
 

Proceedings of the 

Annual Stability Conference 

Structural Stability Research Council 

Nashville, Tennessee, March 24-27, 2015 

 

 

 

 

GBT-Based Assessment of the Buckling Behavior of Steel Frames 

Formed by Circular Hollow Section Members 
 

Cilmar Basaglia1, Dinar Camotim2, Nuno Silvestre3 
 
 
Abstract 

This paper reports the results of an ongoing investigation on the use of Generalized Beam Theory 

(GBT) to assess the buckling behavior of thin-walled frames built from cold-formed steel circular 

hollow section (CHS) members. After providing an overview of the main concepts and procedures 

involved in performing a GBT buckling analysis, the formulation and numerical implementation 

of a GBT-based beam finite element are presented. Next, one addresses the constraint conditions 

adopted to simulate the local displacement compatibility at frame joints connecting two orthogonal 

CHS members. Finally, in order to illustrate the application and capabilities of the proposed GBT finite 

element formulation, numerical results are presented and discussed  they concern the buckling 

behavior of an “L-shaped” frame acted by loadings causing only member compression. For validation 

purposes, most GBT-based results are compared with values yielded by shell finite element analyses 

carried out in the code ANSYS. 
 
 
1. Introduction 

The extensive use of cold-formed steel circular hollow section (CHS) frames in the construction and 

offshore industries stems mostly from their structural efficiency (high strength-to-weight ratio), 

remarkable fabrication versatility and very low production and erection costs. However, since these 

frames often comprise very slender members, which are highly susceptible to local and global (flexural) 

buckling phenomena, the (numerical) assessment of their structural response constitutes a complex 

task (e.g., Puthli et al. 2001, Wardenier et al. 2008). Indeed, rigorous numerical analyses can only be 

performed by resorting to shell finite element models, a time-consuming complex approach (including 

data input and result interpretation) still prohibitive for routine applications (e.g., Zhu et al. 2014). 
 
In order to make the analysis of cold-formed CHS frames computationally simpler and potentially 

more accessible to the average designer, without sacrificing too much the accuracy of the results obtained, 

it is essential to develop easy-to-use numerical tools based on beam finite element analysis. However, 

before this goal can be achieved, two major difficulties must be overcome: (i) include local buckling 

effects in a beam (1D) finite element formulation and (ii) handle the transmission of the cross-section 

rotation and wall transverse bending at the frame joints. A very promising alternative approach is 
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the use of Generalized Beam Theory (GBT), a thin-walled prismatic bar theory, originally developed 

by Schardt (1989), that incorporates genuine plate theory concepts, i.e., accounts for the member cross-

section in- and out-of-plane deformations. Moreover, the unique GBT modal nature leads to very elegant 

and illuminating solutions for a wealth of structural problems. 
 

The authors have developed and numerically implemented several GBT-based beam finite elements to 

analyze the elastic local, distortional and global buckling behavior of plane and space frames with open 

cross-sections and rectangular hollow section members (e.g., Basaglia et al. 2008, 2009, Camotim et al. 

2010 or Camotim & Basaglia 2013). 
 

The objective of this work is to report an ongoing investigation aimed at extending the scope of the 

above GBT-based approach, making is possible to analyze also the buckling behavior of steel frames 

formed by CHS members. A GBT-based finite element model, developed on the basis of the 

formulation derived by Silvestre (2007), is numerically implemented, validated and employed to perform 

the frame buckling analyses. Particular attention is devoted to issues concerning the determination of 

the finite element and overall stiffness matrices, which incorporate the effect of the frame joints. 

One also addresses in detail the constraint conditions modelling the displacement compatibility 

along the end section walls of the CHS members connected at a frame joint. In order to illustrate the 

application and provide a better grasp of concepts and procedures involved in the proposed GBT-based 

approach, numerical results are presented and discussed  they concern the buckling behavior of a 

cold-formed CHS “L-shaped” frame acted by loadings that cause only member axial compression. 

For validation purposes, most GBT-based results are compared with values yielded by rigorous 

shell finite element buckling analyses carried out in the commercial code ANSYS (SAS 2009). 
 
