &rtrip method: Local], Distortional D) and Global G) buckling
modes from CUFSM computational program.

Elastic buckling and strength of cold-formed steembers are investigated in close combinationeof th
theory of elastic stability with numerical and espeental analysis. Nowadays, based on decades of



international research results in this field, tmeatl strength method (DSM) (Schafer 2006) is retzagl

as the one combining simplicity and accuracy alwgwdirect strength computation of buckling modes
interaction based on equations which have beemsixtty calibrated with experimental results.
Furthermore, as the nature of the failure of thaled members is associated with the above cited
buckling modes, all DSM equations are based obuickling loadsrespectively associated with axial
compressiorN or bending momeni of the CFS member, i.e.: (i) local bucklibg and M, (ii)
distortional bucklingNgist and Mg, (iii) global bucklingNe and Me. Buckling modal identification
requires buckling analysis solutions based orditge leigenvalues problem. In particular, the Fibitg
Method (FSM) and the Generalized Beam Theory (GB&)the most efficient methods to solve CFS
members for elastic buckling; the former is appifethe present investigation with the help offtiee
share computational program CUFSM (Schafer and YAd#06). An open MATLAB® compiler
source code, CUFSM allows buckling analysis of ype of CFS typology. Although GBT offers
excellent results of buckling analysis, for exampjemeans of the GBTUL (Bebiaret.al. 2008)
computational program, FSM-based computational@éfFSM offers an easy access to its open code
allowing user to develop programming accordingg@wn interest and necessities, which is the alase
the present investigation. Critical load (or loadtdr) of each buckling mode &ndD) are given by the
minimum points as shown in Fig. 6.

3.2 Step2: strength computation by DSM

Member's strength and its failure mode is a cortibmaf elastic buckling and plasticity spread Ifjiieg
lines). Therefore, load factor derived from CUFSd GBTUL) solver for buckling analysis of thin-
walled members are input to simple formulae prowistl by the direct strength method (AISI S100-
2007). In this condition, the DSM-based optimizatmwocedure explicitly requires a computational too
such as CUFSM for inputs, observed that the stiergtaccurately computed for single axial
compression or bending loading, with no specifle ar equation for axial compression and bending
moment combination as those of beam-column memiiee. DSM strength equations for axial
compression are presented in the following andudieciglobal, local, distortional buckling as well as
local-global buckling interaction. The nominal dstiength for flexural, torsional or torsionabdieal
buckling related to global modgis function of slenderness facityin Eq. 3.

[Af,
/10 - N_e (3)

WhereA is the cross-section ardgs the steel yield stress aNglis the critical elastic buckling load - the
minimum between flexural, torsional or torsionalfiral buckling loads. Onckis given, nominal axial
strength related to global buckling is compute@&qy4.

Nere = (0658°)Af, « Ay<15
0877 4)
Nege = (— ) Afy = 4 <15

0

The nominal axial strength for local buckling, atsmsidering the effect afG nonlinear interaction
between local and global buckling depends on trelstness facta in Eq. 5, wherd\.greis defined in
Eq. 4 and\, is the elastic local bucking load derived from @M~or any other buckling solution).



A= e ©)

OnceA, is given, nominal axial strength for local bucllis computed by Eq. 6.

N = N.go « A < 0776

015 N

(6)

NCRI = (1

) - 4> 0776
|

The nominal axial strength for distortional bucglib is computed without any interaction withor G
buckling modes and depends of the slenderness fagtan Eq. 7, wheréNy is the critical elastic
distortional buckling load derived from CUFSM (oiyabther buckling solution).

Af
A= |—L 7
dist NdiSt ( )

Oncedgistis given, nominal axial strength for distortiobatkling is computed by Eq. 8.

NcRdist: Afy < Adist < 0561
025, , Af (8)
NCRdiSt = (1_ /1]__2 )(Asz) And Adist > 0561

dist dist

Finally, the nominal axial strength for a CFS membelefined as the minimum between the computed
strength values by Eq. 9:

NCR = min(NcRe’ NcRI’ NcRdist) (9)

The nominal flexural strength for global bucklimgmely the lateral-torsional buckling mode, depends
on slenderness factdp in Eq. 10, wheré&is the elastic modulus of the section &mgis the critical
lateral-torsional buckling bending moment.

