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Abstract 

The present paper focuses on the rotational capacity of H-shaped steel sections; in particular, the 
influence of local buckling is accounted for by means of a generalized cross-sectional 
slenderness, which is used as a new parameter to characterize the cross-sectional rotational 
capacity, and, by extension, the available deformation capacity. 

Careful shell modelling of wide flange beams in bending was used in extensive F.E. parametric 
studies that included many parameters such as various materials (up to high strength steel), load 
and support arrangements, length-to-height ratios and web/flange slenderness. Specific attention 
was paid to the introduction of initial geometrical (local) imperfections. 

The paper then analyzes the numerical results and points out the various influences of shear, 
moment gradient, yield stress, static system and length-to-height ratio on the available rotational 
capacity. In a second step, the rotational capacity demand vs. stability criterion is detailed, and 
related to the proposed generalized cross-sectional slenderness, which is shown to be more 
appropriate than the b / t ratios usually proposed in design codes. Finally, suggestions for new 
ways of allowing for plastic analysis through such approaches are given. 

1. Introduction 

The present paper is related to the rotational capacity of wide-flange, open section members; the 
intention is here to investigate new ways of defining the possibility to resort to a plastic analysis 
in practical design. These developments take place in the context of the development of the 
Overall Interaction Concept (O.I.C.) (Boissonnade 2013). The O.I.C., among other things, is 
meant to remove the preliminary “cross-section classification” design step, i.e. the classification 
of the cross-section into the plastic (so-called “class 1” in European standards Eurocode 3), 
compact (class 2), semi-compact (class 3) or slender range (class 4). This is achieved within the 
O.I.C. through the definition of a generalized cross-section slenderness λrel,CS and of associated 
cross-section interaction curves that lead to a smooth and continuous definition of cross-sectional 
resistance, from plastic to slender capacity. Consequently, the classification step becomes 
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obsolete and disappears in the O.I.C. approach, avoiding many practical difficulties, inaccuracies 
and inconsistencies (Boissonnade 2013). 

With the disappearance of the classification system, the criterion allowing the designer to 
perform a plastic analysis (formerly allowed for class 1 sections) vanishes as well. Therefore, the 
need to “re-introduce” such a criterion is clear and is dealt with in present paper. It may be added 
here that in daily practice, plastic design is quite popular in the U.K. and North America, so that 
clear procedures and recommendations are essential. 

The basic idea developed in the present paper consists in an extended use of the λrel,CS factor to 
define two families of sections: 
 sections allowing for plastic analysis and design (“class 1” sections, possessing sufficient 

rotational capacity for a plastic failure mechanism to develop); 
 other sections for which the extent of local buckling precludes the attainment of sufficient 

ductile deformation for the development of a plastic mechanism, so that plastic analysis is 
to be avoided. 

In other words, this paper addresses the possibility to define limit values of λrel,CS as a function of 
key parameters so as to replace the Rdem vs. Rcap criterion (see Fig. 1), where Rdem is the rotation 
demand and Rcap is the rotation capacity. 

Figure 1: criterion to allow for plastic analysis 

 
 
 
 
 
 
 
 
 
 
 

 

In this respect, a numerical strategy was developed, aiming at characterizing numerically both 
the demand and the cross-section rotational capacity. Expected leading parameters such as 
section slenderness, shear, yield strength, L / h ratio… were investigated separately through 
various static configurations and load definitions. 

Section 2 first describes specific insights in the “Rstab,CS” parameter, which has the key role in the 
definition of λrel,CS for the situation considered here. Section 3 then details the shell F.E. models 
used herein, and the associated parametric studies. Last, section 4 investigates the results of a 
sensitivity study to various parameters and properties, and relates Rcap to Rdem for a series of 
continuous beams situations. 

 Rotation Demand Rdem Rotation Capacity Rcap 

 Rcap ≥ Rdem 

Plastic analysis not allowedPlastic analysis allowed

Yes No

Recommendations, codes, charts Structural analysis software 
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2. Determination of RSTAB,CS 

2.1. Nature and importance of RSTAB,CS – Parametric studies 

As already explained, the rotation capacity is here related to the overall cross-section relative 
slenderness λrel,CS (Eq. 1); RRESIST represents the factor (often also denoted as “load ratio”) by 
which the initial loading has to be multiplied to reach the resistance limit, and RSTAB,CS is the load 
ratio needed to reach the buckling load (local instability) of the ideal, elastic cross-section (so-
called Linear Buckling Analysis) (Boissonnade 2013). 