 
2. GBT Buckling Analysis 

In a GBT formulation, the displacement field at a given member cross-section is expressed as a linear 

combination of deformation modes, which makes is possible to write the equilibrium equations and 

boundary conditions in an unique and very convenient way − indeed, one is then able to perform a 

very easy and “natural” modal analysis of the cross-section deformed configuration that contributes 

decisively to a deeper understanding about the structural behavior under consideration. The performance 

of a structural analysis involves two main tasks, namely (i) a cross-section analysis, to identify the 

deformation modes and evaluate the associated modal mechanical properties, and (ii) a member 

(or structural system) buckling analysis, which consists of solving the eigenvalue problem defined by the 

(modal) adjacent equilibrium equation system to obtain the sought buckling response, i.e., the member 

(or structural system) buckling load parameters and corresponding buckling mode shapes  often, only 

the lowest (critical) load parameters and associated buckling mode shape are required. 
 
2.1 Formulation for CHS Members 

Figure 1 depicts a prismatic member with a circular hollow section, having radius r and wall thickness t, 

and the global coordinate system X, Y, Z. In order to account for the cross-section in-plane deformation 

effects, it is preferable to consider the local coordinate system x, , z, (a longitudinal coordinate x  [0;L], 

an angular coordinate   [0;2] and a thickness coordinate z  [-t/2; +t/2]  u, v, w are the displacement 

components expressed in the local coordinate systems. In order to obtain a displacement field 

representation that is compatible with the classical beam theories, one must express its components 

u(x,s), v(x,s) and w(x,s) as 
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Figure 1: Circular hollow section member and global and local coordinate system and displacement components. 
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where (i) (.),x  d(.)/dx, (ii) the summation convention applies to subscript k, (iii) uk(), vk() and wk() 

are the functions characterizing deformation mode k (Silvestre 2007). Since the thin-walled member is 

deemed made of an isotropic elastic material (e.g., constructional steel), the constitutive relation reads 
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where (i) E, G and v are Young’s modulus, shear modulus and Poisson’s ratio and (ii) ij, ij, ij are the 

stress and strain components. As for the linear and non-linear (NL) kinematical (strain-displacement) 

relations employed, they satisfy the Love-Kirchhoff assumption and can be expressed in terms of the 

mid-plane displacement components (u, v, w) as 
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Since the system of GBT differential equilibrium equations is established by means of the Principle 

of Virtual Work, expressed by 
 
   UV  ,   (5) 
 
it is indispensable to consider (i) the member strain energy variation U and (ii) the potential of the 

applied (pre-buckling) stresses , which are given by 
 

 dxdzrdU
L t

xxxxxx   )(     dxdzrd
L t

NL

xxxx     )( 0  ,   (6) 

 
where (i) L, r, t are the member length, cross-section mid-surface radius and thickness, respectively, and 

(ii) 
0
xx  are pre-buckling longitudinal normal stresses caused by the axial forces and/or bending moments 

applied at member end sections. 
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It is assumed here that  corresponds to applied loads that (i) depend linearly on a load parameter  and 

(ii) cause only longitudinally uniform normal stress distributions, which are expresses as 
 

 0
xxjj

0
xx Eu ,   ,   (7) 

 
where 0

xxjju ,  (j=1…4) are the pre-buckling axial displacements fields associated with axial extension, 

bending and warping torsion. After introducing (2)-(4) and (7) into (6) and integrating over the cross-

section (coordinates  and z), one is led to the expressions of the five V terms, namely 
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where (i) 0

jW are stress resultant profiles (deemed uniform in this work) and (ii) the various matrix (or 

tensor) components Cik, 1
ikD , 2

ikD , Bik and Xjik are given by the expressions 
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It should be noted that Cik are stiffness components concerning generalised warping and their 

two terms stand for the cross section primary (uk()) and secondary (wk()) warping effects. Note 

also that Dik are stiffness components dealing with generalised twisting. Moreover, observe also 

that (i) matrix [Bik] is related to the cross-section in-plane deformation (transverse bending of the wall) 

and (ii) Xjik are the geometric stiffness components associated with the applied stress resultant 0
jW . 

 
2.2 Cross-Section Analysis 

The cross-section analysis comprises a set of fairly complex sequential operations, already described in 

detail by Schardt (1989) and Silvestre (2007). Nevertheless, it is worth drawing the reader’s attention to 

the following aspects, concerning the concepts and procedures involved: 

(i) The deformation modes consist of a “shell-type” mode family, an axisymmetric mode and a 

torsion mode. 

