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Abstract 
 
A stiffness reduction approach is presented in this paper, which utilises Linear Buckling Analysis 
(LBA) and Geometrically Nonlinear Analysis (GNA) in conjunction with developed stiffness 
reduction functions for the design of columns and beam-columns in steel frames. The proposed 
stiffness reduction approach obviates the need to model member imperfections and to make 
member buckling checks. While LBA with appropriate stiffness reduction provides inelastic 
buckling loads of columns, GNA with stiffness reduction is performed for the prediction of 
beam-column failure. In addition to regular members, the accuracy and practicality of the 
method is illustrated for irregular members. For the latter case, results indicate that the proposed 
stiffness reduction method provides more accurate strength predictions in comparison to 
traditional design approaches. The influence of moment gradient on the development of 
plasticity (i.e. stiffness reduction) is accounted for by incorporating simple moment gradient 
factors into the stiffness reduction expressions originally derived for members under uniform 
bending. The accuracy of the proposed stiffness reduction approach is verified against results 
obtained through non-linear finite element modelling for all of the considered cases.  
 
 
1. Introduction 
The development of plasticity within constituent members of a steel frame, leading to the 
reduction in the stiffness, may result in a member force distribution that is different than that 
determined through elastic analysis. The conventional means of taking into account this 
behaviour are the use of effective length or notional load concepts (EN 1993-1-1, 2005; AISC-
360-10, 2010). An alternative approach is the reduction of the stiffness of members in a frame 
considering corresponding member forces in the analysis. Included in the two most recent 
versions of the AISC-360 specification, including AISC 360-10 (2010), this approach provides a 
more direct way of considering the influence of the spread of plasticity in comparison to 
conventional methods. The approach is based on the method suggested by Surovek-Maleck and 
White (2005a, 2005b) attempting to capture the development of plasticity under axial load and 
bending. However, since the stiffness reduction scheme proposed by Surovek-Maleck and White 
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(2005a) does not fully take into account factors influencing the development of plasticity, the 
method still requires column buckling equations for the design of members.  
 
This paper summarises and extends the stiffness reduction approach proposed by Kucukler et al. 
(2014) for the design of steel members. Stiffness reduction functions are presented for pure axial 
load, pure bending and combined bending and axial load, which fully consider the deleterious 
influence of the development of plasticity, residual stresses and geometrical imperfections. For 
the design of columns, the implementation of linear buckling analysis (LBA) with reduced 
stiffness is proposed, while the use of Geometrically Nonlinear Analysis (GNA) with stiffness 
reduction and without modelling out-of-straightness is used for the design of beam-columns, 
where the failure is signified by reaching the ultimate cross-section resistance at the most heavily 
loaded cross-section. Unlike the method of Surovek-Maleck and White (2004a), the use of 
column strength equations is not required in the method proposed in this paper; instead only 
cross-section checks are necessary. Moreover, the proposed method in this paper accounts for the 
influence moment gradient on the strength of beam-columns, thereby providing more accurate 
strength predictions for beam-columns subjected to non-uniform bending. Since the proposed 
method does not require explicit modelling of member imperfections, it obviates the need to 
identify suitable shapes and directions. Finite element models of steel members are also 
developed in this paper using Geometrically and Materially Nonlinear Analyses with 
Imperfections (GMNIA) providing benchmark results used to assess the accuracy of the 
proposed stiffness reduction approach. In addition to regular members, the suggested approach is 
also applied to irregular members where its accuracy is compared against EN 1993-1-1 (2005) 
provisions.  
 
Details of the finite element modelling adopted in this study are described in the following 
section. Then, the primary aspects of the proposed stiffness reduction approach and its 
application are addressed for pure axial load, pure bending and combined bending and axial load 
respectively. For all of the considered cases, the results obtained through the proposed approach 
are compared against those determined through GMNIA. 
 
