
 

Proceedings of the 
Annual Stability Conference 

Structural Stability Research Council 
Toronto, Canada, March 25-28, 2014 

 
 
 
 

Optimization of open cold-formed steel sections based on shape grammar 
 

J.M.S Franco1, E.M. Batista2, A. Landesmann3 
 
 
Abstract 
The main goal of the present research is to find innovative and appropriate CFS shapes, 
improving its structural behavior at the same time that are manufacturable and, if possible, cost 
saving. Open cold-formed steel sections (CFS) optimization is obtained by integration of four 
investigation fields: (i) modeling the search domain, (ii) designing the fitness functions, (iii) 
applying Artificial Intelligence and (iv) computational implementation and visualization 
integrates the three other investigation fields. The paper focuses innovative application of Shape 
Grammar formalism, addressed to easy modeling of feasible CFS sections. The original 
developed algorithm is identified as CFS-Language - composed by a set of sentences translating 
each step of manufacturing by cold-forming - which was combined with Genetic Algorithm in 
order to select adequate shape, in accordance with previously selected objectives (Pareto's Front). 
The results of the analysis for three fitness functions are presented: (i) axial compression and (ii) 
flexural strength with the help of the Direct Strength Method and (iii) manufacturing costs. CFS-
language was firstly developed in a CAD platform, further translated to MATLAB code and 
finally integrated with GA procedure inside the open-source code CUFSM (v.4.0.5) for buckling 
analysis based on constrained finite strip method. Based on the above described methodology, 
CFS shapes were generated by combining fitness functions and geometric modeling algorithms 
through Genetic Algorithm. The paper presents in detail the developed CFS-language, shows 
how the computational algorithms were integrated and finally presents the results of illustrative 
examples. 
 
 
1. Introduction 
Design product for cold-formed steel profiles (CFS) is a multidisciplinary optimization with 
structural, manufacturing and assembling requirements. The challenge is to decide how to fold a 
flat plate of constant dimensions in order to get major values of strength and to reduce 
manufacturing costs. This investigation has four branches: (i) search domain modeling defines 
the set of all valid shapes for a specific application and just these, (ii) design of objective 
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function evaluates shape fitness, (iii) some Artificial Intelligence (AI) technique is required to 
improve fitness and (iv) computational implementation and visualization integrates the three 
other investigation fields. This paper presents a search domain modeling for CFS design product 
based on Shape Grammar (SG), where manufacturing procedures are identified in order to get 
geometrical rules for shape drawing. SG is a parametric modeling technique developed at MIT 
(Gips 1972) and is addressed to different kinds of design product (Gips 1999). SG is often 
related as Artificial Intelligence approach, but is not an optimization algorithm. CFS-language is 
an original SG implementation associated with a Genetic Algorithm (GA) and addressed to CFS 
strength improvement. CFS search domain subsets assume variables sizes from a few elements 
until very large sets. Crashing of GA on this last kind of domains is expected and this behavior 
was observed in this work. Despite of this, where engineering experience has guided the choice 
of subsets of search domain, tests have presented meaningful improvement of fitness. 
 
 
2. CFS search domain modeling by Shape Grammar 
Parameterizing a product is to attribute a vector of real numbers to the description of a particular 
case inside a family of shapes. For example, just one parameter x={x∈R:0<x<1} is enough to 
describe any shape among all possible angle sections in Figure 1, where perimeter p and thickness t are 
constants and cold bending radius is ignored. Angle section is an example of one of three kinds of CFS 
search domain illustrated in Fig. 2: (i) set C are fixed typologies, (ii) set B are constrained free-form and 
(iii) set C are free-form, where C⊂B⊂A. 
 

 
Figure 1: “Angle section” parameterization 

 

 

Figure 2: Fundamental CFS search's subdomains. 
 
2.1 Precedent works 
Optimization of cold-formed steel profiles from fixed typologies (set C in Fig. 2) has been investigated by 
almost two decades. Karim (1999) as performed hat-shape beams section optimization by Neural 
Networks and effective width concept to compute the capacities of shapes; Tran (2006) has optimized 
channel sections by the trust-region method based on the failure modes of yielding strength, deflection 
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limitation, local buckling, distortional buckling and lateral-torsional buckling by a standard MATLAB® 
optimization tool.  
 