(ii) Like the conventional deformation modes of unbranched open cross-sections (e.g., Silvestre & 

Camotim 2002), the “shell-type” modes, based on the assumption of null membrane shear strains 

(x) and transverse extensions (, constitute the core of GBT-based analysis of CHS members. 

Their determination is based on the expressions 
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 which make it is possible to obtain the vk and wk displacement profiles on the sole basis of the 

warping (longitudinal) displacement profile uk, i.e., 
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 Then, by introducing (15) into (9)-(13) it becomes possible to express the tensors (stiffness matrices) 

exclusively in terms of uk. In order to uncouple the member equilibrium equation system as much 

as possible and, at the same time, obtain stiffness matrix components with clear structural meanings, 

it is necessary to perform the simultaneous diagonalization of the linear stiffness matrices Cik and Bik, 

by means of a procedure described in detail by Schardt (1989). Such procedure leads to the 

determination of the various shell-type modes  the displacement profiles of mode k are defined by 

(the expressions are different for even and odd k values) 
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 where m is the number of circumferential waves exhibited by the trigonometric functions. Note that 

(ii1) for a given m there are two similar modes with distinct order k, (ii2) m=0 corresponds to 

the axial extension mode k=1 (u1=1, v1=0 and w1=0) and (ii3) any given m>0 corresponds to 

two similar deformation modes having distinct (consecutive) orders k. Figure 2 shows the (in-

plane) deformed configurations of the first 13 shell-type modes. 
 

 

Figure 2: Shell-type deformation modes for circular hollow cross-sections. 
 
(iii) The axisymmetric mode (identified by subscript a) involves only in-plane displacements and 

accounts for the cross-section deformation due to the extension in the circumferential direction – 

thus, the corresponding displacement profile is characterized by ua=0, va=0 and wa=1 (see Fig.3(a)) 

and is associated to the mechanical properties 
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(iv) The torsion mode (identified by subscript t) has a displacement profile characterized by ua=0, va=r 

and wa=0 (see Fig.3(b)) and is associated to the mechanical properties 
 

 0ttC     







  rd

Gt
rdrGtDtt

4

9

12

3
21  02 ttD  0ttB  (19) 

 

 rdru
C

Et
X j

jj

jtt 







 

2

4

1
 .   (20) 

 

 
 (a) (b) 

Figure 3: (a) Axisymmetric (a) and (b) torsion (t) deformation modes. 
 
(v) It is worth not that, unlike in the flat-walled cross-sections (e.g., Bebiano et al. 2015) the GBT 

cross-section analysis of CHS does not need to be related to a “physical (nodal) discretization” of the 

cross-section (i.e., no node grid has to be defined before performing the cross-section analysis). 

Instead, the cross-section discretization is associated with the number of circumferential waves 

considered to define the shell-type deformation modes (i.e., the m value). 
 
2.3 Member Analysis 

After performing the cross-section analysis, it is possible to express the GBT equilibrium equation system 

in modal form as 
 

   0
,,

0
,, 

xxkjjikkikxxkikxxxxkik WXBDC    ,   (21) 
 
which, together with the appropriate end support conditions (also expressed in modal form), defines the 

member buckling eigenvalue problem to be solved. The methods that have already been employed to 

solve the GBT-based eigenvalue problem are fairly standard in structural analysis. They include (i) 

Galerkin’s method, used by Silvestre (2007) to perform the CHS member buckling analyses, and (ii) the 

finite element method, based on a beam element formulation specifically developed to perform GBT 

analyses and employed so far to analyze members exhibiting (open and/or closed) flat-walled cross-

section (Silvestre & Camotim 20034). At this point, it is worth mentioning that the GBT-based buckling 

results presented in this work have been obtained through the application of a beam finite element 

specifically developed for CHS members – the main steps and procedures involved in the formulation 

of this finite element are briefly described next: 

(i) Incorporate (6) into (5), in order to obtain the variational form of the equilibrium equation system 

(i.e., the weak counterpart of (21)), which is given by 

                                                 
4 Although this GBT-based beam finite element was developed for members with unbranched open cross-sections, its extension 

to members exhibiting arbitrary flat-walled cross-sections is fairly straightforward and has been carried out be several authors. 
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 where the integrations are now carried out over the finite element length Le. 