2. Finite element modelling 
The finite element software Abaqus (2010) was used in the numerical simulations. Referred to as 
B31OS in the Abaqus element library, a linear Timoshenko beam element accounting for the 
warping degree of freedom and shear deformations was used for the development of beam 
element models where a generic I section is discretized through 33 integration points for each 
flange and web. For shell element models, a shear flexible, reduced integration, 4-noded general 
purpose shell element which is referred to as S4R in the Abaqus element library was used. With 
the exception of tapered columns, beam elements were used in all numerical simulations as the 
members considered in this study are not susceptible to local buckling effects.  The tri-linear 
elastic-plastic material model shown in Fig 1 was used, where E is the Young’s modulus, Esh is 
the strain hardening modulus, fy and εy are the yield stress and strain respectively and εsh is the 
strain at the onset of strain hardening. The parameters fu and εu correspond to the ultimate stress 
and strain respectively. Esh was assumed to be 2% of E, which was taken as 210GPa, and εsh was 
asumed as 10εy, complying with the ECCS (1984) material model recommendations for hot 
rolled steel. In all numerical models S235 steel (fy = 235MPa) was used. The ECCS (1984) 
residual stress patterns, shown in Fig. 2, were employed, where the residual stresses were applied 
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through the SIGINI subroutine (Abaqus, 2010). The initial geometrical imperfections (member 
out-of-straightness) were assumed to be half-sine wave in shape and 1/1000 of the corresponding 
member length in magnitude (AISC, 2010). In all GMNIA calculations, geometrical and material 
nonlinearity, residual stresses and geometrical imperfections are considered. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Material model used in finite element models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Residual stress patterns applied to finite element models (+ve tension,-ve compression) 
 
3. Stiffness reduction under axial loading 
The derivation of a stiffness reduction function of a steel member under axial loading and its 
application with LBA for the determination of inelastic buckling strength of columns are 
addressed in this section. The accuracy of the proposed stiffness reduction function is verified 
using the results obtained through GMNIA.    
 
3.1 Derivation of a stiffness reduction function under axial loading 
For a steel member under axial loading, the stiffness reduction function is derived utilising the 
European column buckling curves provided in EN 1993-1-1 (2005). The stiffness reduction 
function under axial loading τΝ , which corresponds to the ratio between the reduced modulus Er 
and the Young’s modulus E, can be determined considering the ratio between the inelastic and 
elastic critical buckling loads of the member, Ncr,i and Ncr respectively, as shown in Eq. 1 where 

Npl is the yield load, χ is the buckling reduction factor and λ  is the member non-dimensional 
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slenderness crpl /NNλ = . Note that the yield load is equal to the multiplication of cross-

sectional area A with material yield stress fy. 
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The Perry-Robertson expression (Robertson, 1925), which is the basis of the European column 
buckling curves, can be used for the determination of the buckling reduction factor χ as given in 
Eq. 2, where α is the imperfection factor. To define five different buckling curves, five values of 
α are provided in Eurocode 3 (EN 1993-1-1, 2005) – see Table 1. 
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Table 1: Imperfection factors α for flexural buckling from EN 1993-1-1 (2005) 
 

Buckling curve a0 a b c d 
α 0.13 0.21  0.34 0.49 0.76 

 
 

Eq. 2 can be rearranged in terms of λ , providing Eq. 3: 
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Substituting Eq. 3 into Eq. 1 and with χ = NEd / Npl gives Eq. 4, where τΝ  is expressed as a 
function of the ratio between the applied axial load NEd and the yield load Npl = Afy, as well as the 
imperfection factor α. Owing to the inclusion of the imperfection factor, the influence of 
geometrical imperfections and residual stresses are implicitly accounted for in the proposed 
expression for τΝ. The derived stiffness reduction function τΝ is illustrated in Fig. 3 for different 

buckling curves. For stocky members, with≤λ 0.2, Eurocode 3 (2005) allows for the use of the 
full cross-sectional resistance, in which case NEd / Npl = 1.0 and τΝ  = 0.04. 
 

               
2

2
2

2

1
411

4











 −
−+

=

plEd

plEd
plEd

N

NN

NN
NN

/

/
/

α
ψα

ψτ    but     01.≤Nτ                 

where  
pl

Ed

pl

Ed

N

N

N

N
−+= αψ 201 .                    (4) 



