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Abstract: 

The trapezoidal box (tub) girder is frequently used for horizontally curved highway bridges 

because of its high torsional rigidity.  The developed theory of combined bending and torsion of 

horizontally curved thin-walled girders is based on the assumption that the girder cross-section 

retains its original shape.  To achieve this, the girder must be braced by means of sufficiently 

closely spaced diaphragms, which are supposed to be infinitely stiff.  The bracing frequently 

employed in the form of transverse lattice systems does fulfill this requirement to some degree.  

Analytical studies, however, have shown that a box-girder subjected to torsional loading undergoes 

cross-sectional deformation.  This gives rise to longitudinal stresses due to distortional warping 

and transverse bending stresses due directly to deformation of the cross section.  These stresses 

tend to reduce the advantage anticipated from the high torsional rigidity of the box-girder.  A 

means and method of evaluating these stresses have been developed.  It has been demonstrated 

that the developed procedure is satisfactory in meeting the specification requirements to check 

these stresses. 

1. Introduction 

Intermediate internal cross-frames were once a very obscure topic.  In fact, the latest edition of 

AASHTO Standard Specifications for Highway Bridges (AASHTO, 2002) stipulates that 

“intermediate cross-frames are not required for steel box girders designed in accordance with this 

specification.”  They are, however, permitted to be installed on a temporary basis for handling and 

erection purposes.  The Guide Specifications for Horizontally Curved Highway Bridges 

(AASHTO, 1980) gave a formula to compute the cross-frame spacing with a maximum limited to 

7.5 m (25 feet).  It appears that the formula is based on a regression analysis with limited 

parameters.  Article 6.7.4.3 (AASHTO, 2014) requires that intermediate internal diaphragms or 

cross-frames be provided for all single box sections, horizontally curved sections, and multiple 

box sections in cross-sections of bridges not satisfying certain geometric proportions.  The spacing 

of the internal diaphragms or cross-frames is specified not to exceed 12 m (40 feet).   In the 

Commentary of the Article, transverse bending stresses due to cross-section distortion are 

explicitly limited to 140 MPa (20 ksi) and the longitudinal warping stresses (torsional warping and
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distortional warping) due to the critical factored torsional loads are not to exceed approximately 

ten percent of the longitudinal stresses due to major-axis bending at the strength limit state.  There 

is, however, no guideline is given as to what type of analysis technique is to be used to meet these 

requirements.  It appears that a modern finite-element analysis is perceived to be a cure-all for 

structural analysis problems.  As the finite-element analysis gives only the total stress, it becomes 

problematic to discern whether a design meets the specification requirements that the stress due to 

an action is to be within the prescribed percentage of the longitudinal stresses due to the major-

axis bending at the strength limit state. 

 

A lateral bracing system of a Warren truss with posts is usually installed at the top flange level of 

an open-top tub girder to form a quasi-box, thereby increasing the torsional rigidity during 

construction.  The lateral bracing system is subjected to the noncomposite dead load as shown in 

Fig. 1.  A general method of computing forces in the lateral bracing system was not available until 

Fan and Helwig (1999, 2002) presented a method.  AASHTO (2014) recognizes this method in 

the Commentary of Article 6.7.5.3.  Kim and Yoo (2006a, 2006b, 2009) refined and extended this 

method, including the interaction of top lateral and internal cross-frame bracing systems as shown 

in Figs. 2 and 3, and a quantitative guidance to the effect of installing the cross-frames at one-, 

two-, and three-panel spacing.  In light of the modern industry preference for installing a few heavy 

intermediate internal cross-frames, such an information should be useful.  It is of interest to note 

that the member force diagram of the lateral bracing is similar to the vertical bending moment 

diagram as the member force is controlled by shortening of the member primarily due to the 

flexural action, although the bracing is installed to increase the torsional rigidity.  Kim and Yoo 

(2006b) also report that the member forces developed in the single diagonal members are 25-30 

percent higher in the case when internal cross-frames are placed at odd numbered panel spacing 

than when it is even.  Such a seemingly strange behavior pattern has been observed by Abbas et 

al. (2006) for corrugated web I-girders under in-plane loads when the number of web panels is odd 

or even.  Once the concrete deck is hardened, the lateral bracing system is no longer needed.  

However, the stresses develop in the members of the bracing system are locked in.  The skewed 

members of the intermediate internal cross-frame (K-frame is more common as compared to X-

frame) are subjected to additional stresses due to distortion of the cross section due to 

noncomposite dead loads, live loads, and composite dead loads.  Since Kim and Yoo have 

thoroughly examined the stresses due to noncomposite dead loads, this paper will focus on the 

distortional aspect. 