(ii) Approximate the modal amplitude functions k(x) by means of linear combinations of standard 

Hermite cubic polynomials (see Fig. 4), 
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Figure 4: Finite element shape functions (Hermite cubic polynomials) and degrees of freedom adopted in the formulation 

of the CHS beam finite element. 
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(iv) The corresponding finite element linear and geometric stiffness matrices are given by 
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 where the roman (i, j, k) and greek (, ) subscripts identify the deformation mode and degree of 

freedom (modal generalized displacement), respectively. 

(v) Taking into account the member support conditions, expressed in terms of the modal degrees of 

freedom (usually modal amplitude values and/or derivatives at the member ends  see (23)), perform 

the assembly procedure leading to the discrete eigenvalue problem 
 

  }{}]){[]([ 0dGK   ,   (28) 
 
 where (iv1) [K] and [G] are the member linear and geometrical stiffness matrices, (iv2) is the 

load parameter (all applied stresses/loads depend linearly on ) and (iv3) {d} is the generalized modal 

amplitude vector  its components are the (unknown) values and/or derivatives of the GBT 

deformation mode amplitudes at the member nodes (finite element end cross-sections). 
 
2.4 Illustrative Examples: Columns 

In order to illustrate the concepts and procedures just presented, the GBT-based beam finite element 

formulation is employed to analyze the buckling behavior of CHS steel (Young’s modulus E=210GPa 

and Poisson’s ratio v=0.3) simply supported (end cross-sections locally/globally pinned and free to warp) 

uniformly compressed (i.e., 0

1W ) columns with radius r=50mm and wall thickness t=1mm. The columns 

are longitudinally discretised into 12 finite elements and the GBT analyses performed include 8 GBT 

deformation modes, namely those associated with k=2, 4, 6, 8, 10, 12 + a (axisymmetric mode) + t (torsion 

mode). For validation purposes, most GBT-based results are compared with values yielded by shell 

finite element analyses carried out in the code ANSYS (SAS 2009)  the columns are discretised by 

means of refined SHELL181 element meshes, which are employed with a “full integration” option. 

 

First, the buckling behavior of single span columns is investigated. Figure 5 provides a schematic 

representation of the column discretisation and Table 1 displays (i) the critical buckling loads for columns 

with five lengths, obtained through GBT and ANSYS analyses, and (ii) the sole GBT deformation modes 

that participate in the corresponding buckling mode shape. Figure 6 shows 3-D views of the column 

buckling mode shapes. After observing the results given in Table 1 and Figure 6, the following 

conclusions may be drawn: 

(i) The critical loads yielded by the GBT and ANSYS finite element analyses are virtually coincident 

(differences below 2.5%). Moreover, there is also very close agreement between the buckling mode 

shapes provided by the two analyses (see Figs. 2, 3 and 6). 

(ii) Regardless of the column length, the buckling mode shape always coincides with a single GBT 

deformation mode, i.e., there is no coupling between the various deformation modes included in 

the analyses. This feature stems from the fact that all the GBT modal mechanical matrices, including 


ikX1 , are diagonal, which means that the GBT equilibrium equations (21) are fully uncoupled. 
 

L

P

   

 
Figure 5: Column longitudinal discretization and finite element modal degrees of freedom. 
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Table 1: GBT and ANSYS column critical buckling loads (kN) and GBT modes participating in the buckling mode. 

L (cm) GBT ANSYS (%) GBT Mode 

5 833.43 814.41 2.3 a 

10 814.99 795.26 2.5 8 

30 779.33 761.34 2.4 6 

90 554.60 541.39 2.4 4 

200 203.49 202.05 0.7 2 

 

 
L=5cm 

 

 

 

 

 
L=30cm 

L=90cm L=200cm 

 
L=10cm 

 

Figure 6: Critical buckling mode shapes obtained using ANSYS shell finite element analysis. 

 
(iii) For L=5cm, the column buckles in a critical axisymmetric mode with 4 longitudinal half-waves. 

(iv) For L=10cm and L=30cm, the column buckles in critical shell-type modes exhibiting 3 and 4 

circumferential waves (m=3 and m=4) and a single longitudinal half-wave. On the other hand, 

for L=90cm, buckling occurs in a critical shell-type mode with 2 circumferential waves (m=2) and 2 

longitudinal half-waves. Finally, for L=200cm, the column buckles in a critical flexural mode. 

