Proceedings of the

Annual Stability Conference
Structural Stability Research Council
Toronto, Canada, March 25-28, 2014

Stiffness reduction method for the design of steel columns and beam-columns

M. Kucuklert, L. Gardnef, L. Macorinf

Abstract

A stiffness reduction approach is presented inghger, which utilises Linear Buckling Analysis
(LBA) and Geometrically Nonlinear Analysis (GNA) ronjunction with developed stiffness
reduction functions for the design of columns aedr-columns in steel frames. The proposed
stiffness reduction approach obviates the need adelmmember imperfections and to make
member buckling checks. While LBA with appropriatiffness reduction provides inelastic
buckling loads of columns, GNA with stiffness retlon is performed for the prediction of
beam-column failure. In addition to regular membpedhse accuracy and practicality of the
method is illustrated for irregular members. Far litter case, results indicate that the proposed
stiffness reduction method provides more accuratength predictions in comparison to
traditional design approaches. The influence of emmgradient on the development of
plasticity (i.e. stiffness reduction) is accounted by incorporating simple moment gradient
factors into the stiffness reduction expressiongimally derived for members under uniform
bending. The accuracy of the proposed stiffnesaatezh approach is verified against results
obtained through non-linear finite element modelfiar all of the considered cases.

1. Introduction

The development of plasticity within constituent mieers of a steel frame, leading to the
reduction in the stiffness, may result in a memioece distribution that is different than that

determined through elastic analysis. The conveatianeans of taking into account this

behaviour are the use of effective length or na@idoad concepts (EN 1993-1-1, 2005; AISC-
360-10, 2010). An alternative approach is the radnoof the stiffness of members in a frame
considering corresponding member forces in theyaisal Included in the two most recent

versions of the AISC-360 specification, includings& 360-10 (2010), this approach provides a
more direct way of considering the influence of t#mread of plasticity in comparison to

conventional methods. The approach is based om#tbod suggested by Surovek-Maleck and
White (2005a, 2005b) attempting to capture the ldgweent of plasticity under axial load and

bending. However, since the stiffness reductioresw proposed by Surovek-Maleck and White
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(2005a) does not fully take into account factoftuencing the development of plasticity, the
method still requires column buckling equationstfar design of members.

This paper summarises and extends the stiffnesgtiod approach proposed by Kucukler et al.
(2014) for the design of steel members. Stiffnestiction functions are presented for pure axial
load, pure bending and combined bending and ag&d,|which fully consider the deleterious
influence of the development of plasticity, resids@@esses and geometrical imperfections. For
the design of columns, the implementation of linbackling analysis (LBA) with reduced
stiffness is proposed, while the use of Geometyiddbnlinear Analysis (GNA) with stiffness
reduction and without modelling out-of-straightnéssused for the design of beam-columns,
where the failure is signified by reaching therbtie cross-section resistance at the most heavily
loaded cross-section. Unlike the method of SuraMalkeck and White (2004a), the use of
column strength equations is not required in theéhot proposed in this paper; instead only
cross-section checks are necessary. Moreover rtipoged method in this paper accounts for the
influence moment gradient on the strength of beahlarons, thereby providing more accurate
strength predictions for beam-columns subjecteddo-uniform bending. Since the proposed
method does not require explicit modelling of memiveperfections, it obviates the need to
identify suitable shapes and directions. Finitemalet models of steel members are also
developed in this paper using Geometrically and edally Nonlinear Analyses with
Imperfections (GMNIA) providing benchmark resultsed to assess the accuracy of the
proposed stiffness reduction approach. In addiboregular members, the suggested approach is
also applied to irregular members where its acquracompared against EN 1993-1-1 (2005)
provisions.

