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Abstract 
A Generalized Beam Theory (GBT) approach is derived that performs automated, quantitative 
modal decomposition of thin-walled members with an open cross-section. The technique extracts 
modal amplitudes and modal participation factors from any 3D displacement field, for example 
from finite element analysis or point clouds measured in the lab during a test to collapse. Thin-
walled members exhibit deformation that can be represented as combinations of cross-sectional 
and global buckling modes. It is useful to quantitatively decompose these modes for strength 
prediction and design code development. Conventionally, buckling mode participation has been 
determined by visual inspection. This process is subjective and tedious since the person 
conducting the inspection is often dealing with many models or experiments. Taking advantage 
of GBT kinematics, the proposed method distinguishes itself by using only the GBT cross-
section deformation modes instead of member-wise basis functions. The method is by nature 
applicable to different boundary and loading conditions without recalculation of basis functions. 
The mechanics are formulated to show that the method is supported by GBT kinematic 
assumptions, which ensures its general applicability. The approach is implemented in a 
Graphical User Interface (GUI) that accepts a thin-walled member 3D displacement field as 
input and then calculates modal participation factors, i.e., for member local, distortional, and 
global (Euler) buckling. 
 
 
1  Introduction 

The buckling phenomenon of open cross-section thin-walled structures is usually classified by 
three fundamental types: global (G) buckling; distortional (D) buckling; and local (L) buckling. 
These buckling mechanisms have different impacts on the post-buckling behavior: generally, 
global buckling has minimal post-buckling reserve, while cross-sectional modes like distortional 
buckling and local buckling have post-buckling capacity that can be utilized. 
 
The Direct Strength Method, which is adopted in AISI-S100-12 (AISI-S100 2007) and the 
Australian/New Zealand Standard (Hancock 2007),  predicts cold-formed steel member capacity 
with global (G), distortional (D), or local (L) buckling limit states using formulas with global or 
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cross-sectional slenderness as input. As long as codes and standards treat G, D, and L modes 
separately, proper buckling modal identification for both Finite Element (FE) Analysis and 
experiments is necessary. Modal identification can be exploited to quantitatively determine the 
nature of the buckling mode shape gained from FEA or test-based measurement, thus subjective 
and tedious visual inspection can be avoided. Modal identification is also helpful for research 
and code development, so that the failure mechanisms in FEA or experiments can be 
quantitatively categorized (Li et al. 2013; Salomon et al. 2015). 
 
There are two existing methods that perform modal identification. The constrained finite strip 
method (cFSM) treats the modal amplitude calculation as a least squares problem which 
minimizes the error between member-wise displacement fields and reconstructed displacement 
fields (Ádány et al. 2010). The motivation is to approximate any FEA displacement fields by the 
linear combination of the cFSM basis  functions. The cFSM basis functions, which depend on 
the member length and boundary conditions, are obtained in advance. Another method is based 
on the Generalized Beam Theory (GBT) stiffness matrix (Nedelcu 2012, 2014; Nedelcu and 
Cucu 2014). This method solves linear equation systems for modal amplitudes at discrete cross-
sections along the member. In the linear equation system, the coefficient matrix is the GBT 
stiffness matrix and the right-hand side vector is calculated by substituting the displacement 
fields from Finite Element Analysis (FEA) into GBT formulas for evaluating stiffness terms. 
Then modal participation factors can be evaluated using modal amplitudes along the member.  
 
This paper introduces a method utilizing GBT mode shapes as basis functions, and obtains modal 
amplitudes by solving a small-scale least squares problem at discrete cross-sections along a thin-
walled member. The method utilizes concepts from both existing cFSM and GBT methods and 
has the following merits: (i) a single set of basis functions that can be used for any boundary 
conditions or member length; (ii) basis functions are easy to obtain as simply being GBT mode 
shapes; (iii) once GBT mode shapes and displacement fields are known, modal identification can 
be carried out without the knowledge of GBT assumptions about the displacement fields and 
constitutive law for calculating the stiffness terms, and without complex integrals for evaluating 
stiffness terms. Derivation and validation are provided in the following sections, demonstrating 
the method’s general applicability.  
  
