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Abstract 

This paper adopts the idea of structural control therefore; a controllable support system has been 
designed, fabricated, and installed in a dedicated test structure for stability and structural 
response control under symmetric loads. Firstly, a brief computational technique based on Direct 
Analysis Method is presented, highlighting stability control of additionally supported structure. 
Then, the paper gathers analytical data that includes numerical values, obtained from ANSYS 
finite element analysis. Subsequently, the paper presents the validation of the proposed technique 
by experimental investigation of three dimensional model of the under-slung beam, arranged of 
the main element reflecting behaviour of beam-column and controlling supporting system by 
means of stays and controllable length of the strut. Detailed design and analysis of the 
controllable system are carried out with the respect to control stability and obtain rational 
extreme bending moments distribution. Finally, paper closes with the assessment of the stability 
and structural control yielded by the proposed computational technique and structural solution, 
through their comparison with the obtained experimental results and analytical data – it is shown 
that both the quality and reliability of the proposal are good.   
 
1. Introduction 

 

It is frequently the case, especially in those days design that a structure is required to be so 
slender that is actually no longer suitable for the intended span. Extra supports could be added, 
but that is not the intention in the context of today’s design of structures, namely, to span a large 
distance with a structure which is “too slender”. Therefore, indirect intermediate supports are the 
only way of overcoming this problem. The concept of increasing the span with indirect 
intermediate supports and eliminating the real ones reflects structural form of under-slung beam. 
The structural behaviour of under-slung beam may be simplified to calculation model of the 
beam-column with intermediate elastic restraint. A number of analytical studies of imperfect 
columns with intermediate elastic restraints have been performed, Al-Shawi (1998), Banfi 2002, 
Trahair 1999) and relationships between the forces experienced by the restraints and the load in 
the column have been derived. Similar analyses may be performed for beams (Trahair 1984) to 
obtain analogous relationships between critical bending moment and restraint stiffness. In the 
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case, the problem is inherently more complex because restraints may act to limit lateral 
deflection, twist, or both, and beams may be subjected to variety of different forms of loading. 
However, the different buckling characteristics of beams in comparison to columns leads to an 
appropriate minimum restraint stiffness of around 10 times the lateral bending stiffness of the 
beam when bracings are attached to the compression flange (Wang and Nethercot 1989). 
Theoretically, all structural members may be regarded as beam-column, since the common 
classification of elements subjected to axial load, and bending moment are merely limiting 
examples of beam-column (Bjorhovde 2010). Thus, the consideration of the structural behaviour 
of the element with the intermediate elastic restraint under simultaneous bending and 
compression is, therefore, the practical interest. Wang and Liew presented buckling capacities of 
braced columns (1991) and comprehensive set of stability criteria for Euler columns with an 
intermediate elastic restraint (Wang and Nazmul 2003). Gambhir considered the case of Euler 
strut with an added elastic central support with potential energy approach (2004). Trahair with 
co-workers used differential equation method (2008) for the solution of the same structural 
model. Saha and Banu developed the method to identify the buckling load of beam-column 
based on ‘Multi-segment Integration technique’ (2007).However, it has to be noted that, in the 
most performed studies, the authors deal with the problem either in the case when restrained 
stiffness approaches infinity (Goncalves, Camotim 2004) or transverse force vanishes (Davis 
1990, Trahair, Rasmussen 2005, Wang, Ang 1988). Thus structural behaviour of beam-column 
still remains an issue for research. Currently, there is much research work on influence of 
element imperfections on stability performance of steel structures, from which some directions 
may be abstracted, such as curved member modelling, equivalent imperfection concept and 
reduced tangent modulus. In the study of Austin and Ross (1976) and Wen and Lange (1981, 
1991), it is proposed that curved elements can be used to simulate the initial curvature with only 
one element for one member. Lui and Chen (1986) have proposed a more rigorous cubic lateral 
displacement function expressed with the usual cubic Hermite polynomial, combined with two 
new shape functions. These new shape functions represent respectively a symmetric first 
buckling mode and an asymmetric second buckling mode of a fixed ends beam. Investigating the 
same problem, Chan and Zhou (1998) have proposed a more relevant fifth order polynomial 
function for the displacement field. The curved element method is direct but complicated, and 
the actual member initial curvature is rather small. Therefore, it’s not suitable to use element 
with large bending (Zhou et al. 2009). Then, Chan and Zhou (1995) point out that additional 
moment caused by increase of lateral deflection can be considered based on self-equilibrium 
(Point equilibrium polynomial) straight beam element (Zhou et al. 2009). Chan and Gu (2000) 
have proposed an exact solution for an imperfect beam-column by using the stability function 
approach. In this study the authors have used Timoshenko’s theory (1966) and extended this 
theory to take into account the effect of the initial curvature along the element length.  
The 2005 AISC specification provides a new method for stability design of steel structures 
termed the direct analysis method (DM), which provisions accounts for imperfections and 
nonlinear behaviour of the structure. By the time of 2005 the DM method is provided as an 
alternative for the classic design methods. The latest version of AISC specifications addresses 
the requirements for the design of structures for stability and DM is presented therein as the prior 
design method and effective length and first-order analysis methods become alternative.  The 
DM is the only one of the above three procedures that is generally applicable to all types of 
frames. Since mainly DM is considered as major innovation in steel frames stability assessment 
and design (Surovek-Maleck et al. 2005, Deierlein 2003, and White et al. 2007). 
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In this paper DM is extended for the performance of the structural control of the indirectly 
supported structure (ISS). This is the first approach for the implementation of DM for structural 
control of the ISS which aims in assumptions approval, proposed technique experimental 
validation and yielding of future prospects. It should be noted that paper manly focuses on 
validation of analytical data, as theoretical results have been validate by analytical in the 
previous studies (Misiunaite, Juozapaitis 2013 and Misiunaite 2013).  
 

