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Abstract 

This paper presents an analytical investigation on the necessity of stiffeners in castellated beams 

subject to concentrated loads. Several castellated beams, with and without stiffeners, and with 

various depths are investigated using non-linear finite element analysis to examine their behavior 

to failure when subject to concentrated loads. The efficiency of stiffeners to increase the resistance 

of castellated beams against concentrated loads is examined. The concentrated loads are applied 

at the center of the full height web, at the center of the opening and between the web and the 

opening to cover the potential range of the concentrated force location. For each investigated beam 

depth and stiffener arrangement, the loads that cause failure are noted. In addition, a simplified 

approach for checking the limit state of web post bucking in compression is proposed and 

recommendations on the necessity of stiffeners are presented. 
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1. Introduction 

Castellated beams have been used since the 1940’s (Zaarour and Redwood 1996) because of 

their ability to offer wide and open spaces, reduce floor to floor heights, increase illumination and 

improve aesthetic appeal. Engineering advantages of castellated beams include superior load 

deflection characteristics, higher strength and stiffness, lower weight and the ability to span up to 

90 ft without field splicing. Also, the automation process has reduced the cost of their fabrication 

to the level where for certain applications they may be competitive with open web steel joists 

(Zaarour and Redwood 1996). Castellated beams have consisted typically of hexagonal or 

octagonal openings, with the octagonal openings made possible by the addition of incremental 

plates between the cut webs. Figure 1 illustrates an application of castellated beams with hexagonal 

openings.  Another similar form are cellular beams, which consist of circular web openings. 

Cellular beams have gained popularity because of the aesthetic appeal they offer in architecturally 

exposed surfaces. Some manufacturers have recently developed new opening shapes for 

castellated beams. For example ArcelorMittal presented castellated beams with sinusoidal web 

openings, named as the Angelina Beam (Wang et al. 2014). Durif and Bouchair (2013) performed 

an experimental study on beams with such openings. Tsavdaridis and D’Mello (2012;2011) 

investigated the behavior of castellated beams with novel elliptically based web openings. 

 

 
Figure 1. Application of castellated beams (Scherer Steel Structures, Inc.) 

Castellated beams are subject to a variety of failure modes. Some of the typically investigated 

failure modes are: flexural failure (Figure 2), shear failure, lateral-torsional buckling (Figure 3), 

Vierendeel mechanism (Figure 4), web post buckling or yielding (Figure 5), local buckling and 

welded joint rupture (Figure 6). Pure bending, shear and overall lateral-torsional buckling are 

similar to the corresponding modes for solid-web beams and can be treated in an almost identical 

manner, if the relevant geometric properties used are based on the reduced cross-section (Soltani 

et al. 2012). The failure modes that are specific to castellated beams are the Vierendeel mechanism, 

yielding or buckling of the web post and fracture of the welded joint. Vierendeel mechanism is 

likely to occur in castellated beams with large web opening lengths under high shear to moment 

ratio. This failure mode is manifested by the formation of four plastic hinges in the upper and 

lower T-section due the combination of the global moment and Vierendeel moment. The 

Vierendeel moment forms due to the transfer of the shear forces across the opening. Buckling of 

the web post can occur due to shear or compression. The buckling or yielding of the web post in 

shear occurs due to the combination of the shear force acting at mid-depth of the web post with a 

double curvature bending moment over the height of the web post. The buckling of the web post 

in compression can occur when the web post is subject to concentrated forces. The horizontal shear 

force can also cause the fracture of the welded joint in the web post, especially in cases when the 

length of the welded joint is small. Local buckling may occur in three ways in castellated beams: 
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1) buckling of the compression flange, 2) buckling of the T-section in compression, and 3) vertical 

instability of the sides of the web openings in high shear zones. Ellobody (2011;2012) reports that 

additional failure modes may occur independently or interact with each other. 

 

 
Figure 2: Laterally braced flexural failure (Halleux 1967) 

 

 
Figure 3: Lateral-torsional buckling (Nethercot and Kerdal 1982) 

 

 
(a)                                             (b) 

Figure 4: Vierendeel mechanism caused by shear transfer through perforated web zone (Halleux 1967), (a) overall 

view, (b) close-up view of castellation 

 

 
(a) (b) 

Figure 5: Web buckling (a) shear compressive half-wave near a support; (b) flexural buckling below a concentrated 

load (Hosain and Spiers 1973) 

 