2  Brief Review of Generalized Beam Theory 

Generalized Beam Theory (Schardt 1989) is an extension of traditional beam theory as it 
describes the behavior of a beam by a system of fourth-order differential equations and takes into 
account cross-sectional distortion. As an ideal tool for analyzing thin-walled members, GBT is 
able to evaluate the participation of global, distortional, and local modes separately and explicitly 
(Silvestre et al. 2011). GBT employs Vlasov’s null membrane assumption and Kirchhoff-Love 
plate theory, as follows (Camotim et al. 2010): 
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Figure 1: Coordinate system and translations for a thin-walled member 

 
where (i) (),x=()/x, (ii) superscripts ()M, ()B denote membrane strain and bending strain, 
respectively, (iii) superscripts ()L, ()NL stand for linear and nonlinear terms, and (iv)  M,L 

ss =0,  M,L 
 xs

=0 represents Vlasov’s null membrane strain assumption. 
 
In the context of GBT, the displacement field of the cross section mid-line is related to GBT 
mode shapes and modal amplitudes (or modal amplitude derivatives), as follows: 
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where (i) uk(s), vk(s), and wk(s) are functions specifying GBT cross-sectional mode shapes, (ii) 
k(x) is the modal amplitude vector at location x, and (iii) s is the line coordinate around the 
cross-section. Warping deformation uk(s,x) is related to the first-order derivatives of modal 
amplitudes. 
 
Stress components are related to strains by the constitutive law in Eq. (3): 
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where (i) E,,G are elastic modulus, Poisson’s ratio, and shear modulus, respectively, and (ii) ij, 
ij  are stress and strain components. 
 
To acquire a differential equation of equilibrium, the Principle of Virtual Work is utilized, i.e., 
 
 V U     (4) 
 
where V is the variation of total potential energy, U  is the variation of strain energy, and  
is the variation of potential energy with respect to the pre-buckling reference stress.  
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By expressing strain variation in terms of modal amplitude variation i and accounting for the 
virtual work performed by every stress component, the GBT differential-equation system for an 
eigen-buckling problem is obtained ((Davies et al. 1994) : 
 

 0
, , , ,( ) 0ik k xxxx ik k xx ik k jik j k x xC D B X W        .  (5) 

  
This ordinary differential equation system ( i  being a free index) represents equilibrium for each 
GBT mode. In Eq. (5), W0 

j  is the pre-applied force resultant corresponding to axial load (j=1), 
major axis bending moment (j=2), minor axis bending moment (j=3), and torsional warping 
bimoment (j=4). Other terms are: 
 

 

3
1 2

2 2

3

, ,2

3 3
1 2 2

, , , ,2

= ,
1 12(1 )

,
12(1 )

( ) ( ) ,
3 12(1 )

( + )

ik ik ik i k i kb b

ik i ss k ssb

ik ik ik ki i s k s i k ss k i ssb b

j
jik i k i kb

jj

Et Et
C C C u u ds w w ds

t
B w w ds

Gt Et
D D D D w w ds w w w w ds

u t
X v v w w ds

C

 






  
 




     




 



 



  (6) 

 
where Cik represents the stiffness with regard to warping, Dik represents the stiffness with regard 
to torsion, and Bik represents the in-plane bending stiffness when the cross-section does not 
remain rigid, which only exists for modes 5 and above. The tensor Xjik represents the geometric 
stiffness with regard to the pre-applied force resultant W 0 

j .  
 
The GBT cross-sectional mode shapes uk(s), vk(s), and wk(s) are determined by ‘cross-sectional 
analysis' (Gonçalves et al. 2010), which solves for mode shapes by simultaneously diagonalizing 
matrices C and B in Eq. (5). Fig. 2 shows a lipped channel with dimensions, material properties, 
and the GBT cross-sectional discretization. Fig. 3 shows the first 18 GBT mode shapes for the 
cross section. There are two sets of nodes in GBT cross-sectional analysis, namely natural nodes 
and intermediate nodes. Natural nodes are intersections of fold lines, and intermediate nodes are 
discretization nodes between natural nodes. End nodes are both natural nodes and intermediate 
nodes.  

