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Abstract 
A higher order beam model for the buckling analysis of thin-walled structures is presented. The 
model relies on the enrichment of the displacement field so as to accurately represent the three-
dimensional behaviour of thin-walled structures. The definition of an uncoupled set of 
deformation modes allows a meaningful definition of hierarchical higher order solutions, which 
are useful for the linear buckling analysis of thin-walled structures. A criterion for the definition 
of local and global buckling modes, as well as the possible interaction between modes is put 
forward. A comparison between the results obtained with the higher order beam model and 
results obtained from a shell finite element model implemented in ABAQUS allows to conclude 
not only the efficiency of the beam model but also its simplicity of use. 
 
 
1. Introduction 
Thin-walled structures are prone to both local and global buckling phenomena, being the design 
of this type of structures often determined by the interaction between theses modes. The stability 
analysis by a shell finite element model is a standard and accurate procedure to evaluate 
bifurcation loads and the corresponding buckling modes. Nonetheless, shell finite models can 
pose certain difficulties in the interpretation of buckling phenomena, particularly when 
interaction between modes occurs. 
 
Alternatively to shell models, beam models can also be efficiently adopted to perform a stability 
analysis of a thin-walled structure, having the advantage of allowing a more clear insight into the 
buckling phenomena. To this end, the beam model has to be capable of reproducing the 3D 
structural behaviour of the thin-walled structure, namely the corresponding out of plane warping 
and the in-plane flexure of a cross-section. Moreover, the beam model should be able of 
providing sets of uncoupled solutions for the stability of the thin-walled structure so as to clearly 
identify the most relevant buckling modes. 
 
Although considering different approaches, several beam models have been successfully adopted 
to model thin-walled structures. Essentially, these one-dimensional models rely on the 
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enrichment of the displacement field over the cross-section in order to enhance the accuracy of 
the model. The quantification of the Saint-Venant principle has been adopted in the formulation 
of beam models by defining the three-dimensional continuum mechanics in terms of higher order 
modes, (Genoese 2013, 2014a and 2014b; Ferradi 2013 and 2014). The displacement field of 
beam models has also been enhanced by adopting (i) an asymptotical analysis of the cross-
section (Hodges 2006; Yu 2012); (ii) an approximation through a Taylor’s expansion, (Carrera 
2010 and 2011) and (iii) an approximation of the displacement field on the beam cross-section 
by a set of linearly independent basis functions, (Razaqpur 1991; Prokic 1996; Kim 1999; Kim 
2000; Kim 2002; Pavaaza 2005; Sadée 2006 and Fatmi 2007). 
 
The so-called generalised beam theory (GBT), which has been developed from the seminal work 
of (Schardt 1989) towards its applicability to more generic cross-section midline geometries, 
(Dinis 2006; Gonçalves 2009; Nedelcu 2010; Ranzi 2011 and Ranzi 2014; Jonsson 2011; 
Andreassen 2013) is a successful theory for the analysis of thin-walled structures; the GBT owes 
its success to its modal uncoupled nature, which renders the theory an adequate tool for the 
buckling analysis of thin-walled structures.  
 
Thin-walled structures have also been analyzed through a semi-analytical finite strip analysis 
(the constrained finite strip analysis - cFSM), being the corresponding mechanical behaviour 
evaluated through the separation of the corresponding deformation modes, (Li 2011 and Adany, 
2008). A comparison between the modal approaches of GBT and cFSM has been presented in 
(Adany 2009). 
 
The higher order beam model that considers the out of plane warping and the in-plane flexure of 
thin-walled structures presented in (Vieira 2014) has been applied to the buckling analysis of 
thin-walled structures. The model copes with the loss of accuracy inherent from the reduction of 
a three-dimensional elasticity formulation to a one-dimensional model by an enrichment of the 
beam displacement field on the beam cross-section through the adoption of a set of interpolation 
functions of a suitable degree, defined over a sufficiently refined mesh of the cross-section. The 
beam governing equations are derived considering the approximation scheme adopted for the 
displacement, yielding a set of fourth order differential system of equations. The solution of this 
system is analyzed through the corresponding non-linear eigenvalue problem, which allows to 
obtain a set of uncoupled deformation modes.  
 