 

Wright et al. (1968) presented an analytical procedure to determine the distortion induced stresses 

of straight box-girders known as the BEF (Beams on Elastic Foundation) analogy.  Their model 

employed the vertical deflection of a web as a single degree of freedom measuring the distortion 

of a box section.  Despite their claim to be otherwise, the developed procedure is very complex 

and is not easy to follow.  It appears that they relied heavily on the solution of a fourth order 

ordinary differential equation with constant coefficients, which implies that their solution cannot 

be directly applied to bridge girders with variable cross-section properties.  In order to alleviate 

the situation, Heins and Hall (1981) prepared a designer’s guide to steel box-girder bridges as a 

Bethlehem publication with a series of figures and charts.  In Europe, Dabrowski (1968, 1972) 

published independently a book on curved thin-walled girders, theory and analysis, which includes 

a chapter on box-girder distortion.  His model uses the distortion angle as the single degree of 

freedom measuring the degree of cross-section distortion.  
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Figure 1: Forces in bracing members and top flanges (a) longitudinal components, (b) lateral 

components (adopted from Kim and Yoo, 2006a) 

 

 

 
 

Figure 2: Interactive forces between top flanges and bracing members (adopted from Kim and 

Yoo, 2006b) 

 

Despite the fact that the matrix structural  analysis  was  well  established  at  the  time,  the  early  

two researchers of  box girder distortion did not take advantage of this superb method.  Rather, 

they relied heavily on the solution of the fourth order differential equation with constant 

coefficients.  In order to alleviate the difficulty, they included copious charts and tables. 
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Figure 3: Assumed lateral displacements (internal K-frames) (a) Top flanges and lateral bracing 

members, (b) Lateral deflection of top flange (adopted from Kim and Yoo, 2006b) 

 

The effectiveness of such charts and tables is questionable as none of the aids can be applied 

directly to the modern-day continuous curved box-girder bridges with variable cross-section 

properties.  Park et al. (2003, 2005a, 2005b) and Kermani and Waldron (1993) developed beam 

elements with distortional degrees of freedom.  Their programs cannot accommodate elastic 

constraints though.  This can be a serious limitation.  As it will be shown later, distortion can be 

controlled by diaphragm or cross-frame spacing and its stiffness.  In fact, the stiffness of a typical 

cross-frame placed in a box-girder is only a very small fraction of that of a solid plate diaphragm 

normally placed at supports, thereby yielding considerable distortion. 
 

Bridge design specifications (AASHTO, 2014; Hanshin, 1988) mandate the designer to keep the 

torsional and distortional stresses under the limiting values without any guidelines offered.  The 

procedure that is to be detailed herein is to apply the concept of the BEF analogy directly using 
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two relatively simple computer programs.  The static analysis of horizontally curved box-girders 

as the prerequisite to the distortion analysis is carried on a program CVSTB based on the exact 

curved beam element stiffness matrix Yoo (1979) developed.  The moment output is used as an 

input in an ordinary two-dimensional plane frame analysis program.  Examples (Yoo et al., 2015) 

demonstrate the reliability of the procedure.  As all numerical calculations are carried out by the 

computer programs, the procedure is applicable to any combinations of loadings and boundary 

conditions, cross-sectional property variations, and arbitrary combinations of span lengths.  Since 

detailed derivation of the governing equation of the BEF analogy is given in Yoo et al. (2015), this 

paper will present an alternate method of deriving the same governing equation by the concept of 

the minimum potential energy principle. 

         

2. Derivation of the fundamental equations for distortion 

There are many properties in distortional warping defined similarly to those for torsional warping.  

The warping functions are 

    1
0

s

Dw s s ds C     distortion (1a) 

    1
0

s

Tw s s ds C     torsion (1b) 

where   is the perpendicular distance measured from the distortion center and shear center to a 

point on the cross section, respectively; 1C   integral constant; s   perimeter coordinate. 

The warping constants are 
2

Dw D
A

I w dA   distortion (2a) 

2

Tw T
A

I w dA   torsion (2b) 

where A   cross-sectional area. 

The warping moments are 

D DwM EI     distortion (3a) 

T TwM EI    torsion (3b) 

where  E = modulus of elasticity;   distortion angle;    torsional rotation. 

The warping normal stresses are 

Dw D
Dw

Dw

M w

I
    distortion (4a) 

Tw T
Tw

Tw

M w

I
    torsion (4b) 

 

Consider a singly symmetrical trapezoidal section shown in Fig. 4 where a = length of the overhang; 

b = .distance between top flanges; c = width of the bottom flange; h = height of the section; D = 

distortion center;    parameter to determine the location of the distortion center.  For a singly 

symmetrical cross-section, the distribution of the distortional warping function is anti-symmetrical, 

as shown in Fig. 4, and the distortional warping function is zero on the axis of symmetry.  The 

distortional warping function at the top of the web of the general trapezoidal box section is given 

by Dabrowski (1972) and Yoo et al. (2015) as 
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  

2

1
2

D

hb c
w

b c b c


 
  (5) 

For a rectangular box section whereb c , Eq. (4) yields  1 / 4 1Dw bh     , which is the same 

as that presented by Nakai and Murayama (1981). 

 

It can be shown (Yoo et al., 2015) that 

 
 

 , D

d z
w z s w s

dz


   (6) 

It follows immediately that the distortional normal stress is given by 
2

2Dw D

w d
E E E w

z dz


 


  


  (7) 

Since the distortion does not produce any additional axial force zN , or bending moments

 and x yM M , the following equations must be met: 

0z Dw
A

N dA    (8a) 

0x Dw
A

M ydA    (8b) 

0y Dw
A

M xdA   (8c) 

 

Because Dw  is antisymmetric with respect to the y axis, Eqs. (8a) and (8b) are automatically 

satisfied.  