Free-form is a more recent investigation on CFS optimization (set A in Fig. 2). Leng (2011) proposed a 
search domain based on discrete shapes by constant number of elements with equal length, where angles 
between adjacent segments are variables and this vector of angles is a chromosome for GA and other AI 
algorithms. Resulting shapes (as exemplified in Fig. 3a) present a meaningful improvement of strength, 
but require a great effort for manufacturing and assembling. On other hand, important characteristics of 
CFS manufacturing are not included, as cold bending radius and intermediate stiffeners. Gilbert (2012a, 
2012b) developed a shape generator based on recombination of random open discrete shapes, a very 
interesting GA approach where operators are applied over phenotype. However, resulting shapes are also 
difficult to manufacture, as presented in Fig. 3b.  
 
Leng (2013) proposed a generator with manufacturing constraints. His work represents a great advance 
on constrained free-form CFS optimization, where almost all CFS characteristics are included on shape 
generation (Fig. 3c), but the domain is still limited by constant number of bent corners. In the present 
research, the modeling of a constrained free form search domain for CFS (set B on Fig. 2) is based on SG 
and offers three main advantages: (i) the algorithm is quite simple, (ii) the search domain is complete for 
any selected machinery operations and (iii) easiness to choice subsets from complete domain addressed to 
specific applications. 
 

 

Figure 3: Precedents work on CFS search domain modeling: (a) (Leng et.al. 2011), (b) (Gilbert 2012a, Gilbert 2012b), (c) 
(Leng et.al. 2013). 

 

2.2 Implementation 
A manufacturable shape has its origin from a rectangular thin steel plate, subjected to a finite sequence of 
geometric transformations by cold-forming process. The generic sequence of these transformations is 
named vector φ; angles between consecutive walls are named vector θ; a third vector κ indicates 
proportion between walls and vector ρ represents radius of folded corner. Therefore, a generic shape w is 
represented by Eq. 1: 
 

w = w(φ,κ,θ,ρ) (1) 
 

The Shape Grammar approach defines all possible w like CFS language. The methodology 
closely follows the original model of generative grammars laid out in Chomsky (1972) to 
describe syntactic features of natural languages and the geometrical version of this grammar 
(Gips 1972), where “language” and “grammar” are mathematical concepts derived from the 
theory of groups. The CFS language is a set of sentences, each being finite in length and 
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constructed out with a finite set of symbols called the CFS Alphabet. Each symbol is a different 
instruction for shape generation, as presented in Table 1.  
 
All cold-formed member manufacture starts from a flat steel sheet that is transformed into a new 
shape through folding operations. This process is represented by a rewrite system, where a set 
of rules changes substrings along a finite sequence of procedures. Alphabet and rules must be 
derived from a finite set of sentences called corpus. Cold-formed steel member structural design 
standards and codes deal with usual shapes illustrated in Fig. 4 and provide a corpus for the 
development of the CFS language. 
 

 
Figure 4: Usual shapes provisioned by cold-formed steel member structural design standards and codes. 

The proposed CFS grammar is a device for producing all grammatical sequences of the CFS language 
and no ungrammatical ones. This approach inherits the Chomsky's (1972) model warnings: (i) there is no 
statistical approximation (whether a sentence is grammatically correct or not) and (ii) the grammatical 
notion cannot be identified with “meaningful”. First item means that it is impossible to generate a shape w 
by CFS grammar if it does not follow the manufacturing rules; second item is important because a valid 
sequence of symbols may result in cross-walled shapes. A semantic CFS algorithm has been included to 
identify and exclude these meaningless geometries. An unfolded plate is called axiom and valid 
transformations are productions or grammatical rules interpreted as rewrite X as Y, as presented in 
Table 2. Fig. 5 shows six rules obtained from C. Any shape w derived from the axiom following this set 
of rules is a derivation of sentence w. 
 