 
2. Higher Order Thin-Walled Beam Model 
A beam model derived by considering an enriched approximation of the displacement field so as 
to accurately represent the 3D structural behaviour of a thin-walled structure is considered. The 
model relies on the approximation of the displacement field on the cross-section by a set of 
linearly independent basis functions and on a criterion to uncouple the corresponding governing 
equations for an efficient analysis of thin-walled structures.  
 
The cross-section is divided into elements for the approximation of the displacement field, being 
each displacement component interpolated independently along each element. A global 
approximation function, at a cross-section level, is then obtained by ensuring compatibility 
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between elements. The enrichment of the cross-section displacement field allows a beam model 
to reproduce the structure three-dimensional behaviour.  
 
However, for the beam model to be efficiently adopted, an uncoupling of the corresponding 
governing equations, allowing to identify uncoupled structural phenomena, is a key feature. To 
this end, a set of modes representing the cross-section deformation is derived from the 
homogeneous solution of the corresponding beam differential equilibrium equations.  
 
The classic equations are retrieved side by side with a set of governing equations representing 
higher order deformations. Given the procedure adopted for the approximation of the 
displacement field, the shear deformation of the middle surface in naturally included and the 
model is applicable to cross-sections with a generic geometry, e.g. open, closed and with more 
that two non-aligned walls intersecting a cross-section mode. 
 
2.1 Formulation 
This formulation considers a cross-section represented by a set of rectilinear wall segments, 
which form a generic shape, either of open or closed profile. A rectilinear segment can be 
divided into several elements for better approximation features. Each element is considered to 
have both a flexural and a membrane structural behaviour. For the flexural behaviour, it is 
assumed that the elements are sufficiently “thin” in order to consider valid the Kirchhoff 
formulation and hence neglect the shear deformation on the planes perpendicular to the middle 
surface. The displacement field considering both the membrane and the flexural structural 
behaviour of the plate is defined as follows: 

 
(1) 

 
(2) 

 
(3) 

where x represents the beam axis; s the coordinate along the cross-section profile and n the 
corresponding perpendicular coordinate;  ux(x,s) and us(x,s) represent the in-plane displacements 
associated with the plate membrane behaviour and un(x,s,n), the plate transverse displacement, 
which is considered to be constant over the plate element thickness. 
 
The displacement field of the cross-section middle surface is thus approximated independently in 
the three spatial directions through the following expressions, 

 
(4) 

where φ , ψ   and  χ , correspond to the sets of the adopted basis functions; the basis functions are 
defined by assembling the approximation of the displacement field over each thin-walled 
element. The presented model was derived considering the approximation of the displacement 
field over the beam cross-section through a set of globally defined basis functions. However, it is 
more versatile, and computationally more efficient, to divide the cross-section into a set of 
rectilinear laminar elements, forming a cross-section mesh, and to consider an approximation for 
the displacement field defined over each thin-walled element.  
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The assemblage of the cross-section “elements” is made by considering the compatibility in 
terms of the middle surface displacements at the corresponding end-sections of the elements, 
neglecting the compatibility of the displacement field along the thin-wall thickness. The 
approximation functions at the element level are required to have a sufficient continuity 
condition in order to allow the establishment of the beam differential equations. 
 
The degrees of freedom of the thin-walled element with the corresponding approximation 
functions are represented for an element in Fig.1. A discretization into those elements is 
performed for the cross-section analysis, within the beam model formulation framework, by 
considering a suitable mesh without any restrictions regarding its definition; hence, not only any 
arbitrary polygonal geometry can be considered, but also an h-refinement of a rectilinear 
segment is possible. 

 
 

 
Figure 1: Thin-walled element. 