 

Eq. (8c) gives the location of the distortion center D for the general case of open closed cross-

section shown in Fig. 4.  Let 1 0,  ,  ,  ,  and u u u v lA A A A A be the areas of the steel top flange, equivalent 

entire upper deck, top deck excluding overhangs, web, and lower steel flange, respectively.  uA

may be replaced by  0 1 2 / .uA a b   Using Eq. (8c), the parameter   is determined as   

2

1

2
1 6 2

2

u u v v

l v v

a
b A A A b A c

b

Ac A c A b


  
     

   
 

  (9)  

Eq. (9) can be used for other cases of open-closed or closed sections.  For closed sections, let the 

overhang length a be equal to zero and for rectangular box sections, let c equal to b in Eq. (9). 

 

In the analysis of the lattice-type cross-frame shown in Fig. 5, the perimeter members are 

conservatively assumed not to participate in resisting the lateral displacement.  The cross-sectional 

deformation occurs as the result of extensional deformation of the inner members.  The stiffness 

1K  of a cross-frame is defined as that value of the product lS h  to which a deformation angle   of 

unit magnitude corresponds.  The value of the cross-frame stiffness can be determined by 

considering the energy equations.  The internal energy is given by 2
11/ 2 K .  The external energy  
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is equal to 1/ 2 /2l l lS u S h  while the other components of 1 2,  ,  and uu v v  must be zero.  

Hence 2
11/ 2 1/ 2 lK S h , so that  

Figure 4: Distortional warping function in trapezoidal composite section (adopted from Yoo et al., 

2015) 

 

 

 

Figure 5: Deformation of cross-frame (adopted from Yoo et al., 2015) 
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where Dl  is the distance between the adjacent cross-frames.  The “smear out” operation may be 

conducive to construct the governing differential equation, it is not recommended as this operation 

destroys the detailed picture of the effect of placing internal cross-frames. 

 

Here, 1K , the stiffness of the internal cross-frames against the distortion can be estimated as follows 

(Nakai and Yoo, 1988; Yoo et al., 2015): 

For a plate type 

1 DK Gt bh          (rectangular box)   
 

1
2

DGt b c h
K


    (trapezoidal box) (11a) 

For a truss type 

 X type 
2 2

1 3

2 b

b

EA b h
K     (rectangular box)   

2 2

1 32

b

b

EA b c h
K


   (trapezoidal box) (11b) 

 K type 
2 2

1 32

b

b

EA b h
K       (rectangular box)   

2 2

1 32

b

b

EA c h
K             (trapezoidal box)  (11c) 

For a frame type 

1

0

24 vEI
K

h
   (11d) 

where G = shear modulus; Dt thickness of diaphragm; 0A cross-sectional area of truss 

member; b  length of truss member.  In Eq. (11d), 0 can be evaluated from Eq. (13) provided 

that the moment of inertia of the web vI  is determined by taking into account the effective width 

mb according to the spacing of the internal diaphragm D  as follows: 

/ 3   for / 3

     for / 3

D

m

D D

d d
b

d


 


  (12) 

Here d is the smaller of the width b or the height h of the box. 

In a similar manner, the stiffness of the box (considered as a closed frame) of unit width is 

1 0

0
2

2 3
24

  with  1

6

u l

v v

u l u l

v v

I Ib

EI h I
k

I I I Ihh

I b I







  




  (13) 

where uI   moment of inertia of the top deck; lI   moment of inertia of the bottom flange  

Timoshenko (1955) shows the derivation of the expression of  by a frame analysis.  

Wright et al. (1968) stated that “Because the behavior of the box cell proves to be insensitive to 

minor variations in diaphragm (cross-frame) stiffness, it is permissible to use the equation 

developed for a rectangular box for a trapezoidal box.”  As will be shown later in the Major design 

example, the frame stiffness, 1k is in the order of 1/1,000 of the cross-frame stiffness, 1K .  

Doubling or tripling 1k   hardly affects the analysis results, thereby justifying the assumption 

employed by Wright et al. (1968).  
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Considering equilibrium of torsional moments on a curved infinitesimal, one obtains immediately 

  or  x xz z
z z

M MdM dM
m m

dz R dz R
        (14) 

 

Because of the non-collinearity of the resultant forces due to vertical bending, radial forces act 

upon the webs and flanges.  Reflecting these forces, Dabrowski (1972) gives the following 

expression for the applied torque and corresponding angular distortion:   

*

1

1 x
z

M
m

k R
  (15) 

with 

2
1

0


 


   (16) 

where 

2

1

7 3 1

10 2

u l u u
v

x x

h h A h h
h t

I I



     (17) 

and 

   

2

2

3 2 3 3 2 3

15
6

l u
u l u l

v vv

x u l u l

v v

I I
h h b h h h b h

I Iht

I I I I Ih

I b I



    
        

    
      

     
      

  (18) 

It appears that Dabrowski [4] overlooked the negative sign in Eq. (15) in his original derivation. 

 

The strain energy U  due to the distortional warping stress Dw  is 
2 2

2 2

20 0 0

1 1

2 2 2
Dw D

A A A

w E d
U dAdz dAdz w dA dz

E z dz





  
     

   
        (19) 

where  is the span length of the girder.   Substituting the distortional warping constant, Eq. (2a),  

Eq. (19) reduces to 
2

2

202

DwEI d
U dz

dz


 
  

 
  (20) 

The energy equation for the warping shear flow in the bottom flange per unit width and the 

corresponding distortional angle is 

2
1

0

1

2
k dz

 
 
 

   (21) 

Likewise, the loss of potential energy associated with the external distributed torsional moment 

can be summed assuming a unit displacement as  

0 2

xz Mm
dz

R




 
  
 

   (22) 

The total potential energy functional is 
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2
2

2 * 2
1 120 0 0

1

1 1

2 2 2

n
Dw x

z i

i

EI Md
U V dz k dz m dz K

Rdz


   



    
           

    
    (23) 

Note the discrete nature of the cross-frames in Eq. (23).  Applying the Euler-Lagrange differential 

equation to Eq. (23) yields 

 

*
1

iv x
Dr z

M
EI k m

R
        (24) 

The relationship between zm  and *

zm  is given by 

*

02

z
z

m hc
m

A
  (25) 

where 0A  is the enclosed area of the box section. 