 
Figure 2: Channel cross section - material properties, dimensions, GBT discretization 
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Figure 3: GBT mode shapes - G for global buckling, D for distortional buckling, and L for local buckling 

 
 
3 Buckling Mode Identification Method 

In a general buckling problem, several buckling modes are mixed and they interact with each 
other (Dinis and Camotim 2011). In the context of GBT, the interaction is taken into account by 
coupled stiffness terms, e.g., matrix D and X in Eq. (5) above are coupled as off-diagonal terms 
are present.  However in-plane displacement fields are linear combinations of buckling mode 
shapes without coupling, where the weighting function is the modal amplitude vector, as shown 
in Eq. (2). 
 
Therefore, in this paper, the modal amplitude vector k(x) in Eq.(2) is solved by substituting  
uk(s), vk(s), and wk(s) obtained by 'cross-sectional analysis' and u(s,x), v(s,x), w(s,x) obtained 
from a general 3d displacement field, for example, a specific mode from a thin shell finite 
element eigen-buckling analysis or from measured point cloud data during a column or beam test. 
Once the modal amplitude vector k(x) is obtained at multiple discrete cross-sections along the 
member, member-wise modal participation can be evaluated as described in the next section.  
 
3.1 Calculation of Modal Amplitudes at Given Cross-Section 
If an open cross-section is discretized by n nodes, there are n+2 GBT modes. Beyond mode 1 for 
uniform compression, amplitudes of n+1 modes are to be quantified. These amplitudes, i.e., k (x), 
can be found by solving the least squares problem in Eq.(7): 
 

 
V

k

W
k















2n(n1)


k
(x) 

(n1)1k2

n

 

least
square

V
W











2n1

  (7)

 
in which (i) Vk, Wk are displacement components at discretization nodes of GBT mode k in the 
global coordinate system; once the GBT mode shapes uk(s), vk(s), and wk(s) as shown in Fig. 3 
are obtained from the GBT cross-section analysis (Schardt 1989; Gonçalves et al. 2010) or by 
free software which conduct cross-sectional analysis (Bebiano R. et al. 2014; Cai 2014) , Vk, Wk 
can be readily obtained by coordinate transformation; (ii) k(x) is the modal amplitude vector of 
mode k at location x along the member, (iii) V, W are in-plane displacements in the global 
coordinate system (as shown in Fig. 1) obtained by FEA or by test measurements, (iv) the 
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subscript denotes the dimensions of the matrix with n being the number of discretization nodes. 
The above equation is a linear optimization problem with n+1 input arguments and 2n objectives. 
For a general mathematical problem without physical meaning, the solution is challenging and 
possibly undefined because there are far more equations to solve than input arguments. However, 
because of Generalized Beam Theory kinematics, many of these 2n equations are ‘related’, and 
the least squares problem can be solved with minimal error.  
 
The justification for Eq. (7) is provided next. It is shown that: (i) only kinematics are used in the 
method once the mode shapes are known, i.e., no stiffness matrix is involved; (ii) the method is 
applicable to different loading and boundary conditions; and (iii) the error of the mode 
identification comes from the incompleteness of the GBT displacement field. Specifically, GBT 
utilizes Vlasov's null membrane strain assumption, which forces the local displacement v to be a 
constant in each fold line, and transverse extension is not captured.  
 
The  justification of Eq. (7) is demonstrated through an illustrative example shown in Fig. 4 by 
four steps. The cross-section has 8 nodes and 10 GBT modes with 9 modal amplitudes to be 
identified. 
   

 
Figure 4: Illustrative cross section 

 
3.1.1  Step 1 -  Assuming Vlasov’s assumption applies for the displacement field, and using v of  
fold lines and w of intermediate nodes to solve for {k}. 
Since Vlasov’s assumption applies at this stage, the displacement v is a constant in each fold line 
(FL). Once v of all fold lines and w of intermediate nodes are obtained, a linear system to solve 
for {k} can be written down as: 
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where: (i) superscript ()FL.i stands for the ith fold line; (ii) () j stands for the jth node, noting that 
nodes (1,2,4,5,7,8) are intermediate nodes; and (iii) subscript ( )k  stands for the kth GBT mode. 
Eq. (8) can be written compactly as: 
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Eq. (9) is a linear system with 9 equations to solve for 9 unknowns (2~10). Since the mode 
shapes are linearly independent as displacement-field basis functions, the solution is readily 
obtained by solving a determined linear system. 
 