 
A complete kinematical description for the thin-walled structure is obtained by substituting the 
approximations made in Eqs. 4 into the displacement field definition given by Eqs 1-3, being 
written as follows:  

 

(5) 

The deformation field is obtained under the small displacements hypothesis through the Cauchy 
infinitesimal compatibility operator by considering the displacement field approximation 
obtained through Eq. 4, being the corresponding components written as follows, 
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(6) 

The corresponding stress field can be obtained through the constitutive relation, 

 
(7) 

where the constitutive matrix C is defined for a plane stress of each wall considering a plate 
flexural behaviour. The stress field is obtained by considering the constitutive relation of Eq. 7 
and the strain field given by Eqs. 6, being written in terms of the displacement field as follows, 

 

(8) 

The vector of generalised forces distributed along the beam axis is written as follows,  

 (9) 
where the corresponding components are given by,  

 
 

(10) 

The distributed forces are defined by a set of vectors that gather the corresponding densities 
defined on the thin-walled middle surface (x, s), which are written as,  

 

 

(11) 

Considering the stress and deformation field defined in Eqs. 6 and 8 and by making use of the 
virtual work principle, a system of equilibrium equations written in terms of displacements is 
obtained, which can be compactly written as follows:  

 
(12) 

Details of the definition of the coefficient matrices in Eq. 12 can be found in (Vieira 2014). 
 
2.3 Linear stability analysis 
The higher order thin-walled beam model presented in section 2.2 is adopted for a linear stability 
analysis of thin-walled structures, allowing to obtain the corresponding local and global 
bifurcation loads. In fact, the higher order model can adequately consider local buckling 
phenomena in as much as it is properly enriched so as to accurately represent the cross-section 
in-plane deformation, (Vieira 2014). Moreover, the criterion adopted for the definition of the 
uncoupled deformations modes enhances the perception of the thin-walled structural behaviour, 
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throwing a light into the buckling phenomena. Conversely, a shell finite element model allows to 
accurately evaluate the buckling phenomena, being however difficult to separately identify the 
interaction between buckling modes. The capability of the higher order model to consider the 
behaviour of thin-walled structures by a set of uncoupled deformation modes proves to be an 
efficient and accurate way of evaluating buckling phenomena, identifying local and global 
buckling modes, as well as the corresponding couplings. 
 
Towards a buckling analysis, the thin-walled structure is subjected to a set of in-plane stresses at 
both the end sections, being admitted a linear pre-buckling state of stress, i.e., the displacement 
field that represents the fundamental path is linearly dependent of a load parameter. The 
displacement field is obtained from the model governing equations, Eqs. 12, being written as 
follows: 

 
(13) 

The corresponding stress field is given by the following expressions, 

 

(14) 

The linear stability analysis is performed by establishing the equilibrium equations on a 
deformed configuration within the vicinity of the fundamental path. By doing so, the existence of 
a bifurcation point, representing the intersection point between the fundamental and the 
secondary path, is ensured according to the adjacent equilibrium criterion, (Pignataro 1991). 
 
Hence, the deformation of the thin-walled structure is defined by a configuration that is 
“disturbed” from the fundamental path through a small parameter (kinematically admissible). 
Considering the displacement field aproximation of Eqs. 5, the non-linear deformation of the 
thin-walled structure according to the hypotheses of (Novozhilov 1953) is given by 

 

 

 

 
 

(15) 

The first variation of the energy associated with the thin-walled structure is computed so as to 
derive the beam equilibrium equations. Hence, the stress field corresponding to the pre-buckling 
state as defined by Eqs. 14 is considered, being the corresponding variation of deformation 
obtained by adding to the deformation field given by Eq. 6 the non-linear terms defined in Eqs. 
15. The higher order equilibrium equations of a thin-walled configuration that is “disturbed” 
from the fundamental path is therefore obtained by considering the contribution of the 
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corresponding non-linear geometric terms, in addition to the equilibrium equations, Eq.12, being 
written as follows, 