Ao == (10)

Onceky is given, nominal flexural strength for global klirey is computed by Eq. 11.



Mg =Sf, o A, < 06
Mg = 1111- 027812)Sf, ~ 06<4, <1336 (1)

Sf
Mg, =—2 o A, > 1336
Z
The nominal flexural strength for local bucklingliding the effect of nonlinear interaction between
local and global buckling, identified B& interaction, depends on slenderness fagtor Eq. 12, where
Mreis given by Eq. 11 anidll, is the elastic local buckling bending moment gillgrCUFSM (or any
other buckling solution).

(12)

OnceA, is known, nominal flexural strength for local blireg is computed by Eq. 13.

My =Mp, o A < 0776

015, Mg,

Mg = (1~ /]|OB ) /]|0'8

) » A > 0776 (13)

The nominal flexural strength for distortional blirads in bending depends on slenderness fatigin
Eq. 14, wherdi is the critical elastic distortional buckling ber@imoment given by CUFSM (or any
other buckling solution).

St
Ajog = [—% 14
e Mdist ( )

Oncedgistis known, nominal flexural strength for distor@ibuckling is computed by Eq. 15.

Mgt = ST, © Ay < 0673

St 15
M ggise = A= 022)(_y) o Ay > 0673 (15)
/]dist Adist

Finally, the nominal flexural strength for a CFSmber is defined as the minimum between the
computed strength values in Eg. 16:

Mg =min(Mg, Mg, M) (16)



4. Genetic Algorithm NSGA-I |
SinceCwu, Ner andMg are defined, a multi-objective optimization is falired by Eq. 17:

MaximizeN . (w)
MaximizeM g (w)
Minimize C,, (w)
Subject tow 1B

17)

It remains a beam optimization when jdkiw) is disabled; ifMg(w) is disabled only, it becomes a
column optimization; if equations df.5w) andMg(w) are enabled, it is a beam-column optimization,
which requires an additional interaction equatioabéing the evaluation of the beam-column strength.
None of the feasible solutions allows simultanegpigmal results for all objectives on beam-column
optimization problem, because it is expected thugti@r shape under axial compression will bereiffe
from another under flexural bending or a particatanbination of compression and bending. There are
many alternative algorithms to perform optimizati@enetic Algorithm (GA) is an adequate choice
because it is able to operate over populations) (sesolutions. In this work, the subget” B of best
shapes found in Pareto's front by GA (Deb 200dgfsed as a shape library. Genetic algorithms have
some well-known disadvantages like high computatioosts and no guarantee of global maximum
achievement.

Modified Non-Dominated Sorting Genetic Algorithm,SSA-II (Seshadrind) is a popular GA
implementation where Pareto's front is a collecobmon-dominated solutions. For this problem, a
general shape(p,0.xp) is codified by float numbers into chromosomes.r&loee, a chromosome &
p-dimensional vector, whegeis the sum 0§, 8, k andp vector dimensions and its evaluation results in
n-dimensional vectof, wheren is the number of objectives. For a minimizatioalggm,w; is a non-
dominated solution ovenr, if there is at least one entry t{a) that is smaller than the same position in
f(wp). NSGA-II initializes the chromosomes using a rangwotess. First, a populatiéhof candidates
wW(p,0,k,p) is started and all of them are evaluated. For pacR two numbers are signed: i), quantity

of elements irP that dominatep and (ii) S,, number of solutions dominated pyAll solutions where
n=0 are located in the first front and are signethwank = 1. Higher-order ranks are placed in
successive fronts. Next step, solution's density @ach front (crowding distance) is taken. Higher
densities are related to smaller fithess in owlerdrease variability in population. NSGA-II usasking
and crowding distance as fitness measures. Traalii®@A crossover and mutation operators are applied
until the stop criterion is reached (maximum nundbgenerations specified by the user).