 
Figure 6: Rupture of a welded joint (Halleux 1967) 
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In many cases, castellated beams are subject to concentrated loads, such as a reaction from a 

column or a reaction from a supporting girder. The solution in situations like this is typically to 

provide a stiffener or filler plate at such concentrated load locations to prevent the buckling of the 

web post due to compression.  However, both of these solutions require additional labor and in the 

case of the filler plate may defeat the aesthetic appeal offered by castellated beams. Additionally, 

if the advantages of automation are to be fully exploited such strengthening details must be 

minimized. The purpose of this paper is to twofold: a) to investigate the capacity of castellated 

beams subject to concentrated loads by determining the loads that cause the buckling of the web, 

and b) to quantify the enhanced capacity of the castellated beams against concentrated loads when 

stiffeners are provided. This is accomplished by performing 30 nonlinear finite element analyses, 

which feature various locations of the concentrated force, castellated beams with and without 

stiffeners and various web post height to thickness ratios. In this study only castellated beams with 

hexagonal openings are investigated. A simplified approach, utilizing an effective web width is 

proposed to aid engineers during the design process. 

 

2. Design Methods 

At present, there is not a generally accepted design method published in the form of a design 

guide for castellated beams primarily because of the complexity of their behavior and the 

associated modes of failure. Soltani et al. (2012) report that at European level, design guidance 

given in the annex N of ENV 1993-1-1 was prepared in draft format but was never completed 

(RT959 2006). In the United States, while Steel Design Guide 2 (Darwin 2003) covers steel and 

composite beams with web openings, it is explicitly stated that castellated beams are excluded. 

Various design approaches exist for how to treat failure modes such as Vierendeel mechanism, 
fracture of welded joint, and web-post buckling due to the horizontal shear and bending moments. 

Soltani et al. (2012) provide a summary of these design methods and propose a numerical model 

to predict the behavior of castellated beams with hexagonal and octagonal openings up to failure. 

Tsavdaridis and D’Mello (2012; 2011) performed an optimization study on perforated steel beams 

with various novel web opening shapes through non-linear finite element analyses and an 

investigation on the behavior of perforated steel beams with closely spaced web openings. Zaarour 

and Redwood (1996) investigated the strength of castellated beams susceptible to web-post 

buckling due to horizontal shear and bending moments. Wang et al. (2014) examined the 

Vierendeel mechanism failure of castellated beams with fillet corner web openings.  

One of the studies that addresses the resistance of castellated beams against concentrated loads, 

in addition to the other modes of failure, is the one performed by Hosain and Speirs (1973), in 

which they tested 12 castellated beams with the objective of investigating the effect of hole 

geometry on the mode of failure and ultimate strength of such beams. An attempt was made to 

study the phenomenon of web buckling due to compression and due to shear in the framework of 

existing approximate design methods of that time. Three beams failed prematurely due to web 

buckling and they either had no stiffeners or partial depth stiffeners below the concentrated loads.  

Buckling of the web posts prevented these beams from reaching their maximum capacity. The 

method proposed by Blodgett (1966) was used to compare the predicted capacity of the web post 

in compression with the experimentally obtained failure loads. Blodgett’s method treats the non-

prismatic solid web as a column having a length equal to the clear height of the hole, a width equal 

to the web weld length and a thickness equal to the web thickness (Figure 7). To calculate the 

effective column length (kl/r), k was assumed to be 1.0.  
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Kerdal and Nethercot (1984) reviewed previous studies on the structural behavior of castellated 

beams and identified a number of different possible failure modes. It was concluded that both 

lateral-torsional instability and the formation of a flexural mechanism may be handled by an 

adaption of established methods for plain webbed beams, provided that the cross-sectional 

properties are those corresponding to the centerline of a castellation. It was also concluded that the 

methods available at that time for the determination of collapse in the other modes, while rather 

less accurate, were adequate for design except in the case of web post buckling in compression. 

Kerdal and Nethercot (1984) state that while the web post could be considered to be a column 

having the depth of the hole and the area of the welded joint, there does not seem to be an 

agreement as to which effective length of the column to use. For example, an effective length 

factor of 0.75 was used in the study by the United Steel Co. Ltd. (1957). This was later (1962) 

reduced to 0.5 in a report by the same agency. Finally, Hosain and Speirs (1973) assumed the web 

posts to be pinned at both ends. Accordingly, one of the conclusions in the report by Kerdal and 

Nethercot (1984) is that no satisfactory method has been identified for the prediction of the load 

causing vertical buckling of the web post under a concentrated load or at a reaction point. As a 

result, this failure mode was reported as an area of uncertainty in the design of castellated beams 

and there is a need to obtain a better idea as to what is the effective area of the column and its 

effective length. 

In the light of this discussion, the investigation described in this paper was undertaken with the 

goal of investigating the capacity of castellated beams under concentrated loads using nonlinear 

finite element analysis and models that specifically address this condition by isolating the beam 

sections from the other modes of failure. 