 5

Since the member is assumed to be perfect, the stiffness reduction method gives the inelastic 
buckling load of a member in lieu of its full load-displacement path.  The strength of a column 
can be checked using Eq. 5, where the inelastic flexural buckling load amplifier αcr,i must be 
greater than or equal to 1.0.  The ultimate strength of a column can be obtained by iterating NEd 
until satisfying αcr,i = Ncr,i  / NEd  = 1.0. 
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It is of significance to note that the use of the derived stiffness reduction function τΝ  provides an 
exact match to the European buckling curves, thus relying on the ability of these curves to 
capture accurately the behaviour of real columns. A suitable buckling curve for a member is 
chosen through a buckling curve selection table in Eurocode 3 (2005), which has been developed 
on the basis of extensive experimental, numerical and probabilistic studies (ECCS, 1976). Using 
multiple buckling curves, τΝ  takes into account different magnitudes and patterns of residual 
stresses and different buckling directions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Proposed stiffness reduction function under axial load based on Eurocode 3 (2005) buckling curves 

 
3.2 Application of the derived stiffness reduction function to inelastic flexural buckling 
In the case of regular members, the proposed stiffness reduction function τΝ provides the same 
results as those obtained through the Eurocode 3 (2005) provisions. In this section, it is shown 
that use of the stiffness reduction function in conjunction with Linear Buckling Analysis (LBA) 
results in more accurate strength predictions in comparison to those obtained through Eurocode 3 
(2005) for the case of columns with irregular geometry and boundary conditions. Since irregular 
problems can generally only be solved by making conservative assumptions or simplifications to 
the structural system in traditional design methods, the use of LBA in conjunction with the 
stiffness reduction function τΝ  given in Eq. 4, which will be henceforth referred to as LBA-SR,  
may offer both an accurate and practical means of solving this kind of problem. The application 
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of the proposed stiffness reduction method to two examples of irregular columns including a 
web-tapered column and a column with an intermediate elastic restraint is considered herein.  
 
3.2.1 Tapered column 
Application of the stiffness reduction method to the design of web-tapered columns with doubly-
symmetric cross-sections is investigated in this sub-section. Beam element models are used to 
perform LBA-SR where the tapered column was discretized through 10 uniform elements along 
the span. The depth of the cross-section of an element is assumed to be equal to the average of 
the smaller and larger depths of the corresponding discretized portion. Considering the 
corresponding average cross-sectional area, stiffness reduction factors τΝ  obtained from Eq. 4 
were applied to each corresponding discretized portion. Using the first eigenmode as an 
imperfect shape, GMNIA of the tapered columns modelled using shell elements were performed 
to assess the accuracy of the proposed approach. The residual stress pattern suggested for hot-
rolled sections is used in the finite element models, assuming hot-rolled members are cut to 
fabricate the tapered members. Comparisons of the results obtained through LBA-SR with those 
obtained through GMNIA, based on an IPE 240 cross-section with different tapering ratios is 
displayed in Fig. 4. Note that the tapering ratio γ is equal to the ratio of the depth of the increased 
cross-section h2 to that of the original IPE 240 section h1, such that γ= h2 / h1. The non-
dimensional slenderness values shown in Fig. 4 are calculated with respect to the original cross-
sectional area A1 and elastic buckling load of the uniform column neglecting tapering. As seen in 
Fig. 4, LBA-SR provides results that are in very good agreement with those obtained through 
GMNIA for all member slenderness and tapering ratios. Moreover, the use of LBA-SR brings 
about improved accuracy in comparison to the Eurocode 3 (2005) provisions with Ncr determined 
from LBA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Comparison of the inelastic strengths of tapered columns obtained through the stiffness reduction method 

(LBA-SR) with those obtained through GMNIA and Eurocode 3 (2005) 
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3.2.2 Column with an intermediate elastic lateral restraint 
For members with intermediate lateral restraints, the stiffness of the support should be taken into 
account when the restraint is not fully-rigid. In this sub-section, the behaviour of two columns 
with W8x31 (W200x46.1) cross-sections and non-dimensional member slenderness with respect 

to minor axis buckling 80.=zλ and 61.=zλ , restrained by an elastic lateral restraint at the 
mid-height, are investigated. The non-dimensional slenderness of columns was determined 
neglecting the elastic restraint. The columns, fully restrained in the out-of-plane direction, were 
subjected to pure axial load.  The stiffness of the elastic restraint β was varied so that the 
influence of the support stiffness on the inelastic buckling strengths could be investigated.  The 
results obtained from linear buckling analysis with reduced member stiffness through τΝ  (LBA-
SR) are compared against those obtained through GMNIA and Eurocode 3 (2005) in Fig. 5. Note 
that βL = 16π2EIz / L