5. Results

The following numerical results have constant pdateensions for all implemented examples: steadtshe
thicknesg=1.0mm cold bending internal radius-3.0mm perimeter length (or plate widtpF280.0mm

and member lengtb=1219.0mm for which a major number of cases with predongeanfL andD
buckling modes are expected. Nominal steel mechlgmioperties are Young Modul&s=205.0GPa
Poisson ratio=0.3 and yield stres§=300.0MPa Vector sizes o, 6, ¥ andp are dependents of
maximum number of derivations specified. Foldingnbars were limited from 2 to 17. Single
rectangular plates and angle profiles, respectivellf or one-fold, were excluded for stability
considerations; higher number of folding operati@mesents a considerable increase in computationa
costs, thereby requesting higher performance cargand, in addition, it could generate impractical
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solutions. The shape generator automatically divd@eOmmwider wall elements by two for matrix
analysis purposes (one intermediate node is irgtludée mid position of the element). Results have
been classified in two blocks, (i) guided seardiene some functional constraint is imposed to shage
(iN) free-form search, where manufacturing posgibg the only constraint.

5.1. Guided search

Let “sigma-and-neighborhood” be a shape optimizati@blem with functional constraint where at least
one wall must be in vertical position (web elemeuith one middle intermediate stiffener. The praabs
problem is called “sigma-and-neighborhood” bec#iusdraditional edge stiffened sigma shape shown in
Fig. 7 is an adequate initial case for investigati®©ther geometrical possibilities, including the
consequences of changing angles between wallsiqes4.2) and the proportions among walls
(Section 5.1.3), are also presented below. Thegt&8mar demands manipulation of vectbandx in
order to solve the problems in Sessions 5.1.1 %¢3,5without requiring specific algorithms for the
investigated shapes. In addition, the intermedigfener placed in the web was previously desigméu
constant geometry, thereby providing efficienfestiihg in order to improve local buckling load.

4

(a) (b)
Figure 7: Geometrical models for Sigma shapes,t).1 (b)x,=0.5 and (cx»,=0.9

5.1.1 Sensitivity analysis on fixed typologies

Sigma shape “adds” an efficient intermediate sidfeat the middle point of the web of a lipped cighn
Values for the parametric CFS grammar, are prasentéq. 18. Position, (representing in this
example the proportion between web and flabghl(, +2bx )) for the sigma channel) is the variable to
be evaluated, as shown in Fig. 8, wherd x,eR:0.1<x,<0.9}.

¢ =[3;1:3;1,3,1,5]

6 =[-180;-90:90;-90;-9;-90]
0 =[3;3;3;3]

k =[0.9;«,]

(18)

Fifty values ofk, were assigned on a specified range and computedwitodified version of CUFSM.
CheckingN.r andMg in Fig. 8 reveals that columns maximum nominaalasirength aik,=0.52 and
beams have maximum nominal flexural strengi=Q.7. Selecting the “best solution” can be a difficult
task for a beam-column design problem becaldg and Mg have a conflict for
ko={ k2eR:0.52<¢,<0.7}: if Ncris improvedMg decreases.

This shape library (Fig. 8) is related to one \aeidor two objectives and could be a starting fofain
handwork beam-column design for which the bendirgment effect is not predominant. As a

11



consequence, typical beam-column nonlinear beheaiobe safely replaced by the linear interacton i
Eqg. 19 (ANBT 2009) (typically the case of trussedleys with joint eccentricities where bending
moment develops with minor importance), whéie and Ms are respectively the applied axial
compression and bending moment.

Ns  Ms g (19)
Nz Mg

In this example, providing an intermediate welfesiér in Sigma shapes (as stated above, efficient
intermediate stiffener was adopted improving tlallbbuckling behavior and strength) induced a 54%
increase in the maximum compressive axial streNgthf compared with an equivalent lipped channel
(49/31.8=1.54 ak,=0.52), and a 20% increase in the maximum bending mostezigth 3.35/2.8 =
1.20 atx,=0.7)

0 R 07,

0 g . 0

02 * o

s 2 28 . S(N) 35 4 45 s o5 i3 1 15 2 25 3 35
R x10 Mg (Nmm) x10°
(a) (b)

Figure 8: (a) Axial compressidtg(w) and (b) bending moment strendyli(w) as a function of parameterfor sigma
shape.