2. Direct modeling of structural response control 

 
2.1 Calculation model 

The most fundamental theoretical formulation in the verification of the elastic stability of 
structures is the Euler formula, which defines the elastic axial buckling strength of an individual 
member and essentially refers to the structural analysis based on the individual member check. 
The theory assumes that the member is perfectly straight, behaves in-plane elastically and has a 
pinned ends. These assumptions all are commonly violated in real structures. In practice, 
elements are out-of straightness between braced points due to fabrication tolerances. Residual 
stresses are presented that cause inelastic behavior. Further, as a structure is loaded, deformations 
also occur, adding second-order forces and moments. Furthermore, it should be noted the fact 
that buckling always involves both an axial force and bending effects. The considering 
calculation model formed to implement all previously mentioned effects and moreover, the 
beam-column shown in Fig.2 has an intermediate restraint to cover the case when the structure is 
additionally supported at the mid-span as shown in Fig.1, thus obtaining the semi-continuous 
under-slung beam structure.  
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Figure 1: Scheme of considering indirectly supported under-slung beam 
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Figure 2: Generalized calculation model of imperfect beam-column with intermediate restraint 



 4

 
2.1 Governing equations 

The governing equations for the stability verification of the presented structure in Fig.1 and its 
generalized calculation model in Fig. 2 derived considering the equilibrium by approach of 
moderately large displacement theory. Determining the equilibrium equations by moderately 
large displacement theory the structure is in equilibrium, in its deformed state; thus the second 
order effects will be accounted.  
By considering simultaneous bending and compression with applying axial load Nc the deflection 
at z is increased by v and the differential equation of bending becomes: 
 ( )0" " 0

c
M N v v q− − + =   (1) 

By adopting a sinusoidal function for an initial lack of straightness: 

 0 0 sin
m

z
v v

l

π 
=  

 
  (2) 

the Eq. 1 can be rewritten as: 
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v z k v z k v z

EI
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General solution of the Eq. 3 is: 
 ( )
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where superscriptions l and r indicates left and right sides of the calculation model respectively. 
When the transverse distributed force is assumed to be constant and introducing: 
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the particular solution can be taken as: 
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When combining Eq. 4 with the boundary conditions for the left side of calculation model shown 
in Fig. 2 0 / 2z l≤ ≤ (referring to continuity and symmetry, between left and right side of the 
whole structure, it is allowable to consider one of the parts) . 
The deflection is obtained as: 
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Accordingly, by ''M EIv= − the moment is given by: 
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Restoring force Fvb introduced by intermediate restraint in Eqs. 7 and 8 is defined as: 
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Elastic support at the middle of the considering calculation model shown in Fig.2 restrains its 
displacement to δ. Thus restoring force Fvb can be expressed as a product of δ and restraint 
stiffness α1, substituting it into Eq. 9 restrained displacement may be obtained as: 
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 + −
 
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where α c is restraint stiffness for the column with intermediate elastic restraint (Trahair 2008).  
The variation with the dimensionless restraint stiffness αc/αL of the dimensionless buckling load 
on the basis of simply supported additionally elastically restrained compressed element was 
described by  Misiunaite (2013) and was assumed to be limiting as considering element buckles 
in the asymmetric second mode. 
It follows from Eq. 10 that intermediate restraint stiffness supposed to be non-equal and greater 
than α c, otherwise restrained deflection approach infinity and turns to unrestrained one. 
Furthermore, the shift from the unrestrained deflection shape to restraint one asserts between the 
values of 2 to 4 of the relative restraint stiffness αc/αL depending on the slenderness parameter kl 

(Misiunaite 2013). 
 