 

3. Transverse bending 

Once,   is determined, the values of the moments at the corners are determined by 

1
1 1

4
6

u l
s

u l
u l

v

I Ik
m

I Ih
I I

b I



 
 
   
   
 

  (26a) 

1
2 1

4
6

l u
s

u l
u l

v

I Ik
m

I Ih
I I

b I



 
 
  
   
 

 (26b) 

 

When the moments of inertia of the upper and lower flanges do not differ more than 50 percent, 

the transverse bending moments can be computed simply by 1 / 4k  without incurring more than 

0.3 percent error.  In the case of a non-composite trapezoidal box-girder, the absolute maximum 

transverse bending moment occurs at the lower end of the web ( 2 12 / 4sm k ).   The distortional 

angle as a major parameter for transverse bending is inconsequential in modern box-girders 

designed following Article 6.7.4.3 (AASHTO [9]).  The maximum combined distortional angle is 

used to determine the cross-frame member force using Eq. (11c). 

 

4. Analogy 

Eq. (24) is the governing differential equation of the distortional behavior of a box-girder.  

However, it is highly impractical to rely on the solution of Eq. (24) for the distortional analysis as 

most practical curved composite girders vary their cross sections along the girder length (non-

prismatic girders) and non-rigid (yielding) internal cross-frames are installed along the span.  And 

it is also likely that the loading will change along the girder.  One of the readily available 

alternatives is to borrow the concept of the analysis of a beam on elastic foundation, of which 

solution is provided by the matrix (or finite-element) method.  The governing equation for the 

beam on elastic foundation is 
ivEIy ky p  (27) 
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The analogies between the variables in Eqs. (24) and (27) are given in Table 1. 

 

Table 1: Analogy between BEF and distortion (adopted from Yoo et al., 2015) 

Variables BEF Distortion 

Displacement Vertical deflection (m), y Distortion angle (rad),    

Rigidity EI (N-m2) *
DwEI EWA  (N-m4) 

Moment M EIy (N-m)  
Dw DwM EI    (N-m2)  

Load Distributed load, p (N/m) Distributed torque, 
*
zm  (N-m/m) 

Distributed resistance Foundation constant, k (N/m2) Frame stiffness, 1k  (N-m/m) 
Concentrated resistance External spring, K (N/m) Diaphragm stiffness, 1K  (N-m) 

 

5. Modeling 

Although the structural response of torsion and distortion does not occur sequentially in real 

structures, it is conducive to consider that way for an easier understanding of the phenomenon of 

distortion of box sections.  The developed procedure is equally applicable to straight box-girders 

by setting the radius of curvature R a very large value.  As distortion is induced by the torsional 

moment, an elastic analysis of the structure on the basis of the assumption that the structure retains 

its original cross-section shape is a prerequisite for the distortion analysis.  It is noted that the static 

analysis of horizontally curved box-girders can be performed exactly by CVSTB (Yoo, 1979).  

Once the vertical bending moments are determined from the static analysis, these moments are 

transformed into equivalent torsional moment as per Eq. (14) and are used as loading terms in the 

plane-frame analysis (BEF analogy).  In the case of straight box-girders, no static analysis is 

required.  A plane-frame analysis program (BEF analogy), however, is not developed using a 

stiffness matrix based on the solution of the homogeneous governing differential equation (Eq. 24), 

a reasonable grid refinement appears to be needed.  Experience has shown that a minimum of four 

elements between two adjacent cross-frames is required.  The foundation modulus is reflected in 

the plane-frame program by a series of springs at each node (with the spring constant being 

simulated by an equivalent truss element) and the stiffness of an internal cross-frame is reflected 

likewise at the cross-frame location. 

 

Although a minimum of four elements is required between the two adjacent cross-frames, it is 

preferable to have more elements for accurate evaluation of the distortional warping moment.  If 

the distributed cross-sectional resistance ( 1k ) is simulated by a series of concentrated truss 

elements, any increase of the number of elements accompanies the concomitant increase of the 

number of nodes and members.  For a continuous-span bridge, this increases the input data 

preparation substantially.  There seems to be an alternative.  Since the load effect diminishes rather 

quickly in beams on elastic foundation, treat each span as an isolated entity with a proper set of 

boundary conditions reflecting the continuity.  For example, the boundary conditions for the end-

span should be roller-clamped.  Likewise, the interior-span can be simulated with a clamped-

clamped condition.   Sample calculations indicate an error less than 5 percent.  If this error is 

unacceptable, the differences of the distortional warping moments from the end-span, and the 

interior-span can be readily adjusted at the common interior support by a simple comparison of 

the output.  Since it is highly unlikely that the cross-frame stiffness is so high that there will be 

practically no distortional angular deformation at the cross-frame location, the maximum 
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distortional warping moment will always occur at the interior support(s) as will be shown later in 

the Major design example.  Hence, this adjustment can be made readily. 