Derivation by the rewrite system based on characters produces strings difficult to be read by human eyes. 
For example, a simple lipped channel derivation based on Tables 1 and 2 looks like the following, where 
two derivations are enough to generate a string representing it, but none particular shape is understood 
from these strings by “naked eyes”: 
 
Axiom:  +F 
derivation 1:  +{F(_f.fd.f.f.F)_f.fd.f.f.F} 
derivation 2:  +{F(_f.fd.f.f.{F(_f.fd.f.f.F)_f.fd.f.f.F})_f.fd.f.f.F} 
 
Many Computer Graphics (CG) applications offer scripting languages for simple grammar deployment 
by turtle concept (Prusinkiewicz 1990). The turtle is represented by a triplet (x; y; α), where the 
Cartesian coordinates (x; y) represent the cursor's current position and its facing is oriented by angle α, 
called heading. Given an initial direction and step size, the turtle responds to commands represented by 
symbols included in Table 1. 
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Table 1: CFS alphabet end geometric interpretation. 
CFS Alphabet Geometric Interpretation 

1. F 
2. V 
3. + 
4. * 
5. % 
6. [  
7. ] 
8. < 
9. > 
10. { 
11. } 
12. ( 
13. ) 
14. F 
15. . 
16. d 
17. u 

1. Wall 
2. Stiffener 
3. Angle between walls 
4. Positive angle increment between stiffener walls 
5. Negative angle increment between stiffener walls 
6. Start wall before a folding 
7. End wall before a folding 
8. Start wall after a folding 
9. End wall after a folding 
10. Start wall with two foldings 
11. End wall with two foldings 
12. Start wall between two foldings 
13. End wall between two foldings 
14. Wall inside bending radius 
15. Increment angle between walls inside curve 
16. Computes arch length 
17. Insert cold bending radius 

 
Table 2: CFS grammar set of rules 

CFS rules Geometric Interpretation 
1. F → F  
2. F → [F] < uF > 
3. F → {F(uF)uF}  
4. F→[F]<%v**v%F>  
5. F→{F(%v*vv*v%)F}  
6. u → f:f d:f:f: 

1. Keep this wall the same  
2. Fold wall at a single point  
3. Fold wall at two points  
4. Apply a two-walled stiffener  
5. Apply a three-walled stiffener  
6. Apply cold bending folding 

 

 
Figure 5: Set rules for CFS grammar: (a) identity, (b) folding and (c) intermediate stiffeners 

 
 
3. Design of objective function 
Design of CFS as a product implies simultaneous objectives, as maximum strength and minimal costs. In 
fact, an exact function CM(w) for manufacturing costs is dependent of variables like specific machinery, 
scale of production and other particular conditions of each manufacturer. For simplicity, as a first step, 
this work adopts CM(w) as a linear function of number of foldings, with the purpose to demonstrate the 
possibility to employ CM(w) in CFS multi-objective optimization as a general principle. On the other 
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hand, strength computation is based on many decades of international research and represented in this 
work by the functions in Eq. 2: 
 
Axial force: w → H(w) → NcR(H(w))   (2) 
Bending moment: w → H(w) → MR(H(w)) 
 
where H is the buckling analysis procedure and provides critical loads associated with buckling 
deformation modes: Local (L), Global (G) and Distortional (D); NcR provides nominal axial strength; MR 
provides nominal flexural strength. Computational solvers for H are essential and free shared tools may 
be found. The notation of composite functions NcR(H(w)) and MR(H(w)) will be simplified to NcR(w) and 
MR(w). 
 
3.1 Step 1: Elastic buckling analysis by FSM 
Thin-walled structural members are sensitive to elastic buckling phenomena affecting its behavior, failure 
mechanism and final strength. This is the case of cold-formed steel members, which develop failure by 
combining elastic buckling deformation with material yielding and oblige the designer to recognize the 
dominant deformation with the help of previous elastic buckling analysis. Open cross-section thin-walled 
members may follow three main buckling modes, as illustrated in Fig. 6: (i) local buckling (L), in close 
correspondence with uniaxially compressed rectangular plates; (ii) distortional buckling (D), a 
combination of local plate bending with lateral displacements of almost one bent corner of the section and 
(iii) global buckling (G), which includes flexural, torsional or flexural-torsional buckling modes. The 
former (L) develops with short longitudinal half-wave lengths (of the order of the larger cross-section wall 
width bw), distortional (D) with longitudinal half-waves longer than local mode and finally the global 
buckling modes (G) developing much longer half-waves, in many cases as long as the member's length 
(this is the case of member with pined-pined end condition). The lower buckling load identifies the 
critical one and its mode deformation will control the member's behavior with increasing amplification 
until yielding lines develop and promote localized failure. In addition, different buckling modes may 
develop in elastic interaction especially in the present case of thin-walled cold-formed members, obliging 
researchers to acquire in deep comprehension of the phenomenon in order to find accurate strength 
equation addressed to practical structural design. 
 