3.1.2 Step 2 - Still assuming Vlasov’s assumption applies, but using v and w of all nodes 
(intermediate and natural) to solve for {k}. 
Eq. (9) in Step 1 can generate the modal amplitude vector {k} if Vlasov's assumption applies. In 
Step 2, another linear system is shown to yield {k} as well by illustrating the equivalence 
between Step 2 and Step 1. The linear system in Step 2 corresponds to displacements v and w of 
all nodes in local coordinate system (see Fig. 4 for convention of local coordinate system) as 
follows: : 
 

 

1 1 1 1
22 3 10

2
32 3

8

2 2 2
10

8 8 8
1 102 03

...

...

...

v v v v

v v v v

v v v v






    
    

                        

    
,  (10a) 

 

8

1 1 1 1
22 3 10

2 2 2 2
32 3 10

8 8 8
102 3 10

...

...

...

w w w w

w w w w

w w w w






    
    

                        

    
. (10b)

 
Compactly: 
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For interpretation, Eq. (10) is annotated in Fig. 5. In Eq. (10.a), since local displacement v is 
constant in each fold line, rows 1 to 3 in the red box all correspond to v in the first fold line, 
because nodes 1 to 3 belong to the first fold line (Natural nodes belong to two fold lines. For the 
justification, the local coordinate system of the natural node is taken with the fold line before it, 
e.g., node 3 uses the local coordinate system of fold line 1). The same consideration applies for 
the second and third fold lines, and thus Eq. (10a) is equivalent with Eq. (8a) in Step 1, as both of 
them involve v of all fold lines. 
 

 
Figure 5: Equation (10) rewritten with annotations  

 
For Eq. (10.b), the order of nodes 1 to 10 is rearranged in Fig. 5. The first part with intermediate 
nodes (1,2,4,5,7,8) in the cyan box is identical to Eq. (8.b) . The second part, in the yellow box, 
involves w3 and w6. Because node 3 and node 6 are at intersections of fold lines, w translations of 
intersections are equivalent to v displacements of adjacent fold lines. 
 
Taking node 3 for example (see Fig. 6), w3 is the horizontal displacement at node 3. This 
translation is related to local shifting in the second fold line as w3vFL.2, in which vFL.2 is 
already taken into account in Eqs. (8.a) and (10.a). The same type of derivation applies for node 
6 as well.   

 
Figure 6: w3 equals local shifting v in fold line 2 with a opposite sign 

 
For a general case where fold lines do not meet at 90 degrees, it can still be shown that w of 
natural nodes (or intersections of fold lines) can be derived from v of adjacent fold lines from the 
kinematics in Fig. 7 and Eq. (12). Since v of fold lines are already taken into account in Eq. (8a) 
and (10a), these equations with intersections are linearly dependent on those equations (w3 and 
w6 in our example): 
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Figure 7: Dependence of w at natural node upon v of adjacent fold lines (Schardt 1989) 
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Overall, the linear system in Step 2 is equivalent to the linear system in Step 1, as shown in Eq. 
(13). The kinematical relations are: (i) Vlasov’s assumption makes v a constant in each fold line; 
(ii) w of any natural node  (intersection of fold lines) is dependent upon v of adjacent fold lines. 
Hence, 9 linearly independent equations exist to solve for 9 unknowns (2~10), and the Step 2 
system is linearly determined. 
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3.1.3 Step 3 -  Expressing linear system in Step 2 in the global coordinate system 
In Step 3, all the coordinates of Step 2 are written in the global coordinate system: 
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The concept of coordinate transformation is used to prove the equivalence between Stage 3 and 
Stage 2. Equations for an arbitrary node r in Stage 2 and Stage 3 are respectively: 
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Multiplying both sides of Eq. (17) by the coordinate transformation matrix between global and 
local coordinate systems (see Fig. 8), Eq. (18) is acquired: 
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Figure 8: Coordinate transformation between global and local coordinate system 