5.1.2 Optimization with constant number of benhers

Session 5.1.1 suggests that0.52 for the highest strength shapes in the standgrdeSproblem. This
value has been assigned as constasitothe present Session and veéavas taken as variable. This
problem is addressed to verify if the standard Sighape got in the past Session is an optimunosolut
Five records ofl are manipulated to constraint one vertical wall faar angle variables on sigma shape.
Eq. 20 indicate the vectors addressed in sigmdotypovhered, = {6,eR:-180<6,<180}.

¢ =[3;1;3;1,11;5]
6=16,6,,-6 +46,),6,,6,]
0 =[3;3;3;3]

Kk =[0.9,0.52]

(20)

This domain includes 1.68xf0possibilities. An exhaustive search requestingecorsd by analysis
would take more than 540 years of continuous psoaganstead of some hours by GA. Fig. 9 show that
customized shapes have up to 9% axial strengtiouaprent when compared with the best traditional
Sigma shape with the same proportions among wWaBs5/49=1.09from Figs. 8a and 9). The
improvement means that standard Sigma shape iamoptimal solution if other solutions around
“neighborhood” are considered. Fig. 9(b) shows galutions taken from this shape library.

12



4o Optimization with constant number of rollers

350+

haY

M (Nmm)
N
-t

45 5 55 (b)

4
N x10*

Figure 9:N.r vs M, Pareto's front for modified sigma shape.

5.1.3 Enlarged search domain on guided search

A wider domain than previous one in Session 5.1a8 wonsidered, including vectotsand 6§ as
variables. This domain has 1.68x1014 solutionstla@dinusual cost of “5.4 million years” to be sdlve
based on exhaustive search with usual computesrpemce around 1 second per analysis. Fig. 10
shows that the maximuid. improves 16%, when compared with the best shape 8ession 5.1.1
(57/49=1.16), and 6% when compared with the begiesfrom Session 5.1.2 (57/53.5=1.06). On the
other hand, there is no improvementiN Four shapes from this library are presentedgnIf(b).

(a) 1:1‘5 4‘1 45 N, 5 5!5 . ‘8 (b)

Figure 10:N.r Vs Mk Pareto's front for modified sigma shape.

Sessions 5.1.1 to 5.1.3 presented a progressiorpfiedefined shapes to previously undefined safsitio
developed with the help of Artificial IntelligencEhese cases demonstrate how the experiencedetesign
plays a fundamental role in CFS usual problemswadh a very valuable initial input in optimization
problems and, as a consequence, a reduction sédinen domain to as close as possible to the dptima
solution and consequently saving computationasaghe search.

5.2. Free-form constrained by manufacturing rules

Sessions 5.2.1 to 5.2.3 address problems withodtidmal constraints or parameters defined by
experience. These examples have no constructiyges, but are valuable to (i) demonstrate the
descriptive power of the CFS Grammar and (i) yeA's capacity to find previously known “optimal”
solutions into a very large domain. Vectpr® andx were placed into chromosomes with 31 variables,
resulting in a domain with 2.23xP&lements. Optimized shapes of Sessions 5.1.1.®dse inside this
domain and a GA would be able to find them or shimgtbetter than useless or unnecessarily expensive
shapes. All the following examples have exactlyshime parameters in the Shape Grammar, according
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to Eq. 21, and only differ in the specified goalxd finto the Genetic Algorithm, where:
oi={ pie R:1<i<5}; 6={0e R:-180<6,<180}; xi={ xie R:0.1<k<0:9}; p1=3.

¢ =4 9,]
6=[6,....6,]
(21)
P=[pr.017]
K =[Ky,....K5]

5.2.1.Column optimization with cost function

Let NxCbe an optimization problem where strength musbbepared with manufacturing costs. GA has
been configured to work with 100 individuals andegalution process of 200 generations, the proeedur
has been repeated twice and the best shape lbmgsented in Fig. 11.
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Figure 11:Nr Vs Gy Pareto's front for session 5.2.1

The highest strength into this shape library i€IKI9. This value is equal to the standard Sigmaretian

in Session 5.1.140/49=1.00. On the other hand, it is 14% lower than the bestconventional shape in
Session 5.1.340/57=0.8¢. GA has failed to find an expected optimal solutwithout engineering
experience to guide the choice of parameters amdit@e the domain size. Fig. 11(b) presents twhweof
solutions from this shape library. As expectedhm design of members under axial compression, the
proportion between major and minor inertia axiscmose to unity (/1,—1). Additionally, shear and
centroidal centers became closer, with tendenagotacide, thus improving member efficiency for
flexural-torsion.