 
(17) 

where K 2

G
 and K 1

G
 are geometric matrices and are obtained according to the pre-buckling of the 

structure. Considering the structure subjected to in-plane membrane forces at both end sections, 
i.e., a state of stress defined by axial components of the stress field of Eq. 13, the matrix K 1

G

results null, being K 2

G
 defined as follows: 

 

 

(18) 

The bifurcation loads and the corresponding buckling modes are obtained either from an 
analytical or a numerical solution of Eq. 17. To this end, the set of the equilibrium equations are 
written in the set of coordinates corresponding to the uncoupled modes derived from the 
eigenvalue problem. By doing so, the model's governing equations become uncoupled to the 
most possible form, yielding a set of beam-like equations. In the uncoupled form of the 
governing equations, some of the corresponding coefficient matrices have non-null components 
off the principal diagonal. These non-null components allow to identify the buckling modes of 
the structure as a linear combination of orthogonal displacement modes. The equilibrium 
equations of a buckling mode are therefore obtained by condensing the uncoupled form of 
equations Eq. 17 to the set of coordinates that corresponds to the displacement modes defining 
the buckling mode. 
 
3. Examples of application 
The local and global buckling of a thin-walled column with a rectangular hollow section is 
analyzed through the higher order beam model. The column is simply supported and subjected to 
a compressive uniform axial stress. Local and global bifurcation loads and the corresponding 
buckling modes are obtained analytically and numerically, being compared with the results of a 
shell finite element model implemented in ABAQUS.  
 
The rectangular hollow section has a width bf =100 mm, a height hw =200mm and a wall 
thickness of 2 mm. The steel is considered to have an elastic modulus of 210 kN/mm2, being the 
Poisson effect neglected and the cross-section walls admitted to be undeformable along the 
respective midline, i.e., εs =0. A cross-section analysis is performed by considering the 
rectangular hollow section divided into 4 elements as represented in Fig. 2, being the 
approximation of the displacement along each element defined by Eq. 5. Towards the definition 
of the structure’s uncoupled deformation modes, the non-linear eigenvalue problem associated 
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with the beam governing equations is solved, being derived the in-plane orthogonal displacement 
modes represented in Fig. 3.  

 
Figure 2: Rectangular hollow section discretization.  

 
The beam governing equations are rewritten considering the displacement modes of Fig. 3, 
which allows to obtain a meaningful form of the equations, retrieving classic equations and put 
forward beam-like equations for higher order modes. The coupling between modes in the 
rewritten form of the equations allows to identify the displacement modes that should be 
considered on the definition of local and global buckling modes. The bifurcation loads are then 
obtained from the solution of the linear stability Eqs. 17 considering the linear combination of 
displacement modes that defines the corresponding buckling mode.  
 
For the thin-walled column with the rectangular hollow cross-section, the following linear 
combinations of displacement modes are identified as local buckling modes: (i) uLB1= β2; (ii) 
uLB2= {v, β3}; (iii) uLB3= {w, β4}. In-plane flexural displacement modes β2, β3 and β4 are 
represented in Fig. 3 and were obtained from the eigenvalue problem of the higher order beam 
model.  
 
The bifurcation load of the buckling mode uLB1 is obtained by condensing the equilibrium 
equations to the displacement mode β2, which can be written as follows, 

 
(19) 

The bifurcation load associated with buckling mode uLB1 is obtained analytically by considering 
a sinusoidal solution of Eq. 5, being the corresponding results for several column lengths and 
different wavelengths depicted in Fig. 4. Consider now for the thin-walled column the buckling 
mode uLB2, which is given as a combination of the in-plane flexural displacement mode β3 and 
the transverse displacement v. Condensing the linear stability equations to v and β3 and 
considering a solution of the form, 

 
(20) 
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allows to evaluate the bifurcation load of mode uLB2, which is represented in Fig. 5. for several 
column lengths. 
 

 
Figure 3: Rectangular hollow section displacement modes.  