2.2 Direct structural response control  

Very few studies have been conducted on an attempt to control structural response of the 
indirectly supported structures. A new approach on the flexural response control of the simple-
span bridges was proposed by Juozapaitis et al. (2007). The study was performed on the case of 
under-deck cable-stayed bridge reconstruction with no suspension during exploitation.  
This study attempts to provide brief guidelines for the direct structural control technique. 
Proposed technique relies on the approach of the flexural behaviour of under-slung beam, thus 
besides sagging moments has to consider hogging moments at the point of the indirect support. 
The structural control may be performed by setting the equalized extreme bending moment’s 
criterion: 

 ( ) ( )0 / 2M z M z l= = =   (11) 

The indicated criterion in the considering structure may be stifled by obtaining rational 
displacement at the intermediate support and reflect the rational length of the strut. 
As the rational geometric parameters are set the structural response of the considering structure 
reflects structural behaviour of the imperfect beam-column with intermediate restraint. For the 
case of structural response control should be found the rational value of the restoring force at the 
restraints which is constant for any number of the restraints. 
By introducing: 
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the rational restoring force can be obtained as: 
 , 1( )vb racF ql klϕ=   (13) 
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As previously shown restoring force relays on restrained displacement at the section of indirect 
support and vice versa, thus the rational displacement can be obtained by introducing: 
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2.3 Analytical investigation 

For the propose of realizing the direct structural and stability control of indirectly supported 
structures, this study besides theoretical method aims to propose a simple analytical modeling for 
direct structural control of ISS. In Fig. 1 presented structural scheme of under-slung beam has 
been modeled as three dimensional ISS using FE software ANSYS as shown in Fig.3. For the 
theoretical assumptions and experimental validation the model shall comply with the following 
principles. 

1. The main beam of the structure has to be modeled to account for initial imperfections. 
For this particular case the spline elements have been used which reflects sinusoidal 
function as assumed in theoretical model. The magnitude of the initial imperfections has 
been modeled according the one measured of the experimental test model. 

2. In order to control structural behaviour of the ISS and satisfy equalized extreme bending 
moments criterion set in Eq. 11, there was simulated the gap at the beam-strut 
connection. The value of the gap reflects the difference between displacements of 
supporting system and the mid-span of the beam in order to obtain the value of the 
rational displacement. It should be noted that the previous researches have revealed that 
considering the deformational behaviour of non-controlled ISS previously mentioned 
displacements are equal (Misiunaite 2013). 

3. The prediction of the gap at the different load steps uses the relationship between 
transverse force and the gap presented in Fig. 4. 

 

 
 

 Figure 3: Analytical under-slung beam calculation model 
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Figure 4: Relationship between transverse force and the gap 

 
Table 1 presents the direct structural control results based on extreme bending moments 
equalizing criterion. The columns titled M2 and M13 indicate, respectively extreme sagging and 
hogging bending moments (see Fig. 8). The obtained differences between extreme bending 
moments are given in the last column of the table. It can be seen the minor constant error of 2%, 
which is obtained due to measuring point of M13. The measuring point is placed slightly (25 
mm) away from the beam-strut connection accordingly to stress-strain gauges in experimental 
test model as shown in Fig. 8.  Thus for the future comparison analysis the analytical data has 
been obtained at the same point instead of at the middle point of the structure. Accordingly to 
previously mentioned assumptions it could be maintained that the criterion of the equalized 
extreme bending moments during analytical investigation has been satisfied. Moreover, the last 
two rows indicate the differences between flexural behaviour of the considered ISS with and 
without structural control. It could be seen that in the structure without structural control the 
hogging moment is 22% greater than sagging and increase the stress in the structure as well as 
destabilize its behaviour.  
 