Details of the finite element modelling adoptedtlms study are described in the following
section. Then, the primary aspects of the propostthess reduction approach and its
application are addressed for pure axial load, pereling and combined bending and axial load
respectively. For all of the considered casesrélalts obtained through the proposed approach
are compared against those determined through GMNIA

2. Finite element modelling

The finite element software Abaqus (2010) was uséde numerical simulations. Referred to as
B310S in the Abaqus element library, a linear Tiheygko beam element accounting for the
warping degree of freedom and shear deformations weed for the development of beam
element models where a generic | section is digeettthrough 33 integration points for each
flange and web. For shell element models, a shesble, reduced integration, 4-noded general
purpose shell element which is referred to as $4Re Abaqus element library was used. With
the exception of tapered columns, beam elements wszd in all numerical simulations as the
members considered in this study are not susceptiblocal buckling effects. The tri-linear
elastic-plastic material model shown in Fig 1 wasdj wheréE is the Young’'s modulugkghis
the strain hardening modulusand g are the yield stress and strain respectively apds the
strain at the onset of strain hardening. The patensig and &, correspond to the ultimate stress
and strain respectivel¥sywas assumed to be 2% Bf which was taken as 210GPa, agdvas
asumed as 1), complying with the ECCS (1984) material modelommendations for hot
rolled steel. In all numerical models S235 stdgk(235MPa) was used. The ECCS (1984)
residual stress patterns, shown in Fig. 2, werd@yed, where the residual stresses were applied



through the SIGINI subroutine (Abaqus, 2010). Thiéal geometrical imperfections (member
out-of-straightness) were assumed to be half-seneevin shape and 1/1000 of the corresponding
member length in magnitude (AISC, 2010). In all GMMalculations, geometrical and material
nonlinearity, residual stresses and geometricaénfegtions are considered.
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Figure 1: Material model used in finite element migd
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Figure 2: Residual stress patterns applied togfieiement models (+ve tension,-ve compression)

3. Stiffnessreduction under axial loading

The derivation of a stiffness reduction functionaokteel member under axial loading and its
application with LBA for the determination of insta&c buckling strength of columns are

addressed in this section. The accuracy of theqsex stiffness reduction function is verified

using the results obtained through GMNIA.

3.1 Derivation of a stiffness reduction function under axial loading

For a steel member under axial loading, the stneeduction function is derived utilising the
European column buckling curves provided in EN 129B (2005). The stiffness reduction
function under axial loadingy, which corresponds to the ratio between the retluoedulusk,
and the Young’'s modulus, can be determined considering the ratio betwbkenrtelastic and
elastic critical buckling loads of the membh, ; and N, respectively, as shown in Eq. 1 where

Nyl is the yield load,yis the buckling reduction factor andis the member non-dimensional



sIendernes&z,/NpI IN, . Note that the yield load is equal to the mulgation of cross-
sectional area A with material yield strégs

:_r:—’l:—:)(j (1)

The Perry-Robertson expression (Robertson, 1928ichnis the basis of the European column
buckling curves, can be used for the determinatiotie buckling reduction factgras given in
Eq. 2, wherax is the imperfection factor. To define five diffetdsuckling curves, five values of
a are provided in Eurocode 3 (EN 1993-1-1, 2005)e-Table 1.
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Table 1: Imperfection factorsg for flexural buckling from EN 1993-1-1 (2005)

where ¢@= 05{1+ a(ﬁ -0.2) +§2J (2)

Buckling curve a a b c d
a 0.13 0.21 034 049 0.76

EqQ. 2 can be rearranged in termsﬁofproviding Eq. 3:

_ 2
A7 = 4 where ¢ =1+0.2ax - x 3)

2
a2X2{1+ /1—4¢X2_1}
a’x

Substituting Eq. 3 into Eq. 1 and wigh=Ngq/ Np gives Eq. 4, wherey is expressed as a
function of the ratio between the applied axiadldig and the yield loadl, = Afy, as well as the
imperfection factora. Owing to the inclusion of the imperfection factdahe influence of
geometrical imperfections and residual stressesimapdicitly accounted for in the proposed
expression forry. The derived stiffness reduction functionis illustrated in Fig. 3 for different

buckling curves. For stocky members, Witk 0.2, Eurocode 3 (2005) allows for the use of the
full cross-sectional resistance, in which chisg/ Ny = 1.0 andry = 0.04