 

  
Figure 7: Simplified equivalent column approach for the investigation of the limit state of web post buckling in 

compression 

 

3. Research Approach 

To investigate the capacity of castellated beams when they are subject to concentrated loads 

five beam depths were selected (Table 1). Next to each castellated beam section is provided the 

original wide flange beam used to fabricate the castellated beams. These beams were selected such 

that they covered a wide range of depths, so that the capacity of each section against concentrated 

loads, with and without stiffeners, could be investigated. In cases when castellated beam sections 

feature stiffeners, the thickness of the stiffener was always 0.5 in. The web clear height to thickness 

ratios for these five beams range from 25.6 to 86.6. Table 2 provides a summary of the information 

used to define the geometry of the castellated beams. Each beam depth was subject to compressive 

loads at the top flange (Figure 8). The compression load was applied in the form of a uniformly 

distributed load over the length of the castellated beam section under consideration. Three load 

locations were investigated: A) centered over the web post, B) centered over the hole, and C) 

centered mid-way between the center of the hole and the center of the web post. These load 

positions are identified as A, B and C and cover the potential concentrated load positions that 
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castellated beams will be subject to. The castellated beam section lengths for each of these three 

load cases are provided in Table 1 together with the aspect ratio between the section length, S, and 

the overall depth of the beam, dg. The top flange of the castellated beam specimens was restrained 

against translations in directions 1 and 3 and against rotations about all three axis to simulate out-

of-plane lateral bracing, the restraint provided by the rest of the beam and the restraint provided 

by the slab or any other supported member. The top flange was free to translate in the vertical 

direction to accommodate the application of the load. The bottom flange was restrained against all 

translations and rotations. The restraint provided by the continuation of the beam to the vertical 

edges of the webs was conservatively ignored and these edges were modeled as free. As stated 

above, the five selected beams were investigated for the case when their webs are unreinforced 

and reinforced with full height bearing stiffeners. The concentrated loads were assumed to apply 

over the supports. This loading arrangement is believed to be the most critical for the limit state of 

web post buckling, compared to other cases when the concentrated loads are applied away from 

the supports. 30 nonlinear finite element analysis were performed to obtain failure loads for the 

investigated specimens and to propose a simple design methodology that is based on the concept 

of an effective web width. 
 

Table 1: Investigated castellated beams (CB) 

W Section CB Section hwcb/tw 
Section length (S**) (in.) Aspect Ratio (S/dg

**) 

A*, B* C* A*, B* C* 

W8X40 CB12X40 25.6 11.5 5.75 1 0.50 

W12X50 CB18X50 41.6 15.0 7.50 0.83 0.42 

W16X50 CB24X50 59.8 19.0 9.50 0.77 0.39 

W21X62 CB30X62 74.0 23.0 11.5 0.76 0.38 

W27X84 CB40X84 86.6 30.0 15.0 0.74 0.37 
*Load position (Figure 8), **See Table 2  

 
Table 2: Geometry of investigated CBs 

CB Section 
e 

(in.) 

b 

(in.) 

dt 

(in.) 

dg 

(in.) 

tw 

(in.) 

bf 

(in.) 

tf  

(in.) 

S 

(in.) 

ho 

(in.) 

h 

(in.) 

Wo 

(in.) 

Phi 

(deg.) 

CB12X40 4.0 1.75 2.50 11.5 0.375 8.125 0.563 11.5 6.50 3.25 7.50 61.70 

CB18X50 4.5 3.25 3.25 18.0 0.375 8.125 0.625 15.0 11.375 5.75 10.75 60.27 

CB24X50 4.5 5.00 4.00 24.5 0.375 7.125 0.625 19.0 16.50 8.25 14.50 58.81 

CB30X62 6.0 5.50 6.00 30.0 0.375 8.250 0.625 23.0 18.00 9.00 17.00 58.54 

CB40X84 7.0 8.00 6.50 40.5 0.438 10.00 0.625 30.0 27.375 13.75 23.00 59.74 
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Figure 8: Investigated Cases 

 

4. Finite Element Analysis 

The numerical simulations described in this paper were performed by using the commercially 

available finite element analysis software Abaqus (Dassault Systemes 2014). Because the primary 

goal of this investigation is the buckling of the web under concentrated loads, flanges were 

modeled as rigid bodies. The webs and stiffeners were modeled using S8R5 shell elements. The 