 

The next illustrative example concerns the buckling behavior of simply supported continuous columns 

with three equal spans and overall lengths of L=45,90 and 200cm. As far as the support conditions are 

concerned, the columns have (i) locally and globally pinned end cross-sections that may warp freely, 

and (ii) cross-section with the in-plane displacements (v and w) fully restrained at the intermediate 

supports. Figure 7 provides a schematic representation of the three-span column discretisation and 

Table 2 gives their critical buckling loads and the sole GBT deformation modes participating in the critical 

buckling modes  Fig. 8 shows the corresponding amplitude functions k(x) and the 3-D representations 

obtained from the ANSYS shell finite element analysis. The comparison between the GBT-based 

and ANSYS buckling results prompts the following remarks: 
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Figure 7: Three span column longitudinal discretization and finite element modal degrees of freedom. 

 
Table 2: GBT and ANSYS buckling loads (kN) of the three span columns and GBT modes participating in the buckling mode. 

L (cm) GBT ANSYS (%) GBT Mode 

45 809.17 791.99 2.2 10 

90 755.70 741.34 1.9 6 

200 515.33 506.22 1.8 4 

 

     
      L=45cm             L=90cm      L=200cm 
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(a) (b) 

Figure 8: Three-span column buckling results: (a) buckling mode shapes yielded by the ANSYS analyses and 

(b) modal amplitude functions k(x). 
 

(i) As in the previous case, the GBT and ANSYS critical loads are again practically coincident 

(once more, differences below 2.5%). 

(ii) The buckling mode shapes provided by the ANSYS analyses are in close agreement with the GBT 

modal amplitude functions. Like in the single span columns analyzed previously, all buckling 

mode shapes have contributions from a single GBT deformation mode. 

(iii) In all columns, buckling occurs in shell-type modes with 2, 3 or 5 circumferential waves (m=2,3,5) 

and 3 or 6 longitudinal half-waves. 
 

In view of the virtual coincidence between the GBT and ANSYS buckling results concerning the two 

column sets analyzed, it is fair to say the GBT beam finite element formulation may be deemed validated. 
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3. Buckling Analysis of CHS Frames 

The overall linear and geometric stiffness matrices of a given structural system are obtained by 

“assembling” their finite element counterparts, using the well-known “incidence matrix” concept. 

Although this constitutes a fairly trivial procedure for isolated members (each node shared by two 

equally oriented elements), its extension to frames poses several difficulties. Indeed, since the finite 

elements (members) connected at a frame joint exhibit different orientations (see Fig. 9(a)), it becomes 

necessary to account for all the effects stemming from the need to ensure compatibility between the 

degrees of freedom of the connected member end cross-sections (e.g., nodes ar+1 and br in Fig. 9(b)). 

In order to overcome these difficulties, (i) it is necessary to “transform” the modal degrees of freedom 

into nodal ones (generalised displacements of the point where the joint is deemed materialized), by 

means of a “joint element” concept (see Fig. 9(c)), and (ii) constraint conditions must be imposed to 

enforce displacement and rotation compatibility at the connected end sections  more details can be 

found in the works of (i) Basaglia et al. (2008, 2009), for frames built from open-section members, 

and (ii) Basaglia & Camotim (2010), for frames built from rectangular hollow section (RHS) members. 
 

frame joint

member A

r-1

r
r+1 r+2

a
r

r
b

a
r+1

b
r+1

conventional d.o.f

GBT d.o.f

joint elementmember B

 
 (a) (b) (c) 

Figure 9: (a) Frame joint, (b) longitudinal discretisation of the connected members and (c) “joint element” concept. 

 
The above constraint conditions (denoted here byi) depend on the joint configuration and involve 

several points of the connected member end sections, where the joint is deemed materialized – these 

conditions read 
 

      0 k

T

i   ,   (29) 
 
where the vector {} components are either (i) warping functions uk() or (ii) wall flexural functions 

wk(). The particular constraint conditions considered in this work are addressed in the next section. Once 

all member support and joint compatibility conditions are enforced, it is a straightforward matter to obtain 

the frame linear ]
~

[K  and geometric ]
~

[G  stiffness matrices, which are expressed in terms of “mixed” 

degrees of freedom (GBT modal and “conventional” nodal ones). The joint compatibility is incorporated 

into the stiffness matrix through the operation 
 

      ][][][][]
~

[]
~

[  GKGK T   ,   (30) 
 
where (i)  is the frame load parameter, (ii) the tilde () identifies the stiffness matrices with joint 

compatibility conditions and (iii) the compatibility matrix [], defined by 
 

  }
~

]{[}{ dd   ,   (31) 
 
contains the joint modal displacement values  }

~
{d  is a “mixed” vector combining nodal generalised 

displacements and modal GBT degrees of freedom. 