 
Figure 6: Results of the buckling analysis by finite strip method: Local (L), Distortional (D) and Global (G) buckling 

modes from CUFSM computational program. 

 
Elastic buckling and strength of cold-formed steel members are investigated in close combination of the 
theory of elastic stability with numerical and experimental analysis. Nowadays, based on decades of 
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international research results in this field, the direct strength method (DSM) (Schafer 2006) is recognized 
as the one combining simplicity and accuracy allowing direct strength computation of buckling modes 
interaction based on equations which have been extensively calibrated with experimental results. 
Furthermore, as the nature of the failure of thin-walled members is associated with the above cited 
buckling modes, all DSM equations are based on the buckling loads respectively associated with axial 
compression N or bending moment M of the CFS member, i.e.: (i) local buckling NL and ML, (ii) 
distortional buckling Ndist and Mdist, (iii) global buckling Ne and Me. Buckling modal identification 
requires buckling analysis solutions based on the large eigenvalues problem. In particular, the Finite Strip  
Method (FSM) and the Generalized Beam Theory (GBT) are the most efficient methods to solve CFS 
members for elastic buckling; the former is applied in the present investigation with the help of the free 
share computational program CUFSM (Schafer and Ádány 2006). An open MATLAB® compiler 
source code, CUFSM allows buckling analysis of any type of CFS typology. Although GBT offers 
excellent results of buckling analysis, for example by means of the GBTUL (Bebiano et.al. 2008) 
computational program, FSM-based computational tool CUFSM offers an easy access to its open code 
allowing user to develop programming according to its own interest and necessities, which is the case of 
the present investigation. Critical load (or load factor) of each buckling mode (L and D) are given by the 
minimum points as shown in Fig. 6.  
 
3.2 Step2: strength computation by DSM 
Member's strength and its failure mode is a combination of elastic buckling and plasticity spread (yielding 
lines). Therefore, load factor derived from CUFSM (or GBTUL) solver for buckling analysis of thin-
walled members are input to simple formulae provisioned by the direct strength method (AISI S100-
2007). In this condition, the DSM-based optimization procedure explicitly requires a computational tool 
such as CUFSM for inputs, observed that the strength is accurately computed for single axial 
compression or bending loading, with no specific rule or equation for axial compression and bending 
moment combination as those of beam-column member. The DSM strength equations for axial 
compression are presented in the following and include global, local, distortional buckling as well as 
local-global buckling interaction. The nominal axial strength for flexural, torsional or torsional-flexural 
buckling related to global mode G is function of slenderness factor λ0 in Eq. 3. 
 

e
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=0λ  (3) 

 
Where A is the cross-section area, fy is the steel yield stress and Ne is the critical elastic buckling load - the 
minimum between flexural, torsional or torsional-flexural buckling loads. Once λ0 is given, nominal axial 
strength related to global buckling is computed by Eq. 4. 
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The nominal axial strength for local buckling, also considering the effect of LG nonlinear interaction 
between local and global buckling depends on the slenderness factor λL in Eq. 5, where NcRe is defined in 
Eq. 4 and NL is the elastic local bucking load derived from CUFSM (or any other buckling solution). 
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Once λL is given, nominal axial strength for local buckling is computed by Eq. 6. 
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The nominal axial strength for distortional buckling D is computed without any interaction with L or G 
buckling modes and depends of the slenderness factor λdist in Eq. 7, where Ndist is the critical elastic 
distortional buckling load derived from CUFSM (or any other buckling solution). 
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Once λdist is given, nominal axial strength for distortional buckling is computed by Eq. 8. 
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Finally, the nominal axial strength for a CFS member is defined as the minimum between the computed 
strength values by Eq. 9: 
 