 
 
The bifurcation loads of the global buckling modes can also be obtained from the higher order 
model by considering appropriate displacement modes combination. To this end, the following 
combinations can be considered: u ={θz, v} for the flexural buckling around the z axis; u ={θy, 
w} for the flexural buckling around the y axis; u ={θ, ω} for the torsional buckling. 
 
Admitting a possible interaction with the global buckling mode that corresponds to the flexure 
around the y axis, it is possible to obtain an analytical solution that considers equal wavelengths 
for all the displacement modes involved. The buckling mode is then defined as follows, 

 
(21) 

being considered the following analytical solution, 

 

(22) 

The bifurcation loads associated with buckling mode uLB2, the global flexural buckling and the 
interaction between local and global modes is represented for several lengths in Fig. 6. 
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Figure 4: Global-local (uLB1) bifurcation loads, rectangular hollow section.  

 

 
Figure 5: Global-local (uLB2) bifurcation loads, rectangular hollow section.  

 

 
Figure 6: Interaction between global and local modes, rectangular hollow section.  
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A numerical solution of the linear stability analysis through the finite element method is 
considered. The formulation considers the approximation of the uncoupled displacement modes 
along the finite element by a set of interpolation functions, deriving a weak form of Eq. 17. The 
numerical formulation has the advantage of allowing to verify whether the local and buckling 
modes interact without being limited to consider modes with the same wavelength.  
 
The following boundary conditions were considered for the finite element model: (i) both 
transverse displacements prevented at both end sections; (ii) the axial displacement fixed in one 
end section; (iii) the torsional rotation fixed in one end section; and (iv) the modes associated 
with in-plane modes blocked at both end sections. The bifurcation loads obtained for several 
column lengths are represented in Fig. 7 where the bifurcation loads obtained analytically for the 
most relevant mode, β2, are compared with the bifurcation loads obtained numerically through 
the developed model (considering all the cross section displacement modes) for a mesh of 8 and 
32 finite elements lengthwise. The numerical and analytical results are in a good agreement 
except for the column length range 3000mm to 4000mm, where the numerical model with 8 
finite elements it is not sufficiently refined to capture the local buckling of the column. However, 
for the more refined model of 32 elements this issue no longer occurs. 
 
A model of a three dimensional mesh of shell elements considering a division of 16 × 60 
elements in the transverse section and in the column length, respectively, was implemented in 
ABAQUS, in order to verify the accuracy of the results obtained from the higher order beam 
model. The bifurcation loads obtained from ABAQUS are also represented in Fig. 7, showing a 
good agreement with the numerical results obtained through the one-dimensional finite element. 
 

 
Figure 7: Global-local bifurcation loads, comparison with a shell model. 

 
The buckling mode obtained from the developed finite element model for a column of L=1000 
mm is plotted in Fig. 8 where it can be verified that the in-plane shape of the buckling mode 
corresponds to β2 and the number of wavelengths is in agreement with the analytical formulation. 
Notice that the Fig. 8 corresponds to a one-dimensional model, i.e., only the amplitudes of the 
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displacement modes were interpolated along the beam axis; hence, the apparent mesh depicted in 
the figure is only of a post-processed nature. 
 

 
Figure 8: Column buckling mode.  

 
A simply supported column with an I shaped cross-section with an elastic modulus of 210 
kN/mm2 is herein also considered for a linear stability analysis so as to shed a light on the 
corresponding buckling phenomena. The cross-section has a web with dimensions 1200 mm ×10 
mm and two equal flanges of dimensions 600 mm × 25 mm. The cross-section analysis is 
performed considering a discretization with 5 elements as represented in Fig. 9. The tangential 
deformability along the profile midline is restricted and therefore the 22 initial degrees of 
freedom are reduced to a total of 19 degrees of freedom for the cross section. 

 
Figure 9: I shaped cross-section discretization. 

 
The two most significant higher order modes β1 and β2 are represented in Fig. 10. 
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Figure 10:I shaped cross-section, in-plane modes. 