S8R5 element is a doubly-curved thin shell element with eight nodes and it employs quadratic 

shape functions. The “5” in S8R5 denotes that each element has five degrees of freedom (three 

translational, two rotational) instead of six (three translational, three rotational). The rotation of a 

node about the axis normal to the element mid-surface is removed from the element formulation 

to improve computational efficiency (Moen 2008). The “R” in the S8R5 designation denotes that 

the calculation of the element stiffness is not exact; the number of Gaussian integration points is 

reduced to improve computational efficiency and avoid shear locking (Moen 2008). This element 

is designed to capture the large deformations and through-thickness yielding expected to occur 

during the out-plane buckling of the web post to failure.  The size of the mesh was selected such 

that each element side did not exceed 0.5 in. in length and was determined based on results from 

convergence studies to provide a reasonable balance between accuracy and computational 

expense. It was assumed that the self-weight of the specimens was negligible compared to the 

applied loads.  Although the cross-section was symmetrical about the major and minor axis, it was 

necessary to model the full cross-section because the buckled shape could be non-symmetrical.  

The finite element model takes into account both material and geometric nonlinearities. The 

structural steel was modeled using a bilinear stress strain relationship based on coupon test data 

provided by Arasaratnam et. al (2011). The true stress versus true strain relationship is shown in 

Figure 9 and was input into Abaqus to define the limits of the Von Mises yield surface. Young’s 

modulus E, was set at 29,000 ksi and Poisson’s ratio ν, was set to 0.3. To initiate buckling, an 

initial small out-of-plane geometric imperfection, in the form of the first mode shape obtained 

from an eigenvalues buckling analysis, was imposed to the model. An Abaqus.fil file is created for 

each eigenbuckling analysis, which is then called from the nonlinear.inp file with the 
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*IMPERFECTION command. During the design phase the imperfections are typically unknown 

and are accounted for in the design equations used to estimate the capacity of the members. They 

are usually used as general random quantities that can be rigorously treated by stochastic 

techniques (Soltani et al. 2012). In their investigation, Soltani et al. (2012) state that according to 

their knowledge, no consensus exists on maximum imperfection magnitudes for castellated beams 

even when the imperfection is in the shape of the lowest eigenmodes. Two imperfection 

magnitudes were used in the study performed by Soltani et al. (2012), dw/100 and dw/200, where 

dw is the clear web depth between the flanges, and it was shown that the model was not significantly 

affected by a change in the magnitude of the initial lateral deflection taken in the shape of the 

lowest buckling mode. Accordingly, the magnitude of the initial imperfection employed in this 

study is hcbw/100 (where hcbw is the same as dw used by Soltani et al.(2012)).  Material nonlinearity 

is simulated in Abaqus with classical metal plasticity theory, including the assumption of a Von 

Mises yield surface. In this study residual stresses are not considered. 

The modified Riks method was used to determine the nonlinear response of the castellated 

beam section. The modified Riks method (i.e.,*STATIC,RIKS in Abaqus), was developed in the 

early 1980’s and enforces an arc length constraint on the Newton-Raphson incremental solution to 

assist in the identification of the equilibrium path at highly nonlinear points along the load-

deflection curve (Crisfield 1981). The loads are applied uniformly along the length of the web and 

stiffeners when applicable. As stated above, top and bottom flanges were modeled as rigid bodies 

with reference nodes at the centroid of each flange (Figure 10). For each case the vertical 

displacement at the reference node of the top flange and the reaction at the reference node of the 

bottom flange were recorded. The maximum vertical displacement at the reference node of the top 

flange was typically limited to 2 in. because such a vertical displacement corresponded with loads 

that were much lower than the peak load and were well into the descending branch of the load 

displacement curve. 

 

 
Figure 9: True stress-strain curve based on data from Arasaratnam et al. (2011) 

5. Results 

Figure 10 shows the first buckled mode shapes for CB12x40 when it is unreinforced and 

reinforced with stiffeners. As expected, the first buckled mode shape for the unreinforced cases is 

a typical out-of-plane buckling the castellated beam web. For the reinforced cases, the first buckled 

mode shape featured a combination of web and stiffener buckling for load cases A and C and only 

web buckling for load case B. This was due to the fact that although the stiffener in load case B 

was located such that it aligned with the center of the load, the web post was the weakest element 

and it buckled first. This behavior is similar to local buckling when in a given cross-section one 

element is more susceptible to buckling than the rest of the elements. 
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Figure 11 shows the deformed shape at simulated failure for all five cases investigated using 

CB12x40. As stated above, simulated failure corresponds to a vertical displacement of 2 in. in the 

reference node of the top flange. As expected, in all cases the deformed shape at failure is an 

exaggeration of the first buckled mode shape. Even for load case B when the section is reinforced 

with a stiffener, due to deformation compatibility, the stiffener is eventually engaged in the 

resistance against the applied load. 