),,min( Re cRdistcRlccR NNNN =  (9) 

 
The nominal flexural strength for global buckling, namely the lateral-torsional buckling mode, depends 
on slenderness factor λ0 in Eq. 10, where S is the elastic modulus of the section and Me is the critical 
lateral-torsional buckling bending moment. 
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Once λ0 is given, nominal flexural strength for global buckling is computed by Eq. 11. 
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The nominal flexural strength for local buckling including the effect of nonlinear interaction between 
local and global buckling, identified as LG interaction, depends on slenderness factor λL in Eq. 12, where 
MRe is given by Eq. 11 and ML is the elastic local buckling bending moment given by CUFSM (or any 
other buckling solution). 
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Once λL is known, nominal flexural strength for local buckling is computed by Eq. 13. 
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The nominal flexural strength for distortional buckling in bending depends on slenderness factor λdist in 
Eq. 14, where Mdist is the critical elastic distortional buckling bending moment given by CUFSM (or any 
other buckling solution). 
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Once λdist is known, nominal flexural strength for distortional buckling is computed by Eq. 15. 
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Finally, the nominal flexural strength for a CFS member is defined as the minimum between the 
computed strength values in Eq. 16: 
 

),,min( Re RdistRlR MMMM =  (16) 
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4. Genetic Algorithm NSGA-II 
Since CM, NcR and MR are defined, a multi-objective optimization is formalized by Eq. 17: 
 

B wSubject to

(w)C Minimize

(w)M Maximize

(w)N Maximize

M

R

cR

∈

 (17) 

 
It remains a beam optimization when just NcR(w) is disabled; if MR(w) is disabled only, it becomes a 
column optimization; if equations of NcR(w) and MR(w) are enabled, it is a beam-column optimization, 
which requires an additional interaction equation enabling the evaluation of the beam-column strength. 
None of the feasible solutions allows simultaneous optimal results for all objectives on beam-column 
optimization problem, because it is expected that a better shape under axial compression will be different 
from another under flexural bending or a particular combination of compression and bending. There are 
many alternative algorithms to perform optimization. Genetic Algorithm (GA) is an adequate choice 
because it is able to operate over populations (sets) of solutions. In this work, the subset P ⊂ B of best 
shapes found in Pareto's front by GA (Deb 2002) is defined as a shape library. Genetic algorithms have 
some well-known disadvantages like high computational costs and no guarantee of global maximum 
achievement.  
 
Modified Non-Dominated Sorting Genetic Algorithm, NSGA-II (Seshadri nd) is a popular GA 
implementation where Pareto's front is a collection of non-dominated solutions. For this problem, a 
general shape w(φ,θ,κ,ρ) is codified by float numbers into chromosomes. Therefore, a chromosome is a 
p-dimensional vector, where p is the sum of φ, θ, κ and ρ vector dimensions and its evaluation results in 
n-dimensional vector f, where n is the number of objectives. For a minimization problem, w1 is a non-
dominated solution over w2 if there is at least one entry on f(w1) that is smaller than the same position in 
f(w2). NSGA-II initializes the chromosomes using a random process. First, a population P of candidates 
w(φ,θ,κ,ρ) is started and all of them are evaluated. For each p ∈ P two numbers are signed: (i) np, quantity 
of elements in P that dominates p and (ii) Sp, number of solutions dominated by p. All solutions where 
np=0 are located in the first front and are signed with rank = 1. Higher-order ranks are placed in 
successive fronts. Next step, solution's density into each front (crowding distance) is taken. Higher 
densities are related to smaller fitness in order to increase variability in population. NSGA-II uses ranking 
and crowding distance as fitness measures. Traditional GA crossover and mutation operators are applied 
until the stop criterion is reached (maximum number of generations specified by the user). 
 