 
The local buckling mode of the column can be defined as follows,  

 
(23) 

being the corresponding linear stability equations obtained by condensing the governing 
equations to these modes,  

 

(24) 

A linear eigenvalue problem is obtained by considering the following solution, 

 
(25) 

which allows to determine the corresponding bifurcation loads for several half-length waves; the 
results are represented in Fig. 11. The minimum bifurcation load obtained for the local buckling 
is almost a constant value for different half-lengths with different column lengths, Pcr ≅ 3470kN.  

 
Figure 11: Global-local bifurcation loads, I shaped cross-section.  

 
Considering the buckling mode defined only as a linear combination of the transverse 
displacement v and the distortional mode β1, the corresponding bifurcation load would be several 
times higher than the one obtained by adopting the buckling mode defined in Eq. 23. In fact, the 
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buckling of this column, given the slenderness of the corresponding web and flanges, is 
essentially governed by the web buckling, as it can be verified in (Allen 1980) and hence the 
results would be sensitive to the flexural web stiffness. 
 
The buckling analysis that considers the interaction between the local and the flexural mode that 
corresponds to the rotation around the y axis is performed by considering the following 
displacement modes,  

 
(26) 

The bifurcation loads considering the interaction of flexural and local buckling modes were 
obtained by considering a solution of the following form, 

 
(27) 

being represented in Fig. 12 for several column lengths. 

 
Figure 12: Interaction between global and local modes, I shaped cross-section.  

 
The bifurcation loads obtained by the higher order beam model both numerically (through the 
developed one dimensional finite element model) and analytically are compared with the results 
obtained from a shell model implemented in ABAQUS in Fig. 13, allowing to conclude good 
agreement of results. The buckling mode obtained from the one-dimensional finite element 
model is represented for a column length of 3000mm and 8000mm in Figs. 14 and 15 
respectively. A good agreement between the results from the shell and the higher order beam 
model regarding the number of wavelengths associated with the buckling modes was also 
obtained.  
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Figure 13: Global-local bifurcation loads, comparison with a shell model.  

 

 
Figure 14: Buckling mode (beam model), L=3000mm.  

 

 
Figure 15: Buckling mode (beam model), L=8000mm. 
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4. Conclusions 
The basis of a higher order beam model for the analysis of thin-walled structures was presented. 
The model relies on the approximation of the displacement field over the cross-section in order 
to adequately represent the three-dimensional structural behaviour and on a consistent criterion 
for the definition of uncoupled modes. The uncoupled nature of the model has allowed to derive 
sets of beam-like equations representing classic deformations and local effects.  
 
Local and global buckling phenomena were successfully analysed through the higher order beam 
model. In fact, since the beam model considers the in-plane flexure of the cross-section, it can 
efficiently consider local buckling. Moreover, the definition of uncoupled modes enhances the 
perception of stability phenomena by identifying the relevant structural behaviour. Towards the 
definition of bifurcation loads and the corresponding buckling loads, a linear stability analysis 
was performed by considering a linear pre-buckling state and employing the adjacent equilibrium 
criterion. The governing equations were written for the vicinity of the fundamental path 
considering the displacement modes in the uncoupled form. 
 
Two approaches were considered for the solution of the linear stability equations: (i) an 
analytical solution considering a trigonometric lengthwise variation of the mode and (ii) a 
numerical solution cast within the finite element method. The analytical solution has allowed to 
define for each buckling mode the corresponding bifurcation load, being nevertheless limited to 
consider an equal wavelength for local and global buckling modes. Therefore, the analytical 
formulation was not adequate to consider the interaction between modes. To this end, the 
numerical model has proven to be efficient in as much as it considers the adequate wavelength of 
each mode by a proper refinement of the finite element mesh in order to define a solution of the 
problem.  
 
A shell finite element model implemented in ABAQUS was also adopted, being the corresponding 
results in terms of bifurcation loads and the respective buckling modes in an excellent agreement 
with the results obtained from the higher-order beam model. 
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