 
Because the coordinate transformation matrix is always invertible (the determinant of it is cos2 
+ sin2 = 1), Eq. (16) can be derived from Eq. (18). Applying the same derivation to all nodes, it 
is shown that Step 3 is equivalent to Step 2, as shown in Eq. (19): 
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3.1.4 Step 4 - Realizing that Vlasov’s assumption is not strictly applicable to FEA/experimental 
results, and transferring the linear system in Step 3 to a least squares problem 
Generalized Beam Theory adopts Vlasov's assumption, which puts constraints on the local 
translation v in each fold line. However, in finite element analysis or test-measured point clouds, 
this constraint does not exist. Specifically, due to the presence of transverse membrane strain, 
local displacement v is not strictly constant (for better interpretation, Fig. 13 can be observed, as 
it shows a numerical example).  
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Because the transverse extension strain is always present in FEA or test-based measurement for a 
general case, no matter whether the 'GBT stiffness matrix method' or the method of this paper is 
used, the displacement fields cannot be perfectly reconstructed by GBT modes (in the context of 
conventional GBT modes without 'transverse extension' modes), and the Step 3 equation is now 
overdetermined. However,  since the influence of transverse extension is minimal, GBT modal 
amplitudes can be found by reformulating Eq. (15) as a linear least squares problem 
 

  
2

min( )
n

k
k

k k

V V

W W




   
   
  

  or   
2

least
n square

k
k

k k

V V

W W




   
   

  
 .  (20) 

 
This operation projects the in-plane displacement fields (V and W obtained from FEA for 
example) onto the sub-space of GBT solutions , as shown in Fig. 9. 

 

Figure 9 : Displacement field projection for calculating {fk} 
 
3.1.5  Summary: four-step justification of modal amplitudes calculation method 
The four-step justification modal amplitude calculation method is summarized in Eq. (21). The 
equivalence of Step 1 and 2 results because of GBT kinematics, and for Steps 2 and 3 by 
coordinate transformation. Any equation in the first three steps will generate the exact solution of 
the modal amplitudes vector if the in-plane displacement field falls in the subspace of GBT 
solutions. The linear system in Step 3 is transferred to a least squares problem in Step 4 because 
of the presence of transverse extension. One reason for providing this four-step example is to 
show that the scheme is made possible by the rationality of  GBT kinematics; otherwise the Step 
4 equation generally does not give a satisfactory solution as a purely mathematical problem, 
because the number of objectives (2n, e.g., 16 in the example above) to be optimized is more 
than the number of input arguments (n+1, e.g., 9 in the example above).  
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                                  

             

  


  (21) 

 
3.2 Modal participation factors and error evaluation 
Formulae to calculated modal participation factors using modal amplitudes have been proposed 
(Silvestre and Camotim 2002): 
 

 
1

( ) / ( )
n

i i kL L
k

P x dx x dx 


   .  (22) 

 
Once the modal amplitudes of discrete cross-sections along the member are obtained as 
described in the previous Section 3.1, Eq. (7), modal participation can be determined by the 
discrete form of Eq. (22), as shown in Eq. (23): 
 

 section section
section=1 1 section=1

( ) / ( )
N n N

i i k
k

P x x 


    .  (23)

 
In addition with member-wise participation factor Pi, the modal participation factors at a given 
cross-section is evaluated as follows: 

 
1

( ) ( ) / ( )
n

i i k
k

p x x x 


  . (24) 

 
With the notation, the member-wise participation factors Pi can be written as: 
 

 ( )i iL
P p x dx  . (25) 

  
The error of the reconstructed displacement field from conducting modal identification can be 
evaluated using Eq. (26): 
 

 -
T T

err VW err VW VW VWerror d d d d .  (26) 

 
The displacement component U is absent in the expression since the warping is related to the 
derivatives of modal amplitudes k' but not the amplitudes k, and k are what is needed for 
calculating modal participation factors. 
 