 

 
Figure 10: First buckled mode shape for CB12x40 

 

 
Figure 11: Deformed shape at failure for CB12x40 

 

Figure 12 illustrates the uniform load versus vertical displacement relationship for all 

investigated cases. Five graphs are presented with each graph illustrating the results pertaining to 

each castellated beam section. The uniform load is obtained by dividing the reaction obtained at 

the reference node of the bottom flange with the section length provided in Table 1. This was done 

to make a consistent comparison between all three load cases considered, given that the castellated 

beam section length for load case C is half of that considered in load cases A and B. The vertical 

displacement is obtained at the reference node of the top flange and the analysis was typically 

stopped when this value reached 2 in. As can be seen, all three unreinforced cases behaved 

similarly, and the load displacement curves are almost identical. This is expected and intuitive 

because the effective section resisting the applied load per unit length is the same. The peak 

uniformly distributed loads for each case are summarized in Table 3. It can be observed that for 

all cases the peak load decreases as the section depth increases. This is also expected and intuitive 

because the higher the unbraced length against buckling the lower the peak load. 

 The presence of stiffeners increases significantly the capacity of the castellated beam sections 

against concentrated loads. In almost all cases the highest resistance is provided by load case C 

when it is reinforced with a stiffener. This is due to the fact that even though the section length 

and the applied load were both half of those considered in cases A and B, the stiffener size was 

kept constant. Accordingly, reinforced load case C benefited relatively more from the presence of 

the stiffener. It can also be observed that the slope of the descending branch of the load 

displacement curve is smaller in reinforced load case A compared to reinforced load cases B and 
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C. This occurs because for load case A the stiffener was placed where it was needed the most, 

which is at the center of the web post. The center of the web post in all three cases is the section 

that is most susceptible to web buckling.  

  

 

 
 

  

 
Figure 12: Uniform load versus vertical displacement at the top of the web post. 

 

Table 3. Uniformly distributed failure load (wn (k/in)) 

Load 

Position 

C12x40 C18x50 C24x50 C30x62 C40x84 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

A 6.8 28.5 3.7 23.3 2.3 17.4 1.8 16.9 1.6 16.0 

B 6.5 23.0 3.6 17.7 2.2 12.9 1.8 9.4 1.5 5.0 

C 6.5 46.7 3.6 35.9 2.2 24.0 1.8 22.0 1.5 15.9 

 



11 
 

The uniformly distributed load applied to the castellated beam sections was also normalized 

with respect to the uniformly distributed load that causes yielding at the smallest cross-section 

along the height of the web (mid-height of web) to investigate the efficiency of the sections in 

resisting the applied load (Figure 13). Figure 13 suggests that as the sections get deeper the effect 

of web slenderness becomes more pronounced in the unstiffened castellated beams. Also, in all 

stiffened cases and load position A the failure load is equal to or slightly higher that the yield load, 

which once again highlights the efficiency of the stiffener for this load position. The reason why 

in some cases the failure load is slightly higher than the yield load is attributed to strain hardening. 

In all cases the presence of the stiffeners enhances the capacity of the section significantly. 

Stiffened cases with load position C yielded lower ratios than those with load position A, but higher 

ratios than those with load position B. This again suggests the relative inefficiency of the stiffener 

location for load position B.  

 

 

 

 
Figure 13: Normalized uniform load versus vertical displacement at the top of the web post. 
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The total reaction that corresponded with the peak load obtained at the reference point of the 

bottom flange was compared with the predicted nominal capacity of an equivalent solid web beam 

section calculated based on AISC Specifications (2010) Section J10. Only the unreinforced 

sections were included in this comparison and only articles J10.2 (web local yielding), J10.3 (web 

crippling) and J10.5 (web compression buckling) were considered because the investigated 

sections were adequately braced against out-of-plane translations at top and bottom flanges.  The 

web local yielding provisions (Eq. 1 and 2) apply to both compressive and tensile forces of bearing 

and moment connections. These provisions are intended to limit the extent of yielding in the web 

of a member into which a force is being transmitted (AISC 2010). The bearing length lb, in all 

cases was taken equal to the section length (Table 1) and k was taken as zero. The web crippling 

provisions (Eq. 3, 4 and 5) apply only to compressive forces, which is consistent with the cases 

investigated in this study. Web crippling is defined as crumpling of the web into buckled waves 

directly beneath the load, occurring in more slender webs, whereas web local yielding is yielding 

of that same area, occurring in stockier webs (AISC 2010). The web compression buckling 

provisions (Eq. 6 and 7) apply only when there are compressive forces on both flanges of a member 

at the same cross section, which is also consistent with the cases investigated in this study. 