3
 is the threshold restraint stiffness leading to elastic buckling of the column 

in the second mode (two half-sine wave mode). Two types of geometrical imperfections were 
assumed in the GMNIA calculations: a single half-sine wave imperfection scaled with L/1000 
and a two half-sine wave imperfection scaled with L/2000, where L is the height of a column. 
For Eurocode 3 (2005) calculations, the non-dimensional slenderness of the restrained members 
was determined using elastic buckling loads obtained through LBA where the elastic restraint 
was considered. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Comparison between inelastic strengths of columns with elastic restraints obtained through the stiffness 
reduction method (LBA-SR) and those obtained through GMNIA and Eurocode 3 (2005) 

 
It may be seen from Fig. 5 that the single half-sine wave imperfection is critical up to a specific 
threshold restraint stiffness βL,inelastic  for both columns. For larger restraint stiffnesses, the two 
half-sine wave imperfection results in lower column strengths. As the development of plasticity 
in the columns increases the effectiveness of the intermediate elastic lateral restraint, the 
threshold stiffness forcing inelastic buckling in the second mode βL,inelastic is lower than that 
required for elastic buckling βL, i.e. βL,inelastic ≤ βL. As can be seen in Fig. 5, LBA-SR captures the 
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increased effectiveness of the elastic restraint with the development of plasticity in the columns, 
providing very accurate results that are in close agreement with those obtained through GMNIA 
for both slenderness values. It is noteworthy that while two types of imperfection have to be 
considered in the case of GMNIA, LBA-SR directly captures the transition between the first and 
second inelastic buckling modes after exceeding the inelastic threshold stiffness βL,inelastic.  Since 
the development of plasticity in the column is not considered, the Eurocode 3 (2005) design 
equations, with elastic buckling loads determined through LBA, results in less accurate and 
overly conservative strength predictions in comparison to LBA-SR. 
 
The ratio between the inelastic and elastic threshold stiffness values is dependent on the extent of 
plasticity undergone by the columns. The stockier the column, the smaller the ratio. This can be 
seen from Fig. 5, where the ratio βL,inelastic / βL is smaller for the column with non-dimensional 

slenderness 80.=zλ  in comparison to that with 61.=zλ . The ratio between threshold inelastic 
and elastic stiffness βL,inelastic / βL is equal to the stiffness reduction factor determined for the 
inelastic buckling load in the second mode Ncr,i,2  through Eq. 4,  τΝ (Ncr,i,2), as given in Eq. 6.   
 

)(/ ,,, 2icrNLinelasticL Nτββ =                                                        (6) 

 
4. Stiffness reduction under bending 
The development of a stiffness reduction function for steel members under bending is addressed 
in this section. For a member subjected to constant bending and sufficiently restrained against 
out-of-plane instability effects, the stiffness reduction function can be developed considering its 
moment-curvature (MEd - ϕ) relationship. The cross-section geometry, material model and 
distribution and magnitude of residual stresses are of importance for the MEd - ϕ relationship, but 
not geometrical imperfections. Incrementally applying bending moment, the change in flexural 
stiffness can be determined, with the tangent stiffness EIr defined as EIr = dMEd / dϕ. The ratio of 
the flexural stiffness at a particular bending moment value to the initial flexural stiffness then 
provides a stiffness reduction factor due to bending τΜ  =  EIr  / EI. 
 
As the same general stiffness reduction patterns, involving elastic, primary plastic and secondary 
plastic stages (Chen and Atsuta, 1976) are exhibited for all I-shaped cross-sections, expressions 
for stiffness reduction due to bending can be calibrated on the basis of moment-curvature 
relationships generated through finite element analysis. This approach was adopted by Zubydan 
(2010, 2011) to develop an expression for the reduction of stiffness in I-sections under pure 
bending, assuming the ECCS (1984) residual stress distributions illustrated in Fig. 2. This 
function is used in the present study and is given by Eq. 7a, 7b, 7c representing the reduction in 
stiffness in the elastic, primary plastic and secondary plastic stages respectively. The parameters 
τΜ1, ξ, φ, β, δ are given in Table 2 for major and minor axis bending of I-sections. Two sets of 
model parameters are provided, for h / b ≤ 1.2 and h / b > 1.2, which correspond to the different 
residual stress patterns shown in Fig. 2. 
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Table 2: Parameters for the stiffness reduction function for I-sections in bending (Zubydan, 2010, 2011) 