2
Ty = . ; but 7,<10
N, /N, -1
a®Ng, IN, |1+ [1-4p 2P =
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Since the member is assumed to be perfect, tHeestd reduction method gives the inelastic
buckling load of a member in lieu of its full loaisplacement path. The strength of a column
can be checked using Eq. 5, where the inelastiwifié buckling load amplifier,,; must be
greater than or equal to 1.0. The ultimate stfefita column can be obtained by iterativg

until satisfyingde i = Nerj / Ngg = 1.0
NCF,i Z-N Ncr
- NEd |\lEd

210 but 7 N, <N, (5)

It is of significance to note that the use of tleeivkd stiffness reduction functian, provides an
exact match to the European buckling curves, tleligng on the ability of these curves to
capture accurately the behaviour of real columnsu#able buckling curve for a member is
chosen through a buckling curve selection tabEurocode 3 (2005), which has been developed
on the basis of extensive experimental, numericdl@obabilistic studies (ECCS, 1976). Using
multiple buckling curvesyzy takes into account different magnitudes and pattefmresidual
stresses and different buckling directions.
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Figure 3: Proposed stiffness reduction functioneurakial load based on Eurocode 3 (2005) bucklinges

3.2 Application of the derived stiffness reduction function to inelastic flexural buckling

In the case of regular members, the proposed aesisfmeduction functiomy provides the same
results as those obtained through the Eurocod®@5§2provisions. In this section, it is shown
that use of the stiffness reduction function injoantion with Linear Buckling Analysis (LBA)
results in more accurate strength predictions mgarison to those obtained through Eurocode 3
(2005) for the case of columns with irregular getspnand boundary conditions. Since irregular
problems can generally only be solved by makingseorative assumptions or simplifications to
the structural system in traditional design methdte use of LBA in conjunction with the
stiffness reduction functiomy given in Eq. 4, which will be henceforth refertedas LBA-SR,
may offer both an accurate and practical meanslofng this kind of problem. The application



of the proposed stiffness reduction method to twangles of irregular columns including a
web-tapered column and a column with an intermedistic restraint is considered herein.

3.2.1 Tapered column

Application of the stiffness reduction method te ttesign of web-tapered columns with doubly-
symmetric cross-sections is investigated in this-section. Beam element models are used to
perform LBA-SR where the tapered column was disggdtthrough 10 uniform elements along
the span. The depth of the cross-section of aneiems assumed to be equal to the average of
the smaller and larger depths of the correspondiisgretized portion. Considering the
corresponding average cross-sectional area, €fffreduction factorgy obtained from Eq. 4
were applied to each corresponding discretizedigrortUsing the first eigenmode as an
imperfect shape, GMNIA of the tapered columns mledelising shell elements were performed
to assess the accuracy of the proposed approaehteBidual stress pattern suggested for hot-
rolled sections is used in the finite element medaksuming hot-rolled members are cut to
fabricate the tapered members. Comparisons ofethdts obtained through LBA-SR with those
obtained through GMNIA, based on an IPE 240 cressian with different tapering ratios is
displayed in Fig. 4. Note that the tapering rgtis equal to the ratio of the depth of the incrdase
cross-section hto that of the original IPE 240 section, buch thaty= h, / hy. The non-
dimensional slenderness values shown in Fig. £a@milated with respect to the original cross-
sectional area £and elastic buckling load of the uniform column leeting tapering. As seen in
Fig. 4, LBA-SR provides results that are in veryogagreement with those obtained through
GMNIA for all member slenderness and tapering gtidoreover, the use of LBA-SR brings
about improved accuracy in comparison to the Eude®(2005) provisions with Ndetermined
from LBA.
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Figure 4: Comparison of the inelastic strengthpéred columns obtained through the stiffnessatémtumethod
(LBA-SR) with those obtained through GMNIA and Ecode 3 (2005)



3.2.2 Column with an intermediate elastic lateral restraint

For members with intermediate lateral restrairits,dtiffness of the support should be taken into
account when the restraint is not fully-rigid. st sub-section, the behaviour of two columns
with W8x31 (W200x46.1) cross-sections and non-disieral member slenderness with respect

to minor axis bucklinglz =0.8and Az =16, restrained by an elastic lateral restraint at the
mid-height, are investigated. The non-dimensiorlahderness of columns was determined
neglecting the elastic restraint. The columnsyfodistrained in the out-of-plane direction, were
subjected to pure axial load. The stiffness of ¢testic restraini was varied so that the
influence of the support stiffness on the inelabtickling strengths could be investigated. The
results obtained from linear buckling analysis wikduced member stiffness through (LBA-