5.2.2. Beam optimization with cost function

Let MxC be an optimization problem where strength mustdrepared with manufacturing costs.
Solutions are supposed to be the best collectiditefaral bending from 2 up to 6 foldings as presd

in Fig. 12. The evolution pressure for minor casreased the trend for improved strengths and,
consequently, the higher valueMk (3.35kNm) is 4% lower than the corresponding redoliained in
Session 5.1.3 (3.35/3.5 = 0.96). Note that Parettains just one solutions for each number of figidi
suggesting the convergence of the GA towards aeedset of shapes. Fig. 12(b) presents two satution
extracted from this shape library, which confirims tendency of beam-like sections with a single web
and large amount of material in the stiffened casged flange side.
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Beam Development
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Figure 12:N.rVvs Gy Pareto's front for Session 5.2.2

5.2.3. Beam-column optimization with cost function

Let MxNxC be an optimization problem without functional desists for which the strength must be
compared with manufacturing costs. Concerning coatbbending and axial compression strength,
linear interaction Eg. 19 is to be considered drtlye non-linear beam-column amplification effean

be neglected. Visualization of the relationshipveen three goals requires the 3D graphic showigin F
13, whereNr Vs Mk results were layered by the folding number. GAlleen configured to work with
100 individuals and an evolution process of 20@geions; the procedure has been repeated twice and
the best population elected. Higher strengthsargatible with the results obtained in Sessiond $al
5.1.2. GA was not able to yield solutions with daene strength of Session 5.1.3, in which the domain
was reduced by engineering experience. Furtherrsaigions without functional constraints are dut o
any practical scope and not able to be employepréatical purposes as can be confirmed in Fidp)13(
The presented example shows at the same time @gebitities and limitations to organize solutions
based on their fitness for different purposes.ddit®n, there are many other possibilities that ba
explored using the proposed CFS grammar ruleseTpessibilities can be increased if one extends the
grammar to include other rules, making it fit tal@ds other engineering goals. Results thus suthgéest
other grammars for other goals can be developdidaiing that the application of shape grammatiseo
engineering domain has a great potential to b@esqgl

Beam-column Development
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Figure 13:N.rVvs Mk Vs Gy Pareto's front for Session 5.2.3.
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FINAL REMARKS

Despite FSM limitations (Schafer and Adany 200@) lawv speed of MATLAB® compiler, CUFSM
was proved to be an adequate choice for CFS optionizproblems. Optimization of CFS shapes
presents dichotomies that are produced by tecHinitgtions. The first one opposes improving sithn

(i) for usual, feasible shapes with functional ¢@msts and (ii) for unfeasible geometries without
functional constraints. The main purpose of thigepas to present the development and the obtained
results of a shape generator able to perform qgation for both cases with simple and flexible
implementation. The proposed CFS Shape Grammaoagbpoffers descriptive power, simplicity of
implementation and easiness of customization. Aorgbadichotomy is represented by Artificial
Intelligence (Al) and professional engineering eigpee. CFS structural capability may show non-
intuitive behavior and can surprise even expergtr®ineers, but there is no reason to believe that
experience does not play an essential role in G¥giaation. Actually, experience strongly helps
reducing search domain and computational costptwhiaation, while adequate search algorithms and
sensibility analysis may improve engineering denisilechnically, it is necessary to combine Shape
Grammar, buckling analysis, strength computati@h@eanetic Algorithm (or other Al algorithm) into a
more robust computational compiler. Finally, thepiavement of the presented procedure also
dependents on the evolution of the strength cortipoitaapabilities as those proposed by the Direct
Strength Method, which is under development, ealbedor the cases of buckling interaction LD, DG
and LDG. None of them are considered inside desiges and standards prescriptions although many
results are available from numerical and experiaténtestigation (Dinis 2011, Santos 2012, Dinis
2012). The same comment may be addressed regtrdingse of steel thin-walled cold-formed beam-
columns, which so far does not count with a cordardSM-based solution for the moment.
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