Equation 6 is predicated on an interior member loading condition, and in the absence of applicable 

research, a 50% reduction has been introduced for cases wherein the compressive forces are close 

to the member end (Eq. 7) (AISC 2010). Equation 6 was developed by Chen and Newlin (1971) 

during a study on the column web buckling strength in beam-to-column connections. Equation 6 

was derived by using the critical buckling stress of a square plate simply supported on all sides 

and by adjusting it to fit the results from the most critical test. Figure 14 shows the test setup. 

Because the investigation was focused on beam-to-column connections, Chen and Newlin state 

that from observations of the test results in the present and previous tests, it appears justified to 

assume that the concentrated beam-flange load acts on a square panel whose dimensions are dc by 

dc, where dc is the column web depth. 

In all cases, in which the load was assumed to be away from member ends, the limit state of 

web compression buckling controlled, with the exception of C12x40 load case C, in which web 

local yielding controlled over the other limit states. When the load was assumed to be at member 

ends, the limit state of web compression buckling controlled in all cases. Accordingly, this was 

primarily an evaluation of the applicability of Equations 6 and 7. Equations 6 and 7 used to predict 

web compression buckling in solid web beams are a function of web thickness (tw), modulus of 

elasticity (E), web yield stress (Fyw) and clear distance between flanges less the fillet (h). Because 

these equations were derived assuming that the load is applied over a length equal to the depth of 

the web, they do not distinguish between various load bearing lengths.  

Equation 6 grossly overestimated the nominal capacity of the castellated beam sections against 

concentrated loads when the loads were assumed to be away from the member ends. This was 

expected for several reasons. Equation 6 was developed for solid web beams and does not take 

into consideration the presence of the holes. Additionally, in the cases investigated in this study 

the restraint provided by the continuation of the castellated beam to the web on both sides (if 

applicable) was conservatively ignored, whereas in the derivation of Equation 6 the square web 

panel was assumed to be simply supported on all sides. Also, the aspect ratio between the loaded 

length and member depth was at best 1.0 (Table 1).  

When the load was assumed to be at member ends (Eq. 7), the prediction improved, especially 

for load cases A and B.  This is also expected, because when the load is applied at member ends 

the restraint provided by the continuation of the castellated beam to the web applies only to one 
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end and it represents more closely the boundary conditions used in this study. For load case C the 

equation still grossly overestimated the capacity of the castellated beam sections because it does 

not take into account the shorter loaded length and the lower aspect ratios. 

The average between the peak load obtained from nonlinear finite element analysis and that 

obtained from the AISC web buckling provisions assuming that the load is at member ends, was 

1.16 for load position A and B, and 0.57 for load position C. 

 
Web Local Yielding 
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tw = web thickness, in. 

Fyw = web yield stress (59 ksi) 
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lb = length of bearing, in.  

 
Web Local Crippling 

  Away from member ends 

                                                     
wt

ftywEF

ft

wt

d

bl
wtnR














































5.1

31280.0                                                  (3) 

  At member ends 

for lb/d ≤ 0.2 

                                                        
wt

ftywEF

ft

wt

d

bl
wtnR














































5.1

31240.0                                                   (4) 

for lb/d >0.2 

                                                       
wt

ftywEF

ft

wt

d

bl
wtnR














































5.1

2.0
4

1240.0                                         (5) 

where 

E = modulus of elasticity (29000 ksi) 

d = full nominal depth of the section, in. 

tf = thickness of flange, in. 

 

Web Compression Buckling 

Away from member ends 
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where 

 h = clear distance between flanges less the fillet  
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Figure 14: Test setup used by Chen and Newlin to investigate web buckling strength (1971) 

Table 4. Comparison of predicted failure loads 

 Load  

Position 

FEA1 

(kips) 

AISC2(kips) Ratio = FEA/AISC 

Away from 

member ends 

At member 

ends 

Away from  

member ends 

At member 

ends 

C12x40 
A 77.8 172.6 86.3 0.45 0.90 

B 74.6 172.6 86.3 0.43 0.86 

C 37.2 127.23 86.3 0.29 0.43 

C18x50 
A 56.0 105.3 52.7 0.53 1.06 

B 54.6 105.3 52.7 0.52 1.04 

C 27.2 105.3 52.7 0.26 0.52 

C24x50 
A 43.1 73.8 36.9 0.58 1.17 

B 41.7 73.8 36.9 0.57 1.13 

C 20.8 73.8 36.9 0.28 0.56 

C30x62 
A 42.3 59.6 29.8 0.71 1.42 

B 41.0 59.6 29.8 0.69 1.38 

C 20.4 59.6 29.8 0.34 0.68 

C40x84 
A 47.1 69.2 34.6 0.68 1.36 

B 45.1 69.2 34.6 0.65 1.30 

C 22.5 69.2 34.6 0.33 0.65 

     Average of A and B 1.16 

     Average of C 0.57 
1Nominal capacity computed from nonlinear finite element analysis 
2Nominal capacity calculated based on AISC Sections J10.2, J10.3 and J10.5. Typically governed by 