 

6. Major design example 

An example design of a horizontally curved box-girder bridge was included in the Guide 

Specifications (AASHTO, 2003), and the same example has been re-examined in NCHRP Project 

12-52 (Kulicki et al., 2005).  The same example design is revisited herein to demonstrate the 

derived procedure.   The structure is a three-span-continuous bridge with a radius of curvature 

213.4 m long to the center of the bridge.  The typical bridge cross-section and the plan are shown 

in Figs. 6 and 7, respectively.  Since the girder is non-prismatic, any analysis aids are not likely to 

be applicable and a finite-element analysis, other than that having a curved beam element with 

seven degrees of freedom, is not likely to be able to isolate the warping normal stress component 

from the stress output.  A curved beam element given by Yoo (1979) can be used for this analysis.  

Section properties are given in Tables 4 and 5.  The node and section numbers in these tables are 

represented in Fig. 7. 

 

Figure 6: Box-girder bridge cross section (1 in. = 25.4 mm; 1 ft. = 0.3048 m) 

6.1 Normal stresses due to warping torsion 

Since the procedure to evaluate the normal stresses due to warping torsion is detailed elsewhere 

(Galambos 1968; Heins, 1975; Nakai and Yoo, 1988), only the end results are presented.   

Although it is generally perceived that the warping torsion is negligibly small in closed cross-

sections, it would be interesting to show just how small the warping normal stress is in the outside 

girder (the girder farther away from the center of curvature) of the example bridge shown in Fig. 

7.  The equivalent thickness of the Warren type single diagonal system is given by (Kollbrunner 

and Basler, 1969) 

 

3 Lanes @ 12ʹ-0ʺ 

t = 9 1/2ʺ Slope = 5 % 

Typ. Section at Interior 
Cross-frame 

4ʹ-0ʺ 10ʹ-0ʺ 12ʹ-6ʺ 10ʹ-0ʺ 4ʹ-0ʺ 

Roadway = 37ʹ-6ʺ 

Out to Out = 40ʹ-6ʺ 

Angles 

Typ. Plate Diaphragm at 
Bearings 
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Figure 7: Node and section numbering scheme (1 ft. = 0.3048 m) 

 

*

3 32

3d f

E ab
t

d aG

A A





  (28) 

where 200E   GPa, 77G   GPa, a   cross-frame spacing, 4.96 m, b   width of the tub at the 

top of the web, 3.05 m, and d   that is computed to be 5.83 m.  It is noted that the placement of 

a single diagonal bracing increases the St. Venant torsional constant 3,174 and 227 times that of 

the unbraced section for Section 1-1 and 5-5, respectively.  Values for live load (HL-93) include 

33% of dynamic load allowance as per Article 3.6.2 (AASHTO, 2014).  A distribution of a live 

load factor of 1.467 is incorporated for live load moments and bimoments as per Article 4.6.2.2.2 

along with a multiple presence factor of 0.85 as per Article 3.6.1.1.2 (AASHTO, 2014).  As it 

appears that the cumulative steel stress at the bottom of the box-girder at the pier is most critical, 

both bending and warping normal stresses are evaluated at that location.  The normal stresses due 

to bending and torsional warping are tabulated in Table 2.  Sample calculations for both stresses 

are shown below: 

* 

* 

* 

* 

36 3

8 

40 42 

35 3

7 

39 41 

Girder G2 

Girder G1 

R= 700 feet 

* 

* 

* 

* 

8 10 12 14 

7 9 11 13 

1 

1 

Girder G2 

Girder G1 

R= 700 feet 

7 

7 

4 
5 34 

6 

6 

* Bearing Locations 
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  

           1.25 2,780 1.5 2,920 1.011.25 20,580 .9858 1.75 10,699 1.055
    

.1827 .1893 .2016

     = 278,700kPa= 279 MPa ( 40.5 ksi)

b

M y

I


 

    
    

  

  



  (29) 

  

           1.25 135 1.5 8.64 .05401.25 146 .7160 1.75 32.3 .599
    

.03929 .02452 .03885

    3,697 kPa (  0.536ksi) or +900 kPa (+0.13 ksi)

     (compression at the innert corner of the bottom flange)

n

w

w

BM W

I


 

    
  

  



 (30) 

where b  =  bending normal stress, w  =  warping normal stress,   =  load factor, M =  bending  

moment, BM = bimoment, nW  = normalized warping function, and wI  = warping torsion  constant. 

As can be seen from Table 2, this example bridge meets AASHTO (2014) requirements of C6.7.4.3.  

Since the exterior girders are continuously braced by the deck and or the lateral bracing and there 

is no torsional load when the bridge is fully loaded, it would seem reasonable to take only 50 

percent of the bimoment computed for the isolated exterior girder.  The parapet still creates the 

highest ratio of the warping to bending stress ratio due to its highly unusual loading of a high 

torque with a relatively low vertical load.  However, the warping stress is less than 1% of the 

specified yield stress; it may be ignored.  The warping stress due to the dead load may be of concern.  