 ,
,

RESIST
rel CS

STAB CS

R

R
   (1) 

This overall relative slenderness is a key parameter in the present study, and the current section 
focuses on a numerical calculation of RSTAB,CS. Its determination has been computed by means of 
CUFSM and FINELg software for comparison and validation; the numerical results obtained 
from both sources are presented, compared and discussed below. 

In this preliminary study, two base profiles, an IPE500 S355 and an HEB300 S355 have been 
considered, loaded either in compression or under major-axis bending. For each cross-section 
dimensions, in order to cover all cross-sectional behavioral classes ranging from plastic to 
slender, the thickness of the web and flanges of these profiles were modified while their heights 
and width were kept constant. New section geometries (modified b / t ratios) were back-
calculated from λrel,p limits between classes (see Fig. 2). The λrel,p limit values were set to 0.5 for 
the class 1-2 border and to 0.6 for the class 2-3 border (CEN 2005). As for the class 3 and 4 
border, (elastic) limits have been based on the well-known Winter formulae (Johansson 2007).  

 

Class 1 Class 2 Class 3 Class 4

Chosen slenderness to determine sections geometries  
Figure 2: method used for the calculation of section geometries 

The base sections have then been degenerated into various geometries, through a two-step 
procedure. In a first step, only the thickness of the most slender element was modified – into 
cases covering plastic to slender situations – while the other thickness was kept constant. In a 
second step, all thicknesses were modified proportionally. For the IPE500, web buckling usually 
occurs first, so that the first step consisted in modifying the web thickness while the flange 
thickness remained constant; then, web and flange thickness were varied simultaneously. As for 
the HEB300, where the flanges are rather sensitive to instabilities, flange thickness where 
modified and web thickness kept constant; then, web and flange thickness were varied 
proportionally. 

λrel,p= 0.5 λrel,p= 0.6 
λrel,p from 

Winter formulae 
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2.2. Determination of RSTAB,CS with CUFSM 

A first sensitivity study was carried out with CUSFM to validate the density of the adopted 
meshes. Different meshes were tested and Table 1 reports on the number of elements used in 
flanges and webs within the different meshes. The number of elements in the flanges and webs 
was chosen in order to have equal strip widths (see Fig. 3). The meshes are varied from coarse to 
very dense, mesh f3 being the intermediate one. 

Table 1: Various mesh refinement adapted in CUFSM 

IPE 500 HEB 300 
  Mesh f1 Mesh f3 Mesh f5 Mesh f1 Mesh f3 Mesh f5 
Number of elements in flange nf 6 22 38 8 26 46 
Number of elements in web nw 18 66 114 8 26 46 
 

 
Mesh f1 Mesh f3 Mesh f5 

Figure 3: HEB300 meshing in CUFSM 

As Fig. 4 clearly shows, the various minimum RSTAB,CS  values obtained by means of CUFSM 
indicate that mesh f1 is already sufficient to reach reliable RSTAB,CS  values, whatever the 
geometry or type of loading.  
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Figure 4: CUFSM results as a function of meshing refinement 

Besides, specific attention was paid to the geometrical definition and modelling of the H-shaped 
section, especially towards the web-to-flange zone and flange radius area – CUFSM does not 
explicitly allow the modeling of fillets. In the case of hot-rolled profiles, owing to relatively 
stocky geometries, the influence of this zone can affect the results. Thus, for a correct 
representation of the section geometry and properties, both the fillets and the “overlapping area” 
were modeled by increasing the web and flange thickness in the radius area, as shown in Fig. 5, 
so that the increased thickness is equal to the corner region minus the overlapping area.  
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Figure 5: Accounting for flange radius in H-shaped cross-section in CUFSM modelling 

A sub-study was carried out to investigate the influence of the additional thicknesses in the 
model on RSTAB,CS values. Sections were considered under compression and major-axis bending 
only. Both models, without particular treatment of the web-to-flange junction area and models 
modified as explained above, were considered. In order to provide a fair comparison between 
models – they exhibit different cross-section properties –, identical initial loading was considered 
for all cases and reference was made to the models with extra thickness. 