J10.5 (web compression buckling unless otherwise noted) 
3Governed by web local yielding 

 

6. Proposed Simplified Approach 

The results from nonlinear finite element analysis were used to calculate an effective web width 

for castellated beams with and without bearing stiffeners. This effective web width will allow the 

engineers to check the limit state of web buckling due to compression by treating unstiffened webs 

as rectangular columns and stiffened webs as columns with a cruciform cross-sectional shape 

(Figure 15). The capacity of these equivalent columns can then be calculated based on AISC 

Specifications (2010).  The equivalent rectangular column can be designed in accordance with 

AISC Specifications Section E3 and the equivalent column with the cruciform cross-sectional 

shape can be designed in accordance with Sections E3 and E4. In this approach, the effects of local 

buckling for the cruciform cross-sectional shape need not be considered because the effective 

width was computed to match the results from nonlinear finite element analysis, which account 

for local buckling effects. The height of the equivalent columns is taken equal to clear height of 

the web (hwcb) of the castellated beam. This height is different from that used in design approaches 

proposed by other investigators (Blodgett 1966; United Steel Co. Ltd. 1957 and 1962; and Hosain 

and Speirs 1973), in which the height of the column was taken equal to clear height of the hole. 

After examining the deformed shapes of the castellated beam sections at simulated failure, it was 
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decided to take K equal to 0.5. Table 5 provides a summary of the effective web widths for all the 

investigated cases.  

For the unstiffened cases the effective width typically increases as the castellated beam depth 

increased. Also, for the stiffened cases and load position A the effective width increased as the 

section depth increases, however for load positions B and C there was no direct relationship 

between the increase in depth and the magnitude of the effective web width. 

In most unstiffened cases, the calculated effective width is greater than the minimum width of 

the castellated beam web post e (see Table 2). For all stiffened cases and load position A the 

effective widths are always greater than e. For stiffened cases in which load position B was 

investigated, the effective width was always smaller than e, and for stiffened cases and load 

position C the effective width was greater than e for C12x40, C18x50, C24x50 and smaller than e 

for C30x62 and C40x84. The reason why in some of the stiffened cases the effective width was 

smaller than e, is attributed to the fact that the loads obtained from nonlinear finite element analyses 

include the effects of local buckling and the proposed approach was developed such that the 

engineer would only have to check the global buckling of the equivalent column shapes. The results 

provided in Table 6 suggest once again that the stiffeners in load case B are not placed in the 

optimal position, because the buckling of the web post occurs prior to the efficient engagement of 

the stiffeners. 

 

 
Figure 15: Equivalent rectangular and cruciform column sections 

 
Table 5: Effective Web Width (beff (in.)) (K=0.5) 

Load 

Position 

C12x40 C18x50 C24x50 C30x62 C40x84 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

No 

stiff. 
Stiffener 

A 4.29 5.63 4.24 7.48 5.28 7.74 7.93 12.17 10.36 13.28 

B 4.11 2.37 4.14 2.63 5.11 2.70 7.68 2.11 9.91 1.86 

C 2.05 2.58 2.06 2.84 2.55 2.30 3.82 2.58 4.94 2.38 
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Table 6: Comparison of effective web width with minimum width of web post (K=0.5) 

Section Stiffener Load Position beff
* (in.) e** (in.) 

Section width (S**) 