The curvature effect can best be represented by the subtended angle of each span.  The center span 

of the example bridge adjusted according to Article 4.6.1.2.4b divided by the radius yields a 

subtended angle of only 13.75 degrees.  It has been reported that bridges with subtended angles 

well over 90 degrees have been built, and the torsional effects are getting progressively severe 

with increasing subtended angles.  For example, the vertical bending moment increased by 1.7% 

whereas the bimoment increased 241% in the case of dead load analysis in the example bridge by 

decreasing the radius of curvature 50% (or doubling the subtended angle).  With this examination, 

it can be concluded that the warping normal stress cannot always be ignored but must be checked 

for bridge girders with large subtended angles, particularly for the non-compact condition under 

dead load. 

 

Internal cross-frames will not reduce the warping normal stresses.  External bracings between 

boxes are effective.  Although external bracings are eschewed in the construction industry, because 

of the added construction cost and the adverse effect against fatigue, they may offer unique 

solutions to remedy the high warping stresses.  Kim and Yoo (2006c) studied the effectiveness of 

the external bracings.  In addition to the debate, whether a single box-girder ramp is a facture-

critical structure or not, the inability to install external bracings may limit the subtended angles of 

the spans in the ramp structure. 
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Table 2: Moments and bimoments at interior support (adopted from Yoo et al., 2015) 

Loading 

Case 
Moment Bimoment b   w    /  %w b   

Dead Load -20,580  +146.0     -138.8  -3.33   2.40 

Parapet  - 2,780  -135.0       -18.5        -0.37   2.00 

FWS   -2,970      +8.64       -23.4  +0.03  -0.13 

Live load -10,699  +32.3       -98.0 +0.87  -0.89 

Total       -278.7 -3.70/+0.90 +4.40/-1.02  

 

Notes: Moments are in kN m; bimoments are in kN m2; and stresses are in MPa. 
                 Moment and bimoments are unfactored.  Stresses are multiplied by the proper load           

factors. 

It is noted that normal stresses due to bimoments are computed based on uncracked 

section properties. 

 

Legend: FWS =future wearing surface 

 

6.2 Distortional stresses 

Article 6.7.4.3 (AASHTO [9]) mandates that the sum of torsional warping stress and distortional 

warping stress must be less than 10 percent of the vertical bending stress at the strength limit state.  

The provision also stipulates that the transverse bending stress due to distortion be less than 138 

MPa (20 ksi).  The Hanshin Guidelines (Hanshin, 1988) require that the sum of the warping and 

distortional normal stresses to be less than five percent of the bending stress.  Other than relying 

on very complex and expensive refined analysis methods, there has not been an easy-to-apply 

methodology to check the distortional stresses of horizontally curved box-girders. 

 

Bethlehem Designer’s guide (Heins and Hall, 1981) is perhaps the only design aid for the 

distortional analysis.  However, the guide is based on the BEF analogy, which is originally 

developed by Wight et al. (1968) for straight box-girders.  As it will be discussed later, applying 

the BEF analogy developed for straight box-girders to horizontally curved box-girders is grossly 

unconservative.  Although Dabrowski (1972) extended the concept to horizontally curved box-

girders (with a sign error in a loading term), he relies heavily on the copious design tables and 

charts to solve the resulting fourth order differential equation with constant coefficients analogous 

to the governing differential equation for beams on elastic foundations.  One rarely sees modern 

horizontally curved prismatic box-girder bridges aligned on a simple span or two equal spans.  

These are the type of structures included in Dabrowski’s design aids. 

 

As demonstrated by Kim and Yoo (2006a, 2006b, 2009), the cross-frame spacing cannot be 

determined by distortional stress level alone in the case of horizontally curved tub girders.  The 

spacing has a major implication to the design of top lateral bracing members, which may require 

a heavy section if an unfavorable deck casting sequence is considered.  Furthermore, the diaphragm 

or the cross-frame stiffness has a major implication on the cross-frame spacing.  In fact, the cross-
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frame stiffness used in the example design is only 4 percent of the solid diaphragm that is 

considered to be close to the rigid one.    

 

The procedure developed herein does not have afore-mentioned limitations or drawbacks.  It is 

straight forward and simple enough requiring only two ordinary computer programs, which should 

be readily available in the literature.  An application of the developed procedure is demonstrated 

here using an example bridge.    

 

K-truss internal cross-frames are used in the example bridge.  The K-frames are spaced 

longitudinally at approximately 4.88 m (measured along the centerline of the bridge).  The 

maximum member force was found to be 785 N (80 kips) in the diagonal (AASHTO, 2003) under 

the factored loads.  In this analysis, a single angle, L178x100x13 (L7x4x1/2) having an area of 

3.28125E-03 m2 (5.25 in2) is used for the diagonals of the K-frames.  The diagonals are locked in 

the initial stress as outlined in recent publications (Kim and Yoo, 2006a; 2006b; 2009) under the 

dead load, and additional stresses are added following the distortional action under dead load, 

superimposed dead load, and vehicular live load. 

As per Article 6.7.4.3 (AASHTO, 2014), it is assumed that there are full-depth internal and external 

diaphragms provided at support lines.  Therefore, no distortion is allowed there in the model.  A 

typical K-frame stiffness is computed according to Eq. (11c) as 

   
220.0254 78 81/ 2 2.23 m 87.9 in.b     

    

 

2 29 22 2
8

1 3 3

200 10 5.25 0.0254 81 0.0254 78 0.0254
5.075 10 N m

2 2 2.23

b

b

x x x xEA c h
K       (31) 

The cross-sectional stiffness for each different section (with a unit of N m/m ) as the equivalent 

foundation moduli is computed according to Eq. (13) and tabulated in Table 3.   As can be seen 

from Table 3, 1k  is in the order of 1/1,000 of 1K .  Examination of a series of analysis results reveals 

that the primary controlling parameter for the distortional warping moment and transverse bending 

is 1K .  Doubling or tripling 1k hardly affects the results, thereby justifying the assumption 

employed by Wright et al. (1968). 