4 Illustrative examples 

Example 1 – thin-walled lipped Cee-section column 
For the first illustrative example, modal identification is carried out on the result of an FEA 
eigen-buckling analysis of a column. The column cross section is the Cee shown in Fig. 2, with 
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the thickness of the channel being t = 2mm and the member length being L = 1240mm. The cross 
section is discretized into 32 sub-segments (2 equally wide pieces in each flange lip, 8 equally 
wide pieces in each flange, and 12 equally wide pieces in the web) for GBT cross-sectional 
analysis. A total of 35 GBT mode shapes are produced, and the first 18 GBT mode shapes are 
shown in Fig. 3. 
 
To obtain the displacement field for performing modal identification, a shell finite element 
analysis (SFEA) is conducted using the commercial finite element program ABAQUS (Simulia 
2012). The first 50 eigen-buckling solutions are recorded for further analysis.  The member is 
meshed into 3936 rectangular elements. In the cross-sectional plane, the discretization is 
identical with GBT (shown in Fig. 2). In the longitudinal direction, the discretization is made 
every 10 mm, which results in 124 cross sections.  The ABAQUS S4 element with finite 
membrane strain is used. In-plane translations (Ux, Uz) of nodes on both ends are fixed, and the 
longitudinal warping (Uy)  is prescribed at all nodes on the mid-length cross section. Shell edge 
tractions q = 3.846N/mm are applied to both ends of the member, which corresponds to 1000N 
of compression force. FEA modal is shown in Fig. 10 and buckling modes in Fig. 11.  
 

 
Figure 10: Example 1 - FEA modal boundary conditions 

 
A custom-built MATLAB (MALAB 2010) GUI ‘Buckling Cracker’ (Cai 2014) with step-by-
step video tutorial (Cai 2014) is programmed to perform the modal identification, and the 
displacement fields generated by SFEA are treated as input for the ‘Buckling Cracker’. Modal 
participation and errors are evaluated by the code and shown in Table 1. Also, buckling mode 
shapes and corresponding modal amplitudes of the first 5 buckling modes are shown in Fig. 11.  
 

Table 1:Example 1 - Modal participation and error for the first 10 buckling modes 
Buckling mode 2G 3G 4G 5D 6D 7L 8-35L error (%) 

1 0.00 0.13 0.00 91.81 0.00 7.5 0.6 0.058 

2 0.00 0.13 0.00 69.38 0.00 28.6 1.9 0.077 

3 0.00 0.13 0.00 98.30 0.00 1.3 0.3 0.048 

4 0.00 0.11 0.00 71.76 0.00 26.2 1.9 0.078 

5 0.00 0.12 0.00 74.02 0.00 24.5 1.4 0.076 

6 0.00 0.14 0.00 50.40 0.00 45.8 3.7 0.081 

7 0.00 0.12 0.00 86.64 0.00 12.5 0.7 0.075 

8 0.00 0.11 0.00 82.94 0.00 15.5 1.4 0.078 

9 0.00 0.14 0.00 95.81 0.00 3.6 0.5 0.069 

10 0.00 0.10 0.00 87.84 0.00 11.1 1.0 0.090 
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From Table 1 and  Fig. 11, it can be concluded that: (i) the largest normalized error between 
reconstructed displacement fields and displacement fields from FEA evaluated using Eq. (26) is 
0.090%; (ii) FEA buckling modes 1~10 are distortional buckling modes dominated by GBT 
mode 5; (iii) GBT mode 5 (distortional) and mode 7 (local) are the two most significant modes 
for FEA buckling modes 1~5; (iv) the varying trends of GBT mode amplitudes along the 
member agree with visual inspection. Taking FEA mode 3 from Fig. 11 for example, the flanges 
of the Cee are 'closing - opening - closing' from the left end to the right, which is reflected by the 
amplitude of mode 5 - 'negative - positive - negative'. 
 
Another ability of the modal identification scheme is to decompose the in-plane deformation into 
combinations of pure modes. The mid-length cross section for buckling mode 1 in Fig. 11 are 
shown in Fig. 12 demonstrating that the reconstructed displacement fields can be decomposed 
into contributions of pure modes.  
 