5. Results  
The following numerical results have constant plate dimensions for all implemented examples: steel sheet 
thickness t=1.0mm, cold bending internal radius ri=3.0mm, perimeter length (or plate width) p=280.0mm 
and member length L=1219.0mm, for which a major number of cases with predominance of L and D 
buckling modes are expected. Nominal steel mechanical properties are Young Modulus E=205.0GPa, 
Poisson ratio ν=0.3 and yield stress fy=300.0MPa. Vector sizes of φ, θ, κ and ρ are dependents of 
maximum number of derivations specified. Folding numbers were limited from 2 to 17. Single 
rectangular plates and angle profiles, respectively null or one-fold, were excluded for stability 
considerations; higher number of folding operations represents a considerable increase in computational 
costs, thereby requesting higher performance computers and, in addition, it could generate impractical 
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solutions. The shape generator automatically divides 30.0mm wider wall elements by two for matrix 
analysis purposes (one intermediate node is included in the mid position of the element). Results have 
been classified in two blocks, (i) guided search, where some functional constraint is imposed to shape and 
(ii) free-form search, where manufacturing possibility is the only constraint.  
 
5.1. Guided search 
Let “sigma-and-neighborhood” be a shape optimization problem with functional constraint where at least 
one wall must be in vertical position (web element) with one middle intermediate stiffener. The proposed 
problem is called “sigma-and-neighborhood” because the traditional edge stiffened sigma shape shown in 
Fig. 7 is an adequate initial case for investigation. Other geometrical possibilities, including the 
consequences of changing angles between walls (Session 5.1.2) and the proportions among walls 
(Section 5.1.3), are also presented below. The CFS grammar demands manipulation of vectors θ and κ in 
order to solve the problems in Sessions 5.1.1 to 5.1.3, without requiring specific algorithms for the 
investigated shapes. In addition, the intermediate stiffener placed in the web was previously designed with 
constant geometry, thereby providing efficient stiffening in order to improve local buckling load. 

 
Figure 7: Geometrical models for Sigma shapes: (a) κ2=0.1 (b) κ2=0.5 and (c) κ2=0.9 

 
5.1.1 Sensitivity analysis on fixed typologies 
Sigma shape “adds” an efficient intermediate stiffener at the middle point of the web of a lipped channel. 
Values for the parametric CFS grammar, are presented in Eq. 18. Position κ2 (representing in this 
example the proportion between web and flange (bw/(bw +2bf )) for the sigma channel) is the variable to 
be evaluated, as shown in Fig. 8, where κ2={κ2∈R:0.1<κ2<0.9}. 
 

][0.9;

[3;3;3;3]

0;-90]-90;-90;-9[-180;-90;

;1;5][3;1;3;1;1 =

2κκ
ρ
θ
ϕ

=
=
=

 (18) 

 
Fifty values of κ2 were assigned on a specified range and computed with a modified version of CUFSM. 
Checking NcR and MR in Fig. 8 reveals that columns maximum nominal axial strength at κ2=0.52 and 
beams have maximum nominal flexural strength at κ2=0.7. Selecting the “best solution” can be a difficult 
task for a beam-column design problem because NcR and MR have a conflict for 
κ2={κ2∈R:0.52<κ2<0.7}: if NcR is improved, MR decreases.  
 
This shape library (Fig. 8) is related to one variable for two objectives and could be a starting point for 
handwork beam-column design for which the bending moment effect is not predominant. As a 
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consequence, typical beam-column nonlinear behavior can be safely replaced by the linear interaction in 
Eq. 19 (ANBT 2009) (typically the case of trussed girders with joint eccentricities where bending 
moment develops with minor importance), where NS and MS are respectively the applied axial 
compression and bending moment. 
 

1≤+
R

S

cR

S

M

M

N

N
 (19) 

 
In this example, providing an intermediate web stiffener in Sigma shapes (as stated above, efficient 
intermediate stiffener was adopted improving the local buckling behavior and strength) induced a 54% 
increase in the maximum compressive axial strength NcR, if compared with an equivalent lipped channel 
(49/31.8=1.54 at κ2=0.52), and a 20% increase in the maximum bending moment strength (3.35/2.8 = 
1.20 at κ2=0.7) 
 

 
Figure 8: (a) Axial compression NcR(w) and (b) bending moment strength MR(w) as a function of parameter κ2 for sigma 

shape. 