 

It is convenient to assume the member length ( ) of the fictitious truss simulating the elastic 

foundation to be 1 m.  Hence, the equivalent axial stiffness or the spring constant is 

1

11

K

K

A E
K A E   (32) 

1

8 9 3 3
1 / 5.075 10 / 200 10 2.5375 10  mKA K E         (33)  

1 1 /k bA k E   (34) 

where b  is the length of the beam element. 

It is recalled that the right side of Eq. (24) is / *x zM R m having a unit of N m/m=N .  As 

most plane-frame programs are designed to provide work-equivalent nodal forces at each node, 

the distributed torsional moments of the right side are transformed into concentrated nodal torques 

having a unit of N m by multiplying the value by the length of the element (beam).  This operation 
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can be tedious and time-consuming.  Software such as Excel and TextPad can expedite this 

operation greatly. 

 

Table 4 summaries the six loading cases considered for the example bridge; three dead load and 

three live load cases.  These are the steel and deck concrete dead load, future wearing surface, and 

parapet and three truck positions for the maximum moment in the end span, at the pier, and the 

center of the interior span.  Fig. 8 shows the variation of the distortional warping moments for 

these six loading cases.  Since the maximum distortional warping moments occur at the first 

interior pier, all of the variations are plotted in the first end span except for the loading case for the 

maximum negative moment at the pier, for which the variations of the distortional warping 

moments are shown for the interior span.  Sample calculation for the distortional warping stress is 

shown below: 

 

  

  

 DL

1.25 7.99 04 0.949
          2.42 MPa

0.0391

 

Dw D

Dw

Dw

M w

I

E


 

  
  



  (35) 

where distortional section properties are given in Table 3. 

 

As shown in Table 4, the sum of the negative distortional warping normal stresses is slightly 

greater than that of the positive value; the sum of the negative stresses will have a cumulative 

effect on the bottom of the inner web to the vertical bending stresses.  Here again, it is recalled 

that the importance of tracking the proper sign in Eq. (14) to distinguish whether the stresses are 

to be additive or subtractive to the vertical bending stresses. 

 

As shown comparatively in Tables 2 and 4, it becomes clear that the torsional warping stresses are 

slightly greater than the distortional warping stresses in this example bridge, and appears to be the 

case for most properly braced horizontally curved bridges.  It is recalled that when the box section 

is square, there is no torsional warping stresses developed, and the sentiment of Eurocode (2006) 

provision to permit ignoring the warping torsion entirely is understandable.  However, this 

provision is somewhat unconservative as the subtended angle of a curved span gets large; the 

normal stress due to the torsional warping moment (bimoment) becomes non-negligible. 

 

The sum of normal stresses due to torsional warping and distortional warping, 7.10 MPa, is only 

2.55 percent of the total vertical bending stress.  Hence, the design meets the requirement (less 

than 10 percent of the vertical bending stress) of Article 6.7.4.3 (AASHTO, 2014).  It appears that 

the area of the cross-frame used in this example can easily be reduced by 50%.  It is noted that 

both the cross-frame stiffness and spacing play an important role in controlling box distortion. 

 

6.3 Transverse bending stresses 

The transverse bending stress due to distortional warping is a function of the distortional angle.  

The maximum angle occurs somewhere between the two end supports of each span.  If the cross-

frame stiffness is not too stiff, it usually develops near the center of the span.  For the strength 

limit state (Strength I), the maximum transverse bending stress develops near Section 1-1 (see Fig.  
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Table 3: Distortional section properties (adopted from Yoo et al., 2015) 

Section 

Node 

Section 

Size 

Section  

Type 
   

1Dw  ( 2m ) DwI ( 6m ) 1k   (Nm/m)  0   1   2      

1-1 

10 

2-406x25.4 

2-2042x14 

2108x16 

A=111529 
*t =1.11  

Noncomp 1.576 0.541 0.0201 103848 5.8624 0.0826 0.2770 0.0353 

Comp DL 2.642 0.367 0.0292 183256 2.9634 0.2533 0.0322 0.2413 

Comp LL 4.850 0.220 0.0360 365373 1.4863 0.3157 0.0365 0.2911 

3-3 

28 

2-457x38.1 

2-2042x14 

2108x25.4 

LS WT203x43.5 

A=150962 
*t =1.23 

Noncomp 1.788 0.494 0.0268 152772 3.9850 0.0398 0.1424 0.0040 

Comp DL 2.712 0.359 0.0358 252537 2.1611 0.2157 0.0118 0.2103 

Comp LL 4.634 0.229 0.0435 459461 1.1844 0.2664 0.0053 0.2619 

5-5 

36 

2-457x76.2 

2-2042x14 

2108x38.1 

LS WT203x43.5 

A=212557 
*t =1.32 

Noncomp 2.384 0.398 0.0391 226226 2.6912 -0.0776 0.0404 -0.0926 

Comp DL 3.169 0.317 0.0465 242999 2.2144 0.0385 0.0100 0.0339 

Comp LL 4.805 0.222 0.0541 488105 1.1024 0.2136 0.0005 0.2132 

8-8 

48 

2-406x25.4 

2-2042x14 

2108x19 

A=118193 
*t =1.11 

Noncomp 1.504 0.558 0.0213 122196 4.9821 0.1371 0.2620 0.0846 

Comp DL 2.522 0.381 0.0309 204819 2.6604 0.2849 0.0247 0.2756 

Comp LL 4.630 0.229 0.0383 408846 1.3328 0.3855 0.0196 0.3708 

Notes: Areas are in mm2; length, width, and thickness are in mm.  Cracked sections are not considered separately as they are effective for torsion. 