SR) are compared against those obtained through IBNMNd Eurocode 3 (2005) in Fig. 5. Note
that 8. = 167°El,/ L%is the threshold restraint stiffness leading tetitabuckling of the column

in the second mode (two half-sine wave mode). Types of geometrical imperfections were
assumed in the GMNIA calculations: a single hatieswave imperfection scaled witli1000
and a two half-sine wave imperfection scaled vithO00, wherel is the height of a column.
For Eurocode 3 (2005) calculations, the non-dinwradi slenderness of the restrained members
was determined using elastic buckling loads obthitneough LBA where the elastic restraint
was considered.

! ! _ ¢ --GMNIA - one half sine wave imp.
1| =GMNIA - two half sine waves imp. 0.2f - - =~GMNIA - two half sine waves imp.
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Figure 5: Comparison between inelastic strengthohfmns with elastic restraints obtained throughdtiffness
reduction method (LBA-SR) and those obtained throG¢INIA and Eurocode 3 (2005)

It may be seen from Fig. 5 that the single halesiwave imperfection is critical up to a specific
threshold restraint stiffnesd ingasic for both columns. For larger restraint stiffnesdés, two
half-sine wave imperfection results in lower colusirengths. As the development of plasticity
in the columns increases the effectiveness of ttiermediate elastic lateral restraint, the
threshold stiffness forcing inelastic buckling imetsecond mod@ indasic IS lower than that
required for elastic buckling, i.e. Bindasic< .. AS can be seen in Fig. 5, LBA-SR captures the



increased effectiveness of the elastic restraitit tie development of plasticity in the columns,
providing very accurate results that are in clagea@ment with those obtained through GMNIA
for both slenderness values. It is noteworthy thihile two types of imperfection have to be
considered in the case of GMNIA, LBA-SR directlyptaes the transition between the first and
second inelastic buckling modes after exceedingrélastic threshold stiffnegs jngasic.  Since
the development of plasticity in the column is wonhsidered, the Eurocode 3 (2005) design
equations, with elastic buckling loads determineugh LBA, results in less accurate and
overly conservative strength predictions in comgrarito LBA-SR.

The ratio between the inelastic and elastic thriesstiffness values is dependent on the extent of
plasticity undergone by the columns. The stockierdolumn, the smaller the ratio. This can be
seen from Fig. 5, where the rafidnaasic / A IS smaller for the column with non-dimensional

slendernessiz = 0.8 in comparison to that with z = 1.6. The ratio between threshold inelastic
and elastic stiffnes@ inaasic / A iS equal to the stiffness reduction factor detaedifor the
inelastic buckling load in the second mdde; » through Eq. 4,7x(Nci 2), as given in Eq. 6.

Blindasic ! B = Tn(Ngjo) (6)

4. Stiffnessreduction under bending

The development of a stiffness reduction functionsteel members under bending is addressed
in this section. For a member subjected to condiantling and sufficiently restrained against
out-of-plane instability effects, the stiffness wetion function can be developed considering its
moment-curvature Mgg - @) relationship. The cross-section geometry, matemaldel and
distribution and magnitude of residual stresseoammportance for thdlgq - ¢ relationship, but

not geometrical imperfections. Incrementally appybending moment, the change in flexural
stiffness can be determined, with the tangentn&t#f$El, defined a€tl, = dMgqy/ dg@. The ratio of

the flexural stiffness at a particular bending maotmealue to the initial flexural stiffness then
provides a stiffness reduction factor due to begdin = El, / El.