As Fig. 5 shows6 , non-negligible differences between the two models can be reported. As 
expected, the models with increased thickness were systematically exhibiting higher RSTAB,CS 
values; this is easily explained by the fact that these models possess a relatively larger area and 
because local buckling (governing cross-section buckling mode here) develops with reduced 
buckling widths, thus leading to higher critical stresses, i.e. RSTAB,CS factors. Therefore, in the 
following, the more sophisticated model with increased thickness was kept as reference. In some 
cases (see Fig. 6b), the buckling mode leading to the minimum RSTAB,CS  even changed from local 
to distortional. 
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Figure 6: Examples of results from the two different CUFSM models with respect to fillets modelling 

Table 2 and 3 report a series of results obtained for compression and major-axis bending load 
cases, respectively. Sections in compression are seen to be less sensitive to the modelling of the 
radius zone. However, as a general tendency, the differences between the two models prediction 
increase with cross-section slenderness. The maximum deviations recorded are: 11% for class 1, 
18% for class 2, 21% for class 3, and 33% for class 4. It is to be mentioned too that such models 
exhibit geometrical static properties in close agreement with the real properties of the section. 

                                                 
6 Buckling mode 1 was considered for comparison purposes. 



 6

Table 2: CUFSM results for sections under compression 

Axial Force N IPE500_tf16_tw24* IPE500_tf16_tw17 IPE500_tf16_tw14.5 IPE500_tf16_tw10.2 IPE500_tf9.0_tw17 IPE500_tf7.6_tw14.5 IPE500_tf6.7_tw10.2

Web class 1 class 2 class 3 class 4 class 2 class 3 class 4
Flange class 1 class 1 class 1 class 1 class 2 class 3 class 4

Rstab, CS (with filets) - 3.13 2.56 1.59 2.50 1.87 1.02

Rstab, CS (without filets) 4.98 3.06 2.47 1.46 2.37 1.73 0.90

Difference [%] - -2.2 -3.6 -7.8 -5.1 -7.3 -12

Axial Force N HEB300_tf19_tw11 HEB300_tf14.4_tw11 HEB300_tf12_tw11 HEB300_tf10.3_tw11 HEB300_tf14.4_tw8.6 HEB300_tf12_tw7.6 HEB300_tf10.3_tw6.9
Web class 1 class 1 class 1 class 1 class 2 class 3 class 4
Flange class 1 class 2 class 3 class 4 class 2 class 3 class 4

Rstab, CS (with filets) 4.62 3.08 2.45 2.07 2.78 2.04 1.59

Rstab, CS (without filets) 4.21 2.68 2.06 1.67 2.39 1.68 1.25

Difference [%] -8.8 -13 -16 -19 -14 -18 -21

Buckled shape with 
an increased 

thinckness in the 
radius area

Buckled shape with 
an increased 

thinckness in the 
radius area

 

Table 3: CUFSM results for sections under major-axis bending 

Moment My IPE500_tf16_tw10.2 IPE500_tf16_tw6.9 IPE500_tf_16_tw5.1 IPE500_tf16_tw3.7 IPE500_tf9.0_tw6.9 IPE500_tf7.6_tw5.1 IPE500_tf6.7_tw3.7

Web class 1 class 1 class 1 class 1 class 2 class 3 class 4
Flange class 1 class 2 class 3 class 4 class 2 class 3 class 4

Rstab, CS (with filets) 6.93 4.90 2.94 1.65 2.66 1.80 1.28

Rstab, CS (without filets) 6.51 4.19 2.36 1.25 2.24 1.43 0.96

Difference [%] -6.0 -15 -20 -24 -16 -21 -25

Moment My HEB300_tf19_tw11 HEB300_tf14.4_tw11 HEB300_tf12_tw11 HEB300_tf10.3_tw11 HEB300_tf14.4_tw3.5 HEB300_tf12_tw2.7 HEB300_tf10.3_tw2

Web class 1 class 2 class 3 class 4 class 2 class 3 class 4
Flange class 1 class 1 class 1 class 1 class 2 class 3 class 4

Rstab, CS (with filets) 5.90 3.97 3.14 2.58 2.78 1.95 1.45

Rstab, CS (without filets) 5.22 3.35 2.55 2.03 2.28 1.54 0.966 (1.09)

Difference [%] -11 -16 -19 -21 -18 -21 -33 (-25)

Buckled shape with 
an increased 

thinckness in the 
radius area

Buckled shape with 
an increased 

thinckness in the 
radius area

*: No increased thickness in the web-to-flanges junction was made due to the section geometry 
In bold: original cross-section dimensions 
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2.3. Determination of RSTAB,CS with FINELg 