 
 Μajor axis bending  Minor axis bending 
 τΜ1 φ ξ β δ  τΜ1 φ ξ β δ 

h / b ≤ 1.2 0.04 0.5Wel,y/Wpl,y  0.98 1.5 1.0  0.5 0.5Wel,z/Wpl,z 0.8 0.85 0.6 

h / b > 1.2 0.08 0.7Wel,y/Wpl,y 0.95 1.5 1.0  0.6 0.7Wel,z/Wpl,z 0.75 0.85 0.6 

 
The results of finite element analysis were used to validate the ability of the stiffness reduction 
function given in Eq. 7 to capture accurately the influence of the spread of plasticity through the 
cross-section depth. Employing 313 section integration points for each cross-section (105 
integration points in both flanges and web), a wide range of European IPE and HE sections were 
analysed. For the considered wide-range of cross-section shapes, it was observed that the 
variation in the values of the parameters of the stiffness reduction function τΜ  provided in Table 
2 is small and as shown in Fig. 6, the adopted stiffness reduction function leads to results in close 
agreement to the finite element predictions for different magnitudes of residual stresses and axes 
of bending.   
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Comparison of the adopted stiffness reduction functions due to bending with those obtained through finite 

element analysis  
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section. Assumed ultimate cross-section strength interaction equations are first introduced. Then, 
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validated for both major and minor axis bending and for different magnitudes of residual 
stresses. To consider the influence of moment gradient, a modification to the stiffness reduction 
function is suggested. The proposed modification is verified for a large number of beam-columns 
subjected to various bending moment gradients. 
 
5.1 Interaction equations 
In view of their accuracy and simple form, the continuous interaction equations proposed by 
Duan and Chen (1990) were chosen in this study amongst numerous interaction equations 
defining the ultimate capacity of I-sections under combined loading. These expressions are 
provided in Eq. 8 and Eq. 9 for axial load plus major axis bending and for axial load plus minor 
axis bending respectively. Note that Aw and Af are the areas of the web and flange respectively.  
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5.2 Derivation of stiffness reduction function for combined bending and axial load 
The stiffness reduction functions for pure bending τΜ  and pure axial load τΝ  described in the 
previous sections were utilised to derive a stiffness reduction considering the influence of 
combined bending and axial load τΜΝ .  The proposed stiffness reduction function for combined 
axial load and bending is given by Eq. 10. 
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This form of equation leads to τΜΝ  having two anchor points: when the bending moment is zero 
τΜΝ = τΝ and when the axial force is zero τΜΝ = τΜ. The factors η and ρ are provided in Table 3 
for major and minor axis bending. Using the interaction equations given in Eq. 8 and Eq. 9 and 
the results obtained through GMNIA of simply-supported beam-columns with different 
European I-sections subjected to axial load plus constant bending, these factors were derived by 
calibration in Kucukler et al. (2014). 
  
Table 3: Proposed values for the η and ρ parameters for the stiffness reduction function due to combined axial force 

and bending  
 

 Major axis 
bending 

 Minor axis 
bending 

 η ρ  η ρ 
h / b ≤ 1.2 0.5 0.9  0.5 0.5 
h / b > 1.2 0.8 1.0  0.5 0.55 

 
 



 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Proposed stiffness reduction function under combined bending and axial load for narrow flange cross-
sections (h / b > 1.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: Proposed stiffness reduction function under combined bending and axial load for wide flange cross-
sections (h / b ≤ 1.2) 
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5.3 Application of the stiffness reduction function for combined bending and axial load 
This section investigates the accuracy of the proposed stiffness reduction function τΜΝ  for the 
in-plane design of beam-columns restrained in the out-of-plane direction. Geometrically 
Nonlinear Analysis with stiffness reduction (GNA-SR) is performed on a series of simply-
supported beam-columns subjected to axial load and constant bending moment. The analysis is 
elastic but Geometrically Nonlinear, where geometrical imperfections are not explicitly 
modelled, but the Young’s modulus of the material is multiplied by the stiffness reduction factor 
provided in Eq. 10 to account for the spread of plasticity, residual stresses and geometrical 
imperfections. The attainment of the maximum load carrying capacity of the member is signified 
when the section forces at the most heavily loaded cross-section become equal to corresponding 
cross-section resistance given in Eq. 8 and Eq. 9.   
 