           Legend:  =location of the distortional center; 1Dw =   distortional warping function at the inner top flange defined in Fig. 4;  

             DwI  =  distortional warping constant in m6;  1k =  stiffness of the cross section against distortion; 0 =  coefficient; 

              1  =  coefficient;  2 =  coefficient; and   =  conversion coefficient 

              Noncomp   = steel section only 

              Comp DL   = steel section plus concrete deck transformed using modular ratio of 3n 

              Comp LL   = steel section plus concrete deck transformed using modular ratio of 1n  
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7). The maximum factored transverse bending stress is 0.6 MPa, which is negligibly small 

compared with the maximum permissible value of 138 MPa (20 ksi). 

 

It is of interest to note that Kulicki et al. (2005) report that the maximum transverse bending stress 

range of 3.45 MPa (0.5 ksi) for the fatigue check near the interior support.  In light of the fact that 

the distortional angle is usually very small near the support because of the presence of a solid 

diaphragm, the reported location of the maximum transverse bending stress range is quite unusual.  

In this study, the maximum fatigue stress range is found to be 0.6 MPa (0.1 ksi) near the center of 

the interior span.  

 

6.4 Stiffness of the cross-frame 

Examination of the plan (Fig. 7) reveals that there is no possibility of increasing the cross-frame 

spacing from what it is now.  Any increase of the cross-frame spacing necessitates the top diagonal 

to make an angle less than 30 degrees with the top flange; thereby making it quite inefficient in 

resisting the panel shear (the tendency to bulge the top flanges out).   Reducing the current spacing 

does not appear to be a viable option either as it puts an undue additional fabrication expense.  

There seems to be an alternative means to adjust the cross-frame spacing by adjusting the cross-

frame stiffness.  When the area of the cross-frame member was doubled (increased 100 %) in the 

dead load analysis in this example bridge, the maximum distortional warping moment decreased 

by 17.7 percent. 

 

7. Concluding remarks  
A procedure based on an analogy with the theory of beams on elastic foundation is developed for 

the analysis of distortion induced stresses of horizontally curved box-girders.  Many new equations 

have been developed for trapezoidal tub-girders with overhangs as pertinent equations are not  

 

Table 4: Distortional warping moments ( 2N m ) and stresses (MPa) (adopted from Yoo et al., 

2015) 

Loading Cases DwM   

( )  

2Dw  ( 2m )   DwI  ( 6m )   Dw  (MPa) L Factor 

Dead Load  -7.99E+04 -0.9488 0.0391 +2.42 1.25 

FWS +7.00E+03 -1.0046 0.0465 -0.23 1.50 

Parapet  -2.42E+04 -1.0046 0.0465       +0.65 1.25 

LL, esM     +4.95E+04 -1.0667 0.0541        -1.71 1.75 

LL, - M   +1.56E+04 -1.0667 0.0541        -0.54 1.75 

LL, csM   +2.67E+04 -1.0667 0.0541 -0.92 1.75 

Sum    +3.07/-3.40  

Notes:  2 1D Dw w   

 

Legend: DwM = distortional warping moment; Dw = distortional warping normal stress; 

              esM   = truck position for the maximum positive moment in the end span; 

              csM   = truck position for the maximum positive moment in the center span; 

               L Factor = load factor 
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Figure: 8 Variations of distortional warping moments ( 2N m ) (adopted from Yoo et al., 2015) 

 

available elsewhere.  The procedure is capable of handling simple or continuous single cell box-

girders (or separated multi-cell box-girders) with rigid or deformable interior diaphragms or cross-

frames. 

 

Examples show that distortional stresses can be quite significant in horizontally curved steel box-

girders, particularly, in spans with large subtended angles.  Although the maximum cross-frame 

spacing is increased from 9 m (30 feet, AASHTO, 2003) to 12 m (40 feet, AASHTO, 2014), Article 

6.7.4.3 (AASHTO,2014) stipulates to check torsional, distortional warping stresses and transverse 

bending stresses induced by distortion and the procedure developed herein meets this requirement. 

 

Refined analytical methods, for example, a three-dimensional nonlinear incremental finite-element 

method, are available for evaluation of these stresses.  However, the enormous efforts required in 
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the preparation of the modeling and computation tends to conceal the design parameters.  In the 

plane-frame (BEF analogy), the analysis results become readily available and different cross-frame 

spacing can be tried with a minimal effort by replacing the cross-frame stiffness with the property 

of the spring used to represent the foundation modulus. 

  

Maximum bending moments develop when the bridge is fully loaded in all lanes with dead and 

live load plus impact.  Warping stresses induced by the small torsional component may be 

accounted for by a few percent of the flexural stress.  When a bridge is loaded by a single vehicle, 

it may create a high torsional component and may affect adversely the fatigue behavior.  The 

procedure developed herein can effectively be utilized to analyze this situation. 
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