Prior to investigating the numerical determination of RSTAB,CS by means of shell models, 
numerical tests on mesh refinement were also performed. Non-linear F.E.M. software FINELg 
(2012), continuously developed at the University of Liège and Greisch Engineering Office since 
1970, was used. As a general basis, the longitudinal mesh was chosen so as to use square shell 
elements; the different meshes tested are shown in Table 47. All results detailed hereafter have 
been obtained on short members (L = 0.5 h to 5 h, h being the height of the cross-section 
considered) to capture local buckling only. The use of kinematic linear constraints has been 
made between flange and web nodes and ideal “fork conditions” were adopted. Loading has been 
implemented at the member’s end by means of suitable distributions of concentrated forces at the 
flanges tips, given the kinematics constraints (see Fig. 8). 

Table 4: FINELg investigated meshes 

IPE500 HEB300 

  Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 1 Mesh 2 Mesh 3 Mesh 4

Number of elements in flange nf 6 8 10 12 10 12 16 18 

Number of elements in web nw 18 24 30 36 10 12 16 18 

 

 
nf = 6 nf = 8 nf = 10 nf = 12 

Figure 7: Various HEB300 meshes in FINELg 

 

Figure 8: Loading and support conditions for major-axis bending 

                                                 
7 Meshes were defined according to the flange and have equal length in all directions. 
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Fig. 9 gives an example of the obtained results. Two different load cases have been considered as 
well: axial compression N only, and constant major-axis bending moment M. RSTAB,CS critical 
load ratios are reported versus the number of elements in the flanges (it is to be noted that the 
number of elements in the webs was adapted so as to keep similar shell elements widths between 
flanges and web, see for example in Fig. 7). As can be seen, mesh density n°3 leads to 
satisfactory results and was adopted in the following calculations. 
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Figure 9: Influence of mesh refinement in FINELg models 

The shell F.E. model was developed so as to fit the real geometrical properties of the members as 
closely as possible. Consequently, an additional square beam element was placed in the flange 
radius zone to account for the presence of the fillets and the overlapping area at the webs to 
flange junction which, without specific treatment, is usually counted twice in shell modelling of 
open sections. Also, an additional truss system has been implemented in the model to keep the 
flange radius zones unaffected by the extent of local buckling (Fig. 10). 
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beam element

flange

Nodes of web
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Nodes of
flange

Nodes of web

Centroid of
radius zone Area not

included
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Figure 10: Accounting for flange radius in H-shaped cross-section in FINELg modelling 

All modelling possibilities with respect to the treatment of the radius zone were tested in order to 
visualize the effect of one component (i.e. flanges or web) on the cross-section response. Fig. 11 
gives graphical examples of the obtained results for an IPE500 and an HEB300 under constant 
bending moment. The general trend observed is a “vertical shift in RSTAB,CS” values, from little to 
moderate. Moreover, similarly to trends observed with a CUFSM modelling for the particular 
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case of the HEB300 with exaggerated slender web and flanges, the buckling mode changes from 
one type (local) to another one (distortional), see Fig. 11b. 
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Figure 11: Examples of results for various FINELg F.E. models with respect to web-to-flange zone 

Tables 5 and 6 report on the obtained results regarding both RSTAB,CS minimum values and the 
relative differences with results obtained through F.E. models with an additional beam and truss 
system (T = Truss, B = additional Beam element). As expected, the largest difference is reached 
with the model without a truss or additional beam element, as being the softer model (identical 
initial loading was considered for all models making the load ratios RSTAB,CS consistent and 
comparable). The case of an IPE500, where buckling of the cross-section is governed by web 
instability, is the most sensitive to the presence of the truss, owing to the difference in stiffness 
between its web and flanges. Also, following different flange/web relative local stiffness, the 
buckled shapes associated to the minimum RSTAB,CS values may qualitatively change, as 
highlighted by the red frames in Table 6. 

For the HEB300 case mainly governed by flange instability, the presence of the truss has more 
influence than that of the additional beam element8. The maximum observed deviations per 
cross-sections classes are the following: class 1: 13%, class 2: 24%, class 3: 27%, and class 4: 
31%. Therefore, as these modelling details are seen to have important influence on the results, 
both the truss system and the additional square beam element were kept for the consecutive F.E. 
studies. 