The results obtained through GNA-SR are compared against those obtained through GMNIA for 
simply-supported beam-columns with HEB 400 (h / b > 1.2) and HEB 180 (h / b ≤ 1.2) cross-
sections, subjected to axial load plus constant major axis bending in Fig 9a and Fig 9b 

respectively. Three non-dimensional slenderness values, λ =0.4, 1.0 and 1.5, were considered, to 
cover the response of beam-columns with low, intermediate and high slenderness. It can be seen 
from Fig. 6 that GNA-SR provides accurate results for the different slenderness values and 
different ratios of bending to axial force. There only exists slight overestimation of the strength 
in the case of the beam-column subjected to major axis bending with HEB 400 cross-section and 

member slenderness yλ =0.4.  For the case of columns with the HEB 180 cross-section, the 

slight underestimation of the strength of the beam-columns with member slenderness zλ =1.0 
and 1.5 results principally from the underestimation of the strong axis flexural buckling strength 
of columns with wide-flange cross-section (e.g. HEB 180) given by the Eurocode 3 (2005)  
flexural buckling curves.  
 
 
 
 
 
 
  
 
 
 
 
4. Conclusions 
 
 
 
 
 

 
Figure 9: Comparison of the results obtained through Geometrically Nonlinear Analysis with stiffness reduction 
(GNA-SR) with those obtained through GMNIA for simply supported beam-columns subjected to constant major 

axis bending and compression 

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

M
y,Ed

 / M
y,pl

N
E

d /
 N

p
l

 

 

GMNIA
GNA-SR
Cross-section strength

 

HEB 180 

y 

z 

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

M
y,Ed

 / M
y,pl

N
E

d / 
N

p
l

 

 

GMNIA
GNA-SR
Cross-section strength

z 
HEB 400 

 
y 

40.=yλ  

01.=yλ  

51.=yλ  

40.=yλ  

01.=yλ  

51.=yλ  

(a) HEB 400 (h / b > 1.2) (b) HEB 180 (h / b ≤ 1.2) 



 13 

Fig. 10a and Fig. 10b illustrate the results obtained through GNA-SR and GMNIA for simply-
supported beam-columns with the HEB 400 (h / b > 1.2) and HEB 180 (h / b ≤ 1.2) cross-
sections subjected to axial load plus constant minor axis bending respectively. Cross-section 
strengths determined through Eq. 9 are also shown in the figures.  As can be seen from the 
figures, the results obtained through GNA-SR, which were calculated using the cross-section 
strength given in Eq. 9, are in good agreement with those obtained through GMNIA. Spread of 
plasticity transforms the convex interaction surface observed for a member with low slenderness 

( zλ =0.4) to a concave shape for members with intermediate-to-high slenderness (zλ =1.0 and 
1.5). This transformation is accurately captured by GNA-SR as can be identified in the figures 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Comparison of the results obtained through Geometrically Nonlinear Analysis with stiffness reduction 
(GNA-SR) with those obtained through GMNIA for simply supported beam-columns subjected to constant minor 

axis bending and compression 
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5.1 Moment gradient effect 
For a beam-column with varying bending moment along the length, the required stiffness 
reduction may be different due to a different pattern of the development of plasticity in 
comparison to that required for beam-columns subjected to constant bending. The influence of 
moment gradient thus should be taken into account to achieve accurate results for beam-columns 
subjected to non-uniform bending moment. The moment gradient effect on the development of 
plasticity was considered through the incorporation of moment gradient factors into the 
calculation of the stiffness reduction factors in this study. There exist different equations for the 
determination of moment gradient factors in the literature (Austin, 1961, Kirby and Nethercot 
1979). Unlike the equation developed by Austin (1961), the equation proposed by Kirby and 
Nethercot (1979) can be applied to members with non-linear moment gradients. The formula put 
forward by Kirby and Nethercot (1979) for the determination of the moment gradient factor is 
provided in Eq. 11 where Mmax is the absolute value of maximum moment along the unsupported 
member length, MA is the absolute value of moment at the quarter point of the unsupported 
member length, MB is the absolute value of moment at centerline of the unsupported member 
length and MC is the absolute value of moment at the three-quarter point of the unsupported 
member length.   
2 

max

CBAmax
m M.