As the same general stiffness reduction pattemg)ving elastic, primary plastic and secondary
plastic stages (Chen and Atsuta, 1976) are exHilbieall I-shaped cross-sections, expressions
for stiffness reduction due to bending can be cafldndl on the basis of moment-curvature
relationships generated through finite elementyamal This approach was adopted by Zubydan
(2010, 2011) to develop an expression for the reclucof stiffness in I-sections under pure
bending, assuming the ECCS (1984) residual stregsbdtions illustrated in Fig. 2. This
function is used in the present study and is giweiieq. 7a, 7b, 7c representing the reduction in
stiffness in the elastic, primary plastic and seleoy plastic stages respectively. The parameters
ws, & @ B, 0are given in Table 2 for major and minor axis begadf I-sections. Two sets of
model parameters are provided, for h4 2 and h / b > 1.2, which correspond to the dzffier
residual stress patterns shown in Fig. 2.

Iy =10 if Mg, /M, <¢ (7a)

B
_ MEd/Mp|_§0ﬁ .
Ty =(1-7yy)|1- qu Ty if §0SMEd/Mp| << (7b)



1/0
I, = m[l—(%;_fﬂ if §<Mg /M, (7c)

Table 2: Parameters for the stiffness reductiortian for I-sections in bending (Zubydan, 2010, 201

Major axis bending Minor axis bending
Tmi @ 4 B o Tma @ $ B o
h/b<12 0.04 0.9%%,/W,, 098 15 10 05 OW,/W,, 08 085 0.6
h/b>12 0.08 OWg,/W,, 095 15 1.0 06 OWy/W,, 075 0.85 0.6

The results of finite element analysis were usedalaate the ability of the stiffness reduction
function given in Eq. 7 to capture accurately thiguence of the spread of plasticity through the
cross-section depth. Employing 313 section intégmapoints for each cross-section (105
integration points in both flanges and web), a walege of European IPE and HE sections were
analysed. For the considered wide-range of crostsese shapes, it was observed that the
variation in the values of the parameters of tifenstss reduction functiom,, provided in Table

2 is small and as shown in Fig. 6, the adoptethsstk reduction function leads to results in close
agreement to the finite element predictions fofedént magnitudes of residual stresses and axes
of bending.
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Figure 6: Comparison of the adopted stiffness rédadunctions due to bending with those obtairfedtgh finite
element analysis

5. Stiffnessreduction under combined bending and axial load

The in-plane design of beam-columns through tHnesis reduction method is addressed in this
section. Assumed ultimate cross-section strendérantion equations are first introduced. Then,
a stiffness reduction function for combined bendargl axial load is derived. The proposed
design approach is based on the use of the devkkijfmess reduction function in conjunction
with elastic, but Geometrically Nonlinear Analysigth stiffness reduction (GNA-SR), and is



validated for both major and minor axis bending dad different magnitudes of residual
stresses. To consider the influence of moment grada modification to the stiffness reduction
function is suggested. The proposed modificatiorei#fied for a large number of beam-columns
subjected to various bending moment gradients.

5.1 Interaction equations

In view of their accuracy and simple form, the @mbus interaction equations proposed by
Duan and Chen (1990) were chosen in this study gstonumerous interaction equations
defining the ultimate capacity of I-sections und®mbined loading. These expressions are
provided in Eq. 8 and Eq. 9 for axial load plus onaxis bending and for axial load plus minor
axis bending respectively. Note tiigtandA; are the areas of the web and flange respectively.

13
M
pl y.pl
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Uay, = Neo | 4 e _1 where y=2+1.2ﬁ 9)
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5.2 Derivation of stiffness reduction function for combined bending and axial load
The stiffness reduction functions for pure bendmgandpure axial loadry described in the
previous sections were utilised to derive a stdfeeduction considering the influence of

combined bending and axial loagly. The proposed stiffness reduction function for camebi
axial load and bending is given by Eq. 10.

0 p
N M
Tun =Tmln 1_( NEd J (M—Ed} (10)

pl pl

This form of equation leads g,y having two anchor points: when the bending momgzero
v = Ty and when the axial force is zergy = 1y. The factorsy and pare provided in Table 3
for major and minor axis bending. Using the intécacequations given in Eg. 8 and Eq. 9 and
the results obtained through GMNIA of simply-sugpdr beam-columns with different
European I-sections subjected to axial load plustmt bending, these factors were derived by
calibration in Kucukler et al. (2014).