Table 1: Analytical data (bending moments) 
ANSYS Data (Nmm) Criterion 

Load steps M2 M4 M6 M13 M13/M2 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0% 

1* -1.91E+05 -1.46E+05 3.80E+04 1.88E+05 2% 

4* -4.07E+05 -3.11E+05 1.05E+05 4.01E+05 2% 

7* -6.09E+05 -4.64E+05 1.59E+05 6.00E+05 2% 

9* -8.20E+05 -6.01E+05 2.17E+05 8.06E+05 2% 

10* -9.67E+05 -6.78E+05 2.57E+05 9.45E+05 2% 

11* -1.12E+06 -8.11E+05 2.99E+05 1.09E+06 2% 

12* -1.27E+06 -9.22E+05 3.44E+05 1.24E+06 2% 

No Control  -1.18E+06 -7.76E+05 5.27E+05 1.44E+06 -22% 
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Table 2 gives the results of the deformational behaviour of ISS. The last column of the table 
indicates the difference between displacements of cable staying system and at the point of 
indirect support. The differences reflect the values of the simulated gap performing FE analysis. 
Moreover the obtained values of the gap will be used for the calculations of rational 
displacement during experimental investigation. 

 
Table 2: Analytical data (displacement) 

ANSYS DATA (mm) 

Load steps I10 I9 I8 I5 I4 I3 I2 GAP 

1* -2.05 -3.07 -3.05 -2.72 -3.05 -3.07 -2.05 -1.21 

4* -4.35 -6.51 -6.44 -5.75 -6.44 -6.51 -4.35 -2.52 

7* -6.49 -9.70 -9.59 -8.54 -9.59 -9.70 -6.49 -3.70 

9* -8.69 -12.98 -12.81 -11.40 -12.81 -12.98 -8.69 -4.88 

10* -10.19 -15.20 -14.98 -13.32 -14.98 -15.20 -10.19 -5.67 

11* -11.75 -17.52 -17.25 -15.32 -17.25 -17.52 -11.75 -6.46 

12* -13.34 -19.88 -19.55 -17.35 -19.55 -19.88 -13.34 -7.25 

No Control -10.54 -14.79 -12.88 -10.12 -12.88 -14.79 -10.54  

 
 
3. Testing Program 

An experimental research program to validate proposed direct structural control of indirectly 
supported structures (ISS) methodology was undertaken by the authors at VGTU. It investigated 
ISS performance with direct design method provision, variations of strut length in order to 
control structural behaviour of the considering system.  
 
3.1 Test model 

The structure under observation is a three dimensional mono-strut under-slung beam (Fig. 5) 
consisting of two parallel situated substructures (Fig. 1).  

 
 Figure 5: View of Test model 
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The main element of interest – beam works as a simply supported beam-column element with an 
intermediate elastic restraint by means of strut which stiffness relays on the axial force and 
displacement of the strut and varies according loads. The struts with the height of 1/8 of the span 
are situated at the middle of each substructure of the three dimensional system and connected to 
the beam with the possibility to control their length. Supporting system of each substructure is 
composed of two stay cables directly anchored to the beam at the support sections and deviated 
by the strut at the midspan. The main parameters of the sub-structure are presented in Table 3.  
 

Table 3: Main parameters of the three dimensional test model   

Parameter Test model 

Overall dimensions Total length, mm 4000 

Left side, mm 2000 

Right side, mm 2000 

Length of the strut, mm 470 

Width, mm 800 

Rigid beams Cross-section area 

�  60x40x2, mm2 

374 

Moment of inertia, mm4 184100 

Modulus of elasticity, N/mm2 210 000 

Struts Cross-section area 

□ 40x40x2, mm2 

294 

Modulus of elasticity, N/mm2 210 000 

Stay cables Cross-section area 

— 25x4, mm2 

100 

Modulus of elasticity, N/mm2 210 000 

 
Avoiding lateral torsional buckling the under - slung beam has been made of rectangular cold 
formed hollow section less susceptible to torsional deformations. Moreover, in order to obtain 
the effect of geometrical nonlinearity of the beam the cross section has been chosen such that the 
slenderness parameter at the maximum loading would be 2,0-2,5 (Misiunaite 2013). The block of 
lateral bracings has been provided to simplify the spatial behaviour of the test model to in-plain 
behaviour of beam-columns. 
The boundary conditions of the test model represent the simply-supported element with 
intermediate elastic restraint. Each substructure of under-slung beam model is free for in plane 
rotations due to provided steel rollers. One side of each substructure is free for longitudinal 
movement and the other one is restricted to 55 mm by providing controllers at the supports. 
 