(in.) 
Ratio= beff /e 

C12x40 

No 

A 4.29 4.00 11.5 1.07 

B 4.11 4.00 11.5 1.03 

C 2.05 2.00 5.75 1.03 

Yes 

A 5.63 4.00 11.5 1.41 

B 2.37 4.00 11.5 0.59 

C 2.58 2.00 5.75 1.29 

C18x50 

No 

A 4.24 4.25 15 1.00 

B 4.14 4.25 15 0.97 

C 2.06 2.125 7.5 0.97 

Yes 

A 7.48 4.25 15 1.76 

B 2.63 4.25 15 0.62 

C 2.84 2.125 7.5 1.34 

C24x50 

No 

A 5.28 4.50 19 1.17 

B 5.11 4.50 19 1.14 

C 2.55 2.25 9.5 1.13 

Yes 

A 7.74 4.50 19 1.72 

B 2.70 4.50 19 0.60 

C 2.30 2.25 9.5 1.02 

C30x62 

No 

A 7.93 6.00 23 1.32 

B 7.68 6.00 23 1.28 

C 3.82 3.00 11.5 1.27 

Yes 

A 12.17 6.00 23 2.03 

B 2.11 6.00 23 0.35 

C 2.58 3.00 11.5 0.86 

C40x84 

No 

A 10.36 7.00 30 1.48 

B 9.91 7.00 30 1.42 

C 4.94 3.50 15 1.41 

Yes 

A 13.28 7.00 30 1.90 

B 1.86 7.00 30 0.27 

C 2.38 3.50 15 0.68 
*See Figure 8, **See Table 2 

 

7. Conclusions 

The research presented in this paper addressed the need for a design method to estimate the 

nominal capacity of castellated beams against concentrated loads. The limit state investigated in 

this study was that of web post buckling due to compression loads. Five castellated beam section 

depths were considered which cover a wide range of the available depths. For each section three 

load cases were considered: A) center of load aligns with the middle of web post, B) center of load 

aligns with the center of the hole, and C) center of load aligns with a point half-way between the 

center of web post and center of hole. For each load position two cases were considered; one 

without a stiffener and one with a full height stiffener. This resulted in a total of 30 cases, which 

were investigated using nonlinear finite element analyses that accounted for geometric and 

material nonlinearities including the effect of initial imperfections.  

The peak loads obtained from the analyses of unstiffened cases were compared with AISC 

provisions for flanges and solid webs with concentrated forces. Only Sections J10.2, J10.3 and 

J10.5 were considered for comparison because the castellated beam sections were assumed to be 

adequately braced for out of plane translations at the top and bottom flanges. When the load was 
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considered to be away from member ends, AISC provisions for solid web beams grossly 

overestimated the capacity of the sections under consideration. This was expected for several 

reasons. Equation 6 was developed for solid web beams and does not take into consideration the 

presence of the holes. Additionally, in the cases investigated in this study the restraint provided by 

the continuation of the castellated beam to the web on both sides (if applicable) was conservatively 

ignored, whereas in the derivation of Equation 6 the square web panel was assumed to be simply 

supported on all sides. Also, the aspect ratio between the loaded length and member depth was at 

best 1.0 (Table 1). When the load was assumed to be at member ends (Eq. 7), the prediction 

improved, especially for load cases A and B.  This is also expected, because when the load is 

applied at member ends the restraint provided by the continuation of the beam to the web applies 

only to one end and it represents more closely the boundary conditions used in this study. For load 

case C the equation still grossly overestimated the capacity of the castellated beam sections 

because it does not take into account the shorter loaded length and the lower aspect ratios. The 

average between the peak load obtained from nonlinear finite element analysis and that obtained 

from the AISC web buckling provisions assuming that the load is at member ends, was 1.16 for 

load position A and B, and 0.57 for load position C. 

 A simplified approach was presented for checking the limit state of web post buckling in 

compression, which considers the web of a castellated beam as an equivalent column whose height 

is equal to the clear height of the web. For the unstiffened cases the equivalent column has a 

rectangular cross-section whose thickness is equal to the thickness of the web and the width can 

be determined based on the effective width values presented in this paper. This equivalent 

rectangular column can be checked using AISC (2010) provisions in Section E3. For the stiffened 

case the equivalent column has a cruciform cross-sectional shape that consist of the beam web and 

the stiffener. The width of the castellated beam web than can be used to determine the capacity of 

the column can be determined based on the effective width values presented in this paper. The 

equivalent column with a cruciform cross-sectional shape need only be checked for global 

buckling using the provisions of AISC Specifications (2010) in Sections E3 and E4, because the 

effects of local buckling were included in the calculation of the effective web width. A K value 

equal to 0.5 is recommended based on an examination of the deformed shapes of castellated beam 

sections at simulated failure. 

The capacity of the unstiffened beams against concentrated loads as it relates to the limit state 

of buckling of the web post in compression, ranged from 1.5 k/in to 6.8 k/in assuming that the load 

was applied over a distance equal to the spacing of the holes for load cases A and B and half the 

distance between the holes for load case C. These capacities were significantly increased when the 

castellated beam sections were reinforced with stiffeners and they ranged from 5 k/in to 47 k/in. 

These values together with the results presented in this paper can be used to determine the necessity 

of stiffeners in castellated beams to prevent the buckling of the web post due to compression. 
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