Table 3: Proposed values for thend o parameters for the stiffness reduction function tdueombined axial force

and bending
Major axis Minor axis
bending bending
7 p 7 p
h/b<1.2 0.5 0.9 0.5 0.5
h/b>1.2 0.8 1.0 0.5 0.55
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Figure 7: Proposed stiffness reduction functionaurrmbmbined bending and axial load for narrow feaogpss-
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Figure 8: Proposed stiffness reduction functionarrmbmbined bending and axial load for wide flangess-
sections (h/ k 1.2)

Stiffness reduction functions for combined bendamgl axial loadryy for beam-columns with
narrow and wide flange sections are illustrate8im7 and Fig 8 respectively. As seen from the
figures, the incorporation of the stiffness redaictfunctions developed for pure axial logg
and pure bendingry, into 7y enables the consideration of different patternsstiffness
reduction for major and minor axes bending ancedafit magnitudes of residual stresses.
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5.3 Application of the stiffness reduction function for combined bending and axial load

This section investigates the accuracy of the megdastiffness reduction functiam,y for the
in-plane design of beam-columns restrained in th-obplane direction. Geometrically
Nonlinear Analysis with stiffness reduction (GNA-SB performed on a series of simply-
supported beam-columns subjected to axial loadcandtant bending moment. The analysis is
elastic but Geometrically Nonlinear, where georngatriimperfections are not explicitly
modelled, but the Young’s modulus of the matesahiultiplied by the stiffness reduction factor
provided in Eq. 10 to account for the spread ofktudy, residual stresses and geometrical
imperfections. The attainment of the maximum loadying capacity of the member is signified
when the section forces at the most heavily loadeds-section become equal to corresponding
cross-section resistance given in Eqg. 8 and Eq. 9.

The results obtained through GNA-SR are comparathagthose obtained through GMNIA for
simply-supported beam-columns with HEB 400 (h / b.2) and HEB 180 (h / & 1.2) cross-
sections, subjected to axial load plus constantomakis bending in Fig 9a and Fig 9b

respectively. Three non-dimensional slenderneasegall =0.4, 1.0 and 1.5, were considered, to
cover the response of beam-columns with low, inégtiste and high slenderness. It can be seen
from Fig. 6 that GNA-SR provides accurate resudis the different slenderness values and
different ratios of bending to axial force. Themdyoexists slight overestimation of the strength
in the case of the beam-column subjected to majsrl@ending with HEB 400 cross-section and

member slendernes_lsy =0.4. For the case of columns with the HEB 180ssfeection, the

slight underestimation of the strength of the beadwmns with member slendernesg=1.0
and 1.5 results principally from the underestimatd the strong axis flexural buckling strength
of columns with wide-flange cross-section (e.g. HE®0) given by the Eurocode 3 (2005)
flexural buckling curves.

= GMNIA
| =GNA-SR

| | ~-GMNIA
| - =GNA-SR
K - _--Cross-section strength

0.6

04 . 0.4 0.6 0.8 1.0
y,Ed y,pl Iv'y,Ed/ My,pl
(2) HEB 400 (h / b > 1.2) (b) HEB 180 (h £H.2)

Figure 9: Comparison of the results obtained thnodgometrically Nonlinear Analysis with stiffnegsluction
(GNA-SR) with those obtained through GMNIA for sitpjgupported beam-columns subjected to constarimaj
axis bending and compression
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Fig. 10a and Fig. 10b illustrate the results oldithrough GNA-SR and GMNIA for simply-

supported beam-columns with the HEB 400 (h / b2 and HEB 180 (h / kX 1.2) cross-

sections subjected to axial load plus constant maxas bending respectively. Cross-section
strengths determined through Eq. 9 are also showthe figures. As can be seen from the
figures, the results obtained through GNA-SR, whigdre calculated using the cross-section
strength given in Eq. 9, are in good agreement witise obtained through GMNIA. Spread of
plasticity transforms the convex interaction suefabserved for a member with low slenderness

(§2:0.4) to a concave shape for members with interatedb-high slendernesgﬁ =1.0 and
1.5). This transformation is accurately captured3A-SR as can be identified in the figures