3.2 Test setup and loading protocols 

In the testing process, only the vertical loads have been initiated. The weights of approximately 
24.5 kg have been used to invoke the transverse distributed load. Loading has been performed by 
steps. For this stage of the study only symmetric loading has been considered. The first load step 
reflects the self-weight of the wooden deck used for transverse load distribution; the total load of 
2692 kg has been applied in 12 steps with the approximate increment of 250 kg. Each step of 
loading has been performed in a short period of about 2 min.  
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The structural control of the system by means of variation of the strut length has been performed 
7 times, at the load steps: 1*, 4*, 7*, 9*, 10*, 11* and 12*. With the increase of load the length 
of the strut has been decreased with the incremental magnitude according load-gap relationship 
used for the analytical investigation and shown in Fig. 4. For the first approach to structural 
control of the ISS the mechanical control method has been used with the attempt to initiate active 
structural control of the system. Therefore there was used the indicator at the place of the strut to 
measure simulated rational displacement by means of decreasing strut length (Fig. 6). 
 

 
Figure 6: Simulation of ration displacement 

 
 Previously described loading scheme is shown in Fig. 7. 
 

Load 
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q, 
N/mm 
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3 1.05 

4/4* 1.17 
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7/7* 1.72 
8 1.90 

9/9* 2.27 
10/10* 2.63 

11/11* 3.00 

12/12* 3.37 
Figure 7: Load steps 
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In case to perform comparison between structural behaviour of controlled and non-controlled 
structural behaviour of ISS there was made testing of the same structural model without 
decreases of the strut for the maximum transverse loading of 3.37 N/mm. 
 
4. Experimental validation 

The obtained controlled bending moments of the tested model are summarized in Table 4. 
Noticing the symmetric conditions of the structure Table 4 presents just half of the results. The 
placement of the stress-strain gauges can be seen in Fig. 8. Columns titled of M2 and M13 
indicates considering extreme bending moments, the last column gives the result of the 
controlling procedure. It can be observed that at all load steps when the structural control has 
been simulated were achieved sufficient results. The minor errors indicated in the last column of 
the Table 4 can be explained by the placement of the stress-strain gauges. It can be seen in the 
Fig. 8 that stress-strain gauges due to construction of the beam-strut connection at the 
intermediate support have been placed 25 mm away from the center, thus caused minor 
disagreement between extreme bending moments. Meanwhile, it can be seen (Fig. 8) that 
structural control caused the decrease of the extreme bending moment at the intermediate support 
in comparison with the flexural behaviour of the same structure without structural control at the 
maximum loading of 3.37 N/mm, thus can be related with the decrease in stress of the structure. 
Consequently, decrease in stress of the structure refers to its more stable performance. In 
addition the experimental results presented in Table 4 validates theoretical proposal of the 
structural control of ISS and criterion set for the extreme bending moments equalization. 
 

Table 4: Experimental data (bending moments) 
Experimental Data (Nmm) Criterion 

Load steps M2 M4 M6 M13 M13/M2 

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0% 

1* -1.91E+05 -1.46E+05 3.84E+04 1.95E+05 -2% 

4* -4.18E+05 -3.18E+05 1.07E+05 4.17E+05 0% 

7* -5.94E+05 -4.79E+05 1.62E+05 6.05E+05 -2% 

9* -7.77E+05 -6.07E+05 2.23E+05 8.26E+05 -6% 

10* -9.93E+05 -6.98E+05 2.64E+05 9.59E+05 4% 

11* -1.12E+06 -8.24E+05 3.13E+05 1.13E+06 0% 

12* -1.24E+06 -9.20E+05 3.48E+05 1.24E+06 -1% 

No Control  -1.18E+06 -7.98E+05 5.10E+05 1.44E+06 -22% 

 
Table 5 indicated good agreements between experimental data and previously obtained analytical 
data using FE software it concludes in simple modeling and design for ISS direct structural 
control. 
 

Table 5: Experimental validation (bending moments) 
Errors  (ANSYS Data/Experimental Data) 

Load steps M2 M4 M6 M13 M14 M22 M24 M26 

1* 0% 0% 1% 4% 3% 1% 0% 0% 

4* 3% 2% 2% 4% 4% 2% 3% 3% 
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7* -3% 3% 2% 1% 1% 2% 3% -4% 

9* -6% 1% 3% 2% 2% 2% 0% -4% 

10* 3% 3% 3% 1% 1% 3% 3% 4% 

11* 0% 2% 4% 3% 3% 4% 2% 1% 

12* -3% 0% 1% 0% 1% 1% 0% -2% 

No Control  0% 3% -3% 1% 1% -3% 3% 1% 
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Figure 8: Comparison of experimental results of bending moment control 