MMMM.
C

512

34352 +++=                                         (11) 

       
It should be noted that while the equation of Austin (1961) was developed for the consideration 
of moment gradient effects for the in-plane design of beam-columns which is associated with the 
problem investigated herein, the formula proposed by Kirby and Nethercot (1979) was derived 
for the determination of the lateral-torsional buckling moments of beams with varying bending 
moments along the length. Nevertheless, the latter provides almost identical results to the former 
for linearly varying moments and it is shown in this section that the incorporation of the moment 
gradient factors proposed by Kirby and Nethercot (1979) into the stiffness reduction functions 
provides accurate results for various types of moment gradients. Another point that needs to be 
emphasised is that in the implementation of GNA-SR, the actual loads and moments are 
considered and the moment gradient factors are only used in the determination of the stiffness 
reduction factors so as to take into account the influence of moment gradient on the development 
of plasticity.  
 
It is proposed to adopt Eq. 11 in the stiffness reduction method developed herein to consider 
bending moment gradient effects. Specifically, in the calculation of τΜ  and τΜΝ , the maximum 
bending moment values along the member length MEd need to be factored by Cm,  as shown in 
Eq. 12 a,b,c and Eq. 13.  
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Figure 11: Comparison of the results obtained through Geometrically Nonlinear Analysis with stiffness reduction 
(GNA-SR) with those obtained through GMNIA for simply supported beam-columns subjected to varying major 

axis bending and compression 
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Figure 12: Comparison of the results obtained through Geometrically Nonlinear Analysis with stiffness reduction 
(GNA-SR) with those obtained through GMNIA for simply supported beam-columns subjected to varying minor 

axis bending and compression 
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hardening and that the maximum moments have been limited to Mpl in Fig.11. For the case of 
simply-supported beam-columns with an HEB 180 cross-section subjected to varying minor axis 
bending and compression, GNA-SR also provides accurate results for various moment gradients 
and different member slendernesses, as can be seen in Fig. 12. As observed in Fig. 11, capacities 
in excess of the cross-section resistance are also evident in Fig. 12 due to the effects of strain-
hardening. 
 
6. Conclusions 
This study focused on a stiffness reduction method for the determination of the capacities of steel 
columns and beam-columns. Stiffness reduction functions were derived for pure compression, 
pure bending and combined bending and compression. In the case of the stiffness reduction 
function for pure compression, the Eurocode 3 (2005) column buckling curves were utilised. 
Taking into account residual stresses and material nonlinearities, stiffness reduction functions for 
pure bending were determined considering the moment-curvature response of European cross-
sections. Stiffness reduction expressions for combined bending and axial load were derived 
through calibration to GMNIA results. The implementation of Linear Buckling Analysis with the 
derived stiffness reduction function due to axial loading (LBA-SR) is proposed for the design of 
columns, and this provides an exact match to the European column buckling curves for regular 
members.  LBA-SR was also applied for the determination of the inelastic buckling strengths of 
irregular members, leading to strength predictions that are more accurate than those obtained 
through the Eurocode 3 (2005) provisions. Without modelling geometrical imperfections, the use 
Geometrically Nonlinear Analysis with the stiffness reduction function due to combined bending 
and compression (GNA-SR) is recommended for the design of beam-columns. According to 
GNA-SR, failure of a beam-column is signified by reaching the ultimate cross-section resistance 
at the most heavily loaded cross-section. The accuracy of GNA-SR was verified for beam-
columns subjected to major or minor axis bending with wide and narrow flange cross-sections 
and different slenderness values. To account for the influence of bending moment gradient on the 
development of plasticity along the length of a beam-column, the incorporation of moment 
gradient factors into the stiffness reduction expressions was proposed. The accuracy of this 
proposal was validated for various shapes of bending moment diagrams, for both major and 
minor axis bending and for both narrow and wide flange sections. 
 
One of the significant aspects of the proposed stiffness reduction approach is that it can be 
applied through conventional structural analysis software to perform LBA-SR and GNA-SR. 
Thus, it offers a very practical way of determining the strength of steel members. In contrast to 
previous approaches, the stiffness reduction scheme proposed in this study enables the design of 
members without the need of using column strength equations; instead only cross-section checks 
are required. This may bring about significant improvements in terms of both accuracy and 
practicality, particularly when designing steel frames.  Future work will be concerned with the 
extension of the proposed stiffness reduction method to the design of steel frames.  
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