1.0~ r r , 1.0~ \ \ l
T . =GMNIA | T N - =-GMNIA
o _ =GNA-SR A\ R, | =GNA-SR
0.8 - (S ™ -- Cross-section strength 0.8 - 3q_------_--Cross-section strength
. . “s\\ . | | z "
- S y
- 06--—"-—"—"-"1-—-——"-—"--"rF®-- -4 —0.

z= |k ==
I I
z z

0 0.2 0.4 } 0.6 0.8 1.0 % 0.2 0.4 0.6 0.8 1.0
M M
z,Ed z,pl Iv'z,Ed/ Mz pl
(a) HEB 400 (h /b > 1.2) (b) HEB 180 (h £H..2)

Figure 10: Comparison of the results obtained thno@eometrically Nonlinear Analysis with stiffnagsluction
(GNA-SR) with those obtained through GMNIA for silmsupported beam-columns subjected to constanbmin
axis bending and compression

In addition to the results considered herein, campa of the results obtained through GNA-SR
and GMNIA for a large number of beam-columns wittvide-range of European cross-section
shapes subjected to both major and minor axes hgndas made in Kucukler et al. (2014),
where the accuracy of the proposed stiffness remuntethod was verified.

It should be emphasised that the stiffness of #ambcolumn is reduced from the onset of the
analysis on the basis of the applied bending amdpeession prior to any deformation in the
application of the proposed stiffness reduction hoét Provided the ultimate load-carrying
capacity of the most heavily loaded cross-sectonot exceededa;;.< 1.0), the beam-column
can be classified as adequate to withstand theegpfurces. To determine the capacity of the
beam-column, the applied bending and/or axial imag be increased until reaching the ultimate
capacity of the most heavily loaded sectian:¢= 1.0).
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5.1 Moment gradient effect
For a beam-column with varying bending moment alohg length, the required stiffness
reduction may be different due to a different pattef the development of plasticity in
comparison to that required for beam-columns stjeto constant bending. The influence of
moment gradient thus should be taken into accauathieve accurate results for beam-columns
subjected to non-uniform bending moment. The mongeadiient effect on the development of
plasticity was considered through the incorporatimin moment gradient factors into the
calculation of the stiffness reduction factorshiststudy. There exist different equations for the
determination of moment gradient factors in theréiture (Austin, 1961, Kirby and Nethercot
1979). Unlike the equation developed by Austin ()9@he equation proposed by Kirby and
Nethercot (1979) can be applied to members withlim@ar moment gradients. The formula put
forward by Kirby and Nethercot (1979) for the deteration of the moment gradient factor is
provided in Eq. 11 wher®l . is the absolute value of maximum moment alongutiipported
member lengthMa is the absolute value of moment at the quartertpointhe unsupported
member lengthMg is the absolute value of moment at centerline ef uhsupported member
length andMc is the absolute value of moment at the three-quadéent of the unsupported
member length.

2

_25M , +3M,+4M; +3M_

Cm
125M

(11)

It should be noted that while the equation of Augli961) was developed for the consideration
of moment gradient effects for the in-plane desifheam-columns which is associated with the
problem investigated herein, the formula proposgdiby and Nethercot (1979) was derived

for the determination of the lateral-torsional bliredg moments of beams with varying bending

moments along the length. Nevertheless, the Iptarides almost identical results to the former
for linearly varying moments and it is shown insteection that the incorporation of the moment
gradient factors proposed by Kirby and Netherc®7@) into the stiffness reduction functions

provides accurate results for various types of nmingeadients. Another point that needs to be
emphasised is that in the implementation of GNA-8f actual loads and moments are
considered and the moment gradient factors are wsdy in the determination of the stiffness
reduction factors so as to take into account tHeence of moment gradient on the development
of plasticity.

It is proposed to adopt Eg. 11 in the stiffnessuctidn method developed herein to consider
bending moment gradient effects. Specifically,he talculation ofry, and 7yn, the maximum
bending moment values along the member lemdith need to be factored W, as shown in
Eq. 12 a,b,c and Eq. 13.