5.1.2 Optimization with constant number of bent corners 
Session 5.1.1 suggests that κ2=0.52 for the highest strength shapes in the standard Sigma problem. This 
value has been assigned as constant to κ2 in the present Session and vector θ was taken as variable. This 
problem is addressed to verify if the standard Sigma shape got in the past Session is an optimum solution. 
Five records of θ are manipulated to constraint one vertical wall and four angle variables on sigma shape. 
Eq. 20 indicate the vectors addressed in sigma typology, where θi = {θi∈R:-180<θi<180}. 
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 (20) 

 
This domain includes 1.68x1010 possibilities. An exhaustive search requesting 1 second by analysis 
would take more than 540 years of continuous processing, instead of some hours by GA. Fig. 9 show that 
customized shapes have up to 9% axial strength improvement when compared with the best traditional 
Sigma shape with the same proportions among walls (53.5/49=1.09 from Figs. 8a and 9). The 
improvement means that standard Sigma shape is not an optimal solution if other solutions around 
“neighborhood” are considered. Fig. 9(b) shows four solutions taken from this shape library. 
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Figure 9: NcR vs MR Pareto's front for modified sigma shape. 

 

5.1.3 Enlarged search domain on guided search 
A wider domain than previous one in Session 5.1.2 was considered, including vectors κ and θ as 
variables. This domain has 1.68x1014 solutions and the unusual cost of “5.4 million years” to be solved 
based on exhaustive search with usual computer performance around 1 second per analysis. Fig. 10 
shows that the maximum NcR improves 16%, when compared with the best shape from Session 5.1.1 
(57/49=1.16), and 6% when compared with the best shape from Session 5.1.2 (57/53.5=1.06). On the 
other hand, there is no improvement for MR. Four shapes from this library are presented in Fig. 10(b). 
 

 
Figure 10:  NcR vs MR Pareto's front for modified sigma shape. 

Sessions 5.1.1 to 5.1.3 presented a progression from predefined shapes to previously undefined solutions 
developed with the help of Artificial Intelligence. These cases demonstrate how the experienced designer 
plays a fundamental role in CFS usual problems, allowing a very valuable initial input in optimization 
problems and, as a consequence, a reduction of the search domain to as close as possible to the optimal 
solution and consequently saving computational costs of the search. 
 

5.2. Free-form constrained by manufacturing rules 
Sessions 5.2.1 to 5.2.3 address problems without functional constraints or parameters defined by 
experience. These examples have no constructive purposes, but are valuable to (i) demonstrate the 
descriptive power of the CFS Grammar and (ii) verify GA's capacity to find previously known “optimal” 
solutions into a very large domain. Vectors φ, θ and κ were placed into chromosomes with 31 variables, 
resulting in a domain with 2.23x1055 elements. Optimized shapes of Sessions 5.1.1 to 5.1.3 are inside this 
domain and a GA would be able to find them or something better than useless or unnecessarily expensive 
shapes. All the following examples have exactly the same parameters in the Shape Grammar, according 
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to Eq. 21, and only differ in the specified goals fed into the Genetic Algorithm, where: 
φi={φi∈R:1≤i≤5}; θi={θi∈R:-180≤θi≤180}; κi={κi∈R:0.1≤κi≤0:9}; ρ1=3. 
 

],...,[

],...,[

],...,[

],...,[ =

71

171

171

71

κκκ
ρρρ

θθθ
ϕϕϕ

=
=
=

 (21) 

 

5.2.1.Column optimization with cost function 

Let NxC be an optimization problem where strength must be compared with manufacturing costs. GA has 
been configured to work with 100 individuals and an evolution process of 200 generations, the procedure 
has been repeated twice and the best shape library is presented in Fig. 11. 
 

 
Figure 11: NcR vs CM Pareto's front for session 5.2.1 

The highest strength into this shape library is 49.0kN. This value is equal to the standard Sigma channel 
in Session 5.1.1 (49/49=1.00). On the other hand, it is 14% lower than the best non-conventional shape in 
Session 5.1.3 (49/57=0.86). GA has failed to find an expected optimal solution without engineering 
experience to guide the choice of parameters and to reduce the domain size. Fig. 11(b) presents two of the 
solutions from this shape library. As expected in the design of members under axial compression, the 
proportion between major and minor inertia axis are close to unity (I1/I2→1). Additionally, shear and 
centroidal centers became closer, with tendency to coincide, thus improving member efficiency for 
flexural-torsion. 
 