 



 12 

After determining the frame total stiffness matrix ( ]
~

[K + ]
~

[G ), it is necessary (i) to solve the buckling 

eigenvalue problem and (ii) to transform the nodal degrees of freedom (joint generalised displacements) 

back into GBT ones, through the operation defined in (31)  this last procedure makes it possible to 

obtain a fully modal representation of the frame buckling modes (i.e., identify and quantify the individual 

contributions of the various member deformation modes), a feature providing a decisive contribution 

towards a more in-depth understanding of the mechanical aspects involved in the local and global 

buckling behavior of thin-walled frames. 
 
At this stage, it is worth noting that the well-known Lagrange multiplier technique (e.g., Zienkiewicz & 

Taylor 2000) provides an elegant and rather efficient alternative to include the aforementioned constraint 

conditions into the frame buckling analysis (Basaglia 2010)  one is then led to the eigenvalue problem 
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where i is the Lagrange multiplier associated with the constraint condition i. 
 
3.1 Constraint Conditions for a Joint Connecting Two Orthogonal CHS Members 

Consider the unstiffened joint schematically depicted in Figure 10(a), connecting two identical 

orthogonal CHS members. Whenever these members experience wall bending, the shell finite 

element model shown in Figure 10(b) provides evidence concerning the displacement compatibility 

conditions that must be satisfied at the intersections of the circumferences C1C6, C2C5 and C3C4 of 

the connected member end cross-sections  these conditions, as well as the constraint equations 

adopted to simulate them (approximately), are individually addressed next: 

(i) Circumferences C1 and C6. These conditions concern the intersection of the circumferences C1 and 

C6 (point III in Figs. 10(a) and 10(c)), i.e., the equality between the transverse bending displacements 

w(xIII,III) of one member and the warping displacements u(xIII,III) of the other. Therefore, 

two constraint conditions ( 1

III ) involving points IIIA (point III in member A) and IIIB (point 

III in member B) must be imposed  they read 
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(ii) Circumferences C2 and C5, C3 and C4. These conditions concern the equality between the 

transverse bending displacements (ii1) at the intersection between circumferences C2 and C5 

(points II and II’ in Fig. 10(c)) and (ii2) at the intersection between circumferences C3 and C4 

(points I and I’ in Fig. 10(a)). Thus, constraint equations (ii1)
2

II  involving points 
AII ,

AII  , 
BII  and 

BII   (points II and II’ in the members A and B) and (ii2) 
2

I  involving points 
AI ,

AI , 
BI  and 

BI  

(points I and I’ in the members A and B) must be imposed  they read 
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Figure 10: Unstiffened joint connecting two orthogonal CHS members (CHS knee joint): (a) overall configuration and 

definition of the relevant circumferences, (b) shell finite element modeling of the end cross-section displacement 

compatibility and (c) location of the end cross-section points where the joint is deemed materialized. 

 
3.2 Illustrative Example: “L-shaped” Frame 

In order to validate and illustrate the application and capabilities of the proposed GBT-based beam finite 

element approach to analyze frames, numerical results concerning the elastic buckling behavior of the 

“L-shaped” frame depicted in Figure 11 are presented and discussed next. The frame is formed by two 

orthogonal CHS steel (Young’s modulus E=210GPa and Poisson’s ratio v=0.3) members A and B 

(LA=LB=60cm), with radius r=50mm and wall thickness t=1mm, and acted by two equal axial loads P 

The two members are connected by an unstiffened knee joint and have locally and globally pinned end 

cross-sections that may also warp freely. As was done for the isolated columns, most GBT-based results 

(frame critical buckling loads and mode shapes) are compared with values yielded by shell finite 

element analyses. It is worth noting that the geometry of this frame was chosen in order to ensure a high 

susceptibility to local deformations (wall flexure) in both members and at the joint vicinity. 
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              Joint Detail 

Figure 11: “L-shaped” frame formed by orthogonal CHS members: geometry, loading and support boundary, and joint detail. 