Iy =10 if C Mg /M, <@ (12a)

1/8
_ CmMEd/Mm_(”ﬁ .
Iy =@A-1y)1- = +1y, If p<C M /M <¢ (12b)
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1/0
C.Mg /M, -
TM:er[l—( m_ & # ‘(ﬂ if §<C Mg /M, (12c)
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N C .M
Tuw =TyTpn|1-] =22 m__Ed (13)
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Figure 11: Comparison of the results obtained thno@eometrically Nonlinear Analysis with stiffnegsluction
(GNA-SR) with those obtained through GMNIA for silpmgupported beam-columns subjected to varying majo
axis bending and compression
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Figure 12: Comparison of the results obtained thno@eometrically Nonlinear Analysis with stiffnagsluction
(GNA-SR) with those obtained through GMNIA for silpgupported beam-columns subjected to varying mino
axis bending and compression

Following the procedure described, the strengthaaferies of beam-columns subjected to
compression and varying moment along the membegthenwere calculated through GNA with
the stiffness reduction functiony,y accounting for the moment gradient (GNA-SR) — Ef,
Eq. 12 a,b,c and Eq. 13. Comparison of the resiitained through GNA-SR and GMNIA for
simply-supported beam-columns with an HEB 400 ceesdion subjected varying major axis
moment along the length is illustrated in Fig. 1tlis seen from the figure that for various
bending moment gradients, the incorporation gfit@o 7,y leads to GNA-SR results that are in
a very good correlation with those of GMNIA. Noteat the results from GMNIA for stocky
members with low axial loads exceed the cross-@edirength due to the occurrence of strain
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hardening and that the maximum moments have bestetl toM, in Fig.11. For the case of
simply-supported beam-columns with an HEB 180 eeesdion subjected to varying minor axis
bending and compression, GNA-SR also provides ateuesults for various moment gradients
and different member slendernesses, as can bersEen 12. As observed in Fig. 11, capacities
in excess of the cross-section resistance areezisient in Fig. 12 due to the effects of strain-
hardening.

6. Conclusions

This study focused on a stiffness reduction metbothe determination of the capacities of steel
columns and beam-columns. Stiffness reduction fanstwere derived for pure compression,
pure bending and combined bending and compressiothe case of the stiffness reduction
function for pure compression, the Eurocode 3 (2088umn buckling curves were utilised.
Taking into account residual stresses and mateoialinearities, stiffness reduction functions for
pure bending were determined considering the moim@vature response of European cross-
sections. Stiffness reduction expressions for caetbibending and axial load were derived
through calibration to GMNIA results. The implematidn of Linear Buckling Analysis with the
derived stiffness reduction function due to axading (LBA-SR) is proposed for the design of
columns, and this provides an exact match to thegaan column buckling curves for regular
members. LBA-SR was also applied for the detertianaof the inelastic buckling strengths of
irregular members, leading to strength predictitred are more accurate than those obtained
through the Eurocode 3 (2005) provisions. Withootslling geometrical imperfections, the use
Geometrically Nonlinear Analysis with the stiffnegsluction function due to combined bending
and compression (GNA-SR) is recommended for thégdesf beam-columns. According to
GNA-SR, failure of a beam-column is signified byching the ultimate cross-section resistance
at the most heavily loaded cross-section. The acguof GNA-SR was verified for beam-
columns subjected to major or minor axis bendinthwiride and narrow flange cross-sections
and different slenderness values. To account imfiluence of bending moment gradient on the
development of plasticity along the length of arbemlumn, the incorporation of moment
gradient factors into the stiffness reduction egpi@ns was proposed. The accuracy of this
proposal was validated for various shapes of begnhdmoment diagrams, for both major and
minor axis bending and for both narrow and widadka sections.

One of the significant aspects of the proposednsst reduction approach is that it can be
applied through conventional structural analysiivare to perform LBA-SR and GNA-SR.
Thus, it offers a very practical way of determinithg strength of steel members. In contrast to
previous approaches, the stiffness reduction schpoposed in this study enables the design of
members without the need of using column strengtlagons; instead only cross-section checks
are required. This may bring about significant ioy@ments in terms of both accuracy and
practicality, particularly when designing steelnfies. Future work will be concerned with the
extension of the proposed stiffness reduction ntetbdhe design of steel frames.
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