5.2.2. Beam optimization with cost function 
Let MxC be an optimization problem where strength must be compared with manufacturing costs. 
Solutions are supposed to be the best collection for flexural bending from 2 up to 6 foldings as presented 
in Fig. 12. The evolution pressure for minor costs decreased the trend for improved strengths and, 
consequently, the higher value of MR (3.35kNm) is 4% lower than the corresponding result obtained in 
Session 5.1.3 (3.35/3.5 = 0.96). Note that Pareto contains just one solutions for each number of folding, 
suggesting the convergence of the GA towards a reduced set of shapes. Fig. 12(b) presents two solutions 
extracted from this shape library, which confirms the tendency of beam-like sections with a single web 
and large amount of material in the stiffened compressed flange side. 
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Figure 12: NcR vs CM Pareto's front for Session 5.2.2 

 
5.2.3. Beam-column optimization with cost function 

Let MxNxC be an optimization problem without functional constraints for which the strength must be 
compared with manufacturing costs. Concerning combined bending and axial compression strength, 
linear interaction Eq. 19 is to be considered only if the non-linear beam-column amplification effect can 
be neglected. Visualization of the relationship between three goals requires the 3D graphic shown in Fig. 
13, where NcR vs MR results were layered by the folding number. GA has been configured to work with 
100 individuals and an evolution process of 200 generations; the procedure has been repeated twice and 
the best population elected. Higher strengths are compatible with the results obtained in Sessions 5.1.1 to 
5.1.2. GA was not able to yield solutions with the same strength of Session 5.1.3, in which the domain 
was reduced by engineering experience. Furthermore, solutions without functional constraints are out of 
any practical scope and not able to be employed for practical purposes as can be confirmed in Fig. 13(b). 
The presented example shows at the same time GA's capabilities and limitations to organize solutions 
based on their fitness for different purposes. In addition, there are many other possibilities that can be 
explored using the proposed CFS grammar rules. These possibilities can be increased if one extends the 
grammar to include other rules, making it fit to address other engineering goals. Results thus suggest that 
other grammars for other goals can be developed, indicating that the application of shape grammars to the 
engineering domain has a great potential to be explored. 
 

 
Figure 13: NcR vs MR vs CM Pareto's front for Session 5.2.3. 
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FINAL REMARKS 

Despite FSM limitations (Schafer and Ádány 2006) and low speed of MATLAB® compiler, CUFSM 
was proved to be an adequate choice for CFS optimization problems. Optimization of CFS shapes 
presents dichotomies that are produced by technical limitations. The first one opposes improving strength 
(i) for usual, feasible shapes with functional constraints and (ii) for unfeasible geometries without 
functional constraints. The main purpose of this paper is to present the development and the obtained 
results of a shape generator able to perform optimization for both cases with simple and flexible 
implementation. The proposed CFS Shape Grammar approach offers descriptive power, simplicity of 
implementation and easiness of customization. A second dichotomy is represented by Artificial 
Intelligence (AI) and professional engineering experience. CFS structural capability may show non-
intuitive behavior and can surprise even experienced engineers, but there is no reason to believe that 
experience does not play an essential role in CFS optimization. Actually, experience strongly helps 
reducing search domain and computational costs of optimization, while adequate search algorithms and 
sensibility analysis may improve engineering decision. Technically, it is necessary to combine Shape 
Grammar, buckling analysis, strength computation and Genetic Algorithm (or other AI algorithm) into a 
more robust computational compiler. Finally, the improvement of the presented procedure also 
dependents on the evolution of the strength computation capabilities as those proposed by the Direct 
Strength Method, which is under development, especially for the cases of buckling interaction LD, DG 
and LDG. None of them are considered inside design codes and standards prescriptions although many 
results are available from numerical and experimental investigation (Dinis 2011, Santos 2012, Dinis 
2012). The same comment may be addressed regarding the case of steel thin-walled cold-formed beam-
columns, which so far does not count with a confirmed DSM-based solution for the moment. 
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