 
Table 5 presents experimentally obtained displacements at the considering points indicated in 
Fig. 9. Displacement sensor I5 indicates displacement of the supporting system which 
corresponds to the assumption of its equalization with the displacement at the beam-strut 
connection for the ISS structures without structural control. At this study the difference between 
the results at those points gives the variable magnitude of the rational displacement, which was 
simulated as the gap during analytical investigation. The last column of the Table 5 indicates this 
difference and it can be seen that it slightly differs from the analytically assumed one and used 
during experimental investigation. The minor errors between magnitudes of the rational 
displacements validate the assumptions made for the analytical investigation. From the two last 
rows of the Table 5 and Fig. 9 can be seen that structurally controlled structure deforms more 
than the same structure without structural control. Deformational increase refers to decrease in 
maximum stresses of the structure and more stable structural behaviour. 

 
Table 5: Experimental data (displacement) 

EXPERIMENTAL DATA (mm) 

Load steps I10 I9 I8 I5 I4 I3 I2 GAP 

1* -2.04 -3.10 -3.16 -2.73 -3.16 -3.10 -2.04 -1.28 

4* -4.44 -6.50 -6.11 -5.6 -6.11 -6.50 -4.44 -2.46 

7* -6.59 -9.70 -9.35 -8.67 -9.35 -9.70 -6.59 -3.79 

9* -8.32 -12.67 -12.64 -11.58 -12.64 -12.67 -8.32 -5.15 

10* -9.68 -14.53 -14.90 -13.12 -14.90 -14.53 -9.68 -5.82 

11* -11.99 -16.63 -16.91 -15.21 -16.91 -16.63 -11.99 -6.68 

12* -13.40 -19.73 -19.73 -17.18 -19.73 -19.73 -13.40 -7.16 

No Control -10.79 -14.44 -12.73 -10.07 -12.73 -14.44 -10.79  

 
Table 6 gives the validation of the analytical results obtained using FE software in Section 2.3.  
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Table 6: Experimental validation (displacements) 

Errors  (ANSYS Data/Experimental Data) 

Load steps I10 I9 I8 I5 I6 

1* -1% 1% 4% 0% -4% 

4* 2% 0% -5% -3% -3% 

7* 1% 0% -3% 1% 1% 

9* -5% -2% -1% 2% -1% 

10* -5% -5% -1% -2% -5% 

11* 2% -5% -2% -1% -4% 

12* 0% -1% 1% -1% -1% 

No Control 2% -2% -1% -1% -2% 
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Figure 9: Comparison between controlled and non-controlled ISS displacements 
 

Fig. 10 indicates the relationship obtained between displacement at the intermediate support and 
applied transverse load. The nature of the relationship curve reflects the one assumed for the 
rational displacement magnitude simulation used in analytical investigation and shown in Fig. 4. 
It can be seen that the curve represents linear relationship between transversal load and 
displacement. Drift at the point of 1.35 N/mm loading can be explained by differences in load 
increments at the beginning of the experimental investigation. Obtained linear relationship 
between displacement and the load as well as between load and rational displacement magnitude 
(Fig. 4) gives better prediction of structural behaviour of ISS during the process of control. 
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Figure 10: Relationship between transverse force and the controllable displacement 

 
5. Conclusions 

In this study, a three dimensional model of indirectly supported structure was tested under 
symmetric loading in order to validate proposal of structural response technique. The test results 
showed the possibility to stabilize structural behaviour of the considering structures by 
decreasing the stress when the extreme bending moments equalization criterion is used. Through 
the comparison analysis of the obtained analytical and experimental results, a good agreement 
has been achieved which approves the possibility directly control the structural behaviour of 
indirectly supported structures (ISS). Additionally, the structural control proposal presented in 
this paper includes theoretical methodology for generalized calculation model reflecting 
structural behaviour of the ISS, governing equations for obtaining flexural and deformational 
behaviour and detailed explanation of structural control procedure. It should be noted that this 
study was the first attempt to control structural behaviour of ISS by means of equalizing extreme 
moments and it contains many simplifications. Future prospects of this investigation focus on 
passive and active structural control of such structures. Passive structural control can be provided 
just for maximum design load using beam-strut connection based on friction or viscoelastic 
characteristics. For the more significant structures or in the case of seismic design the proposal 
can be used for active structural control using hydraulic systems for beam-strut connection and 
described computational method and obtained load – rational displacement magnitude 
relationship for development of control software. 
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