  
Figure 11: Example 1 - Buckling shapes and modal amplitudes of  first 5 buckling modes (modal amplitude has no 

unit and the unit of length is associated with GBT mode shapes) 
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Figure 12: Disp. field reconstruction and decomposing into GBT modes contributions for mid cross section in 

buckling mode 1 
 
Fig. 13 shows the cross section in Fig. 12 redepicted with annotation of local displacement v. It is 
seen that v are close but not strictly the same in each fold line, which 'shifts' the displacement 
fields slightly out of the sub-domain of GBT solutions. It can be observed the v displacement by 
GBT reconstruction is constant in each fold line as discussed above. 

 
Figure 13: Displacement v for mid cross section in buckling mode 1 

 
Example 2 – thin-walled lipped Cee-section beam-column 
The second example is conducted on the same structural member and FEA mesh in example 1 
but now serving as a beam-column. The left end of the member is fixed against warping for this 
second analysis. A shell edge traction of q = 16.6667N/mm is applied to the top flange of the 
right end.  Loading and boundary conditions are shown in Fig. 14. 
 

 
Figure 14: Example 2 - FEA modal boundary conditions 

Modal participation and error are evaluated by 'Buckling Cracker' and shown in Table 2. Also, 
buckling mode shapes and corresponding modal amplitudes of the first 5 buckling modes are 
shown in Fig. 15.  
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Table 2: Example 2 - Modal participation and error for the first 10 buckling modes 

Buckling mode 2G 3G 4G 5D 6D 7-35L error (%) 
1 4.34 21.25 0.72 50.21 22.50 0.97 0.018 
2 0.62 20.73 0.40 47.41 29.78 1.05 0.024 
3 0.26 2.49 0.01 58.55 37.84 0.84 0.061 
4 0.21 2.12 0.02 59.49 37.26 0.90 0.061 
5 0.29 3.14 0.03 61.50 34.12 0.92 0.055 
6 0.32 3.08 0.03 60.60 34.72 1.24 0.064 
7 0.70 4.44 0.01 56.77 36.10 1.98 0.077 
8 1.69 8.27 0.02 56.63 31.18 2.22 0.051 
9 2.56 10.71 0.05 58.83 26.66 1.19 0.034 

10 2.98 11.21 0.07 55.75 27.39 2.60 0.038 
 

  

 
Figure 15: Example 2 - Buckling shapes and modal amplitudes of  first 5 buckling modes (modal amplitude has no 

unit and the unit of length is associated with GBT mode shapes) 
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From Table 2 and  Fig. 15, it can be concluded that: (i) the largest error between reconstructed 
displacement fields and displacement fields from FEA evaluated using Eq. (26) is 0.077%; (ii) 
FEA buckling modes 1~10 are distortional buckling modes with domination by GBT mode 5 
(distortional); (iii) GBT mode 5 and mode 6 (distortional) are the two most significant modes for 
FEA buckling modes 1~5; (iv) varying trends of GBT mode amplitudes along the member agree 
with visual inspection. 
  
5 Conclusions 

In this paper, a generalized beam theory (GBT) based modal identification method is presented. 
Using the method, participation of  global, distortional, and local buckling modes can be 
quantitatively identified from a general 3d displacement field obtained from finite element 
analysis, experiment, or other computational tools. This method uses GBT cross-sectional mode 
shapes as basis functions and solves a least squares problem on in-plane displacement fields for 
determining modal amplitudes. 
 
The proposed approach combines the ideas of displacement-field projection from the constrained 
finite strip (cFSM) method and GBT stiffness matrix method and utilizes GBT mode shapes . It 
has several advantages for modal identification: (i) no limitation on member length, and a single 
set of basis functions can be used for any boundary conditions; (ii) once GBT mode shapes 
(which are essentially groups of coordinates) are obtained from free tools like GBTUL (Bebiano 
R. et al. 2014) or Buckling Cracker (Cai 2014), the scheme can be carried out without complex 
integrals evaluating GBT stiffness terms.  
 
Illustrative examples are provided for both thin-shell finite element eigen-buckling analysis 
modes demonstrating decomposition of in-plane displacements into a combination of pure modes, 
The authors are currently making an effort to extend the methodology to members with holes. 
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