 
While Figure 12 provides the member A and B modal amplitude functions defining the frame 

critical buckling mode, Figure 13 displays the corresponding configurations obtained by means of the 

(i) GBT-based beam finite element analysis and (ii) ANSYS shell finite element analysis  it should be 

stressed that the former is a 3-D representation of beam finite element results. 
 
First of all, it should be pointed out that (i) the GBT and ANSYS frame critical buckling loads are virtually 

coincident (Pcr.GBT=498.58kN and Pcr.ANSYS=482.70kN  3.3% difference) and it (i) the degrees of freedom 

numbers involved in the two analyses are orders of magnitude apart: 46500 (ANSYS) and 500 (GBT  10 

deformation modes and 12 beam finite elements in each member). Moreover, the comparison between the 

two buckling mode shape representations prompts the following remarks: 

(i) The 3-D views of the frame buckling mode shape shown in Figure 13 are remarkably similar. In 

addition, there is also a very close agreement between the ANSYS buckling mode shape and the 

GBT modal amplitude functions displayed in Figure 12  note, however, that the latter 

representation provides deeper insight on the mechanics of frame buckling. 

(ii) Unlike the isolated columns previously analyzed, the frame critical buckling mode involves 

contributions from various deformation modes. This stems from the fact that the GBT equilibrium 

equations are coupled, due to incorporation of the joint displacement compatibility conditions. 
 
 

 

 

 
Figure 12: “L-shaped” frame GBT modal amplitude functions k(x) of members A and B. 
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Figure 13: “L-shaped” frame buckling mode shape representations yielded by the ANSYS and GBT analyses. 

 

(iii) The frame critical buckling occurs in a shell-type mode that (iii1) involves both members equally 

(iii2) combines participations from the GBT deformation modes 5, 9 and 13 (see Fig. 2). Mode 5 

provides the clearly dominant contribution, which has maximum values in the close vicinity 

of each member mid-span. Moreover, there is also a non-negligible contribution from mode 13, 

located in the neighborhood of the joint and exhibiting a maximum value at the joint itself. 

Finally, there is still a barely detectable contribution from mode 9 that has a maximum value 

near the joint and extends a bit further than its mode 13 counterpart  about 1/3 of the length. 

(iv) The insight on the frame critical buckling mode characteristics presented in the previous item 

could only be acquired due the unique modal features exhibited by the GBT analyses  indeed, it 

would be virtually impossible to acquire such a rich insight on the frame buckling mechanics through 

the ANSYS shell finite element results. 
 
 
4. Conclusion 

The paper reported the results of an ongoing investigation on the use of a GBT-based beam finite element 

approach to analyze the buckling behavior of thin-walled steel frames built from CHS members. 

After a very brief review of the most relevant concepts involved in performing a GBT buckling analysis 

in CHS members, with particular emphasis on the cross-section analysis, the formulation and 

numerical implementation and application (to isolated columns) of a GBT-based beam finite element 
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were presented and discussed. Then, the paper turned its attention to frames with CHS members and 

described the procedures involved in obtaining the frame overall linear and geometric stiffness matrices, 

which must incorporate the effects stemming from the presence of the frame joints. Next, constraint 

conditions were established to enable modeling the displacement compatibility at the walls of the CHS 

unstiffened knee joint. Finally, the application and capabilities of the developed GBT-based beam finite 

element approach were illustrated by means of the presentation and discussion of numerical results 

concerning the buckling behavior of an “L-shaped” frame with axially compressed members. For 

validation purposes, these results were compared with values yielded by shell finite element analyses 

carried out in the code ANSYS. An excellent agreement was found, despite the large difference between 

the numbers of d.o.f. involved in the two analyses. It seems fair to argue that the numerical results 

presented, concerning both the isolated columns and the frame, provide clear evidence that GBT-

based beam finite element approach to perform buckling analyses of CHS members and structural 

systems is as (i) numerically efficient and (ii) structurally illuminating as its predecessors, valid for 

members and structural systems with flat-walled cross-sections. 
 
The authors are currently working on the establishment and validation of constraint conditions that 

make it possible to model the wall displacement compatibility at joints connecting either two non-

orthogonal or more than two CHS members. Once this (difficult) task is completed, it will become 

possible to apply the developed GBT-based beam finite element approach to the buckling analysis of a 

much wider variety of CHS structural systems, including space (3D) frames and plane/space trusses. 
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