                                                 
8 Flange fillets were kept constant. 
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Table 5: FINELg results for sections under compression 

Axial Force N IPE500_tf16_tw24* IPE500_tf16_tw17 IPE500_tf16_tw14.5 IPE500_tf16_tw10.2 IPE500_tf9.0_tw17 IPE500_tf7.6_tw14.5 IPE500_tf6.7_tw10.2
Rstab, CS (T&B) - 3.03 2.50 1.60 2.36 1.73 0.92

Rstab, CS (T only) 4.86 3.01 2.47 1.57 2.31 1.68 0.87

Difference [%] - -0.7 -1.1 -1.9 -2.0 -3 -6

Rstab, CS (B only) 4.81 2.96 2.39 1.41 2.35 1.73 0.92

Difference [%] - -2.4 -4.3 -12 -0.5 -0.2 -0.04

Rstab, CS( noT&B) 4.81 2.94 2.37 1.38 2.49 1.67 0.87

Difference [%] - -3.1 -5.3 -14 5.5 -3.3 -5.7

Axial Force N HEB300_tf19_tw11 HEB300_tf14.4_tw11 HEB300_tf12_tw11 HEB300_tf10.3_tw11 HEB300_tf14.4_tw8.6 HEB300_tf12_tw7.6 HEB300_tf10.3_tw6.9
Rstab, CS (T&B) 4.40 2.87 2.26 1.90 2.57 1.85 1.42

Rstab, CS (T only) 4.26 2.72 2.11 1.75 2.42 1.69 1.26

Difference [%] -3.2 -5.1 -6.7 -8.2 -6.0 -9 -11

Rstab, CS (B only) 4.31 2.79 2.18 1.79 2.52 1.81 1.38

Difference [%] -2.1 -2.9 -3.6 -5.9 -2.0 -1.9 -2.1

Rstab, CS( noT&B) 4.17 2.65 2.04 1.65 2.37 1.66 1.24

Difference [%] -5.3 -7.7 -9.7 -13 -7.8 -10 -13

Buckled shape with 
truss and additional 

beam element

Buckled shape with 
truss and additional 

beam element

 

Table 6: FINELg results for sections under major-axis bending. 

Moment My IPE500_tf16_tw10.2 IPE500_tf16_tw6.9 IPE500_tf_16_tw5.1 IPE500_tf16_tw3.7 IPE500_tf9.0_tw6.9 IPE500_tf7.6_tw5.1 IPE500_tf6.7_tw3.7

Rstab, CS (T&B) 6.61 5.18 3.01 1.61 2.40 1.59 1.12

Rstab, CS (T only) 6.44 5.02 2.91 1.55 2.18 1.39 0.94

Difference [%] -2.5 -3.1 -3.5 -4.0 -8.8 -13 -16

Rstab, CS (B only) 6.48 4.06 2.31 1.24 2.34 1.57 1.07

Difference [%] -2.0 -22 -23 -23 -2.1 -1.6 -4.5

Rstab, CS( noT&B) 6.31 3.96 2.19 1.15 2.14 1.36 0.91

Difference [%] -4.5 -24 -27 -28 -11 -14 -19

Moment My HEB300_tf19_tw11 HEB300_tf14.4_tw11 HEB300_tf12_tw11 HEB300_tf10.3_tw11 HEB300_tf14.4_tw3.5 HEB300_tf12_tw2.7 HEB300_tf10.3_tw2
Rstab, CS (T&B) 5.98 4.01 3.18 2.67 2.57 1.77 1.28

Rstab, CS (T only) 5.80 3.82 2.98 2.46 2.38 1.60 1.13

Difference [%] -3.0 -4.9 -6.4 -7.8 -7.3 -10 -12

Rstab, CS (B only) 5.34 3.49 2.70 2.19 2.44 1.68 1.05 (1.20)

Difference [%] -11 -13 -15 -18 -5.0 -5.3 -18 (-6.25)

Rstab, CS( noT&B) 5.19 3.33 2.54 2.03 2.28 1.54 0.89 (1.01)

Difference [%] -13 -17 -20 -24 -11 -13 -31 (-21)

Buckled shape with 
truss and additional 

beam element

Buckled shape with 
truss and additional 

beam element
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2.4. Comparison and conclusions 

FINELg and CUFSM results have been compared for validation purposes. Fig. 12a plots an 
example of the observed differences between CUFSM and FINELg raw results. After the 
minimum eigenvalue is reached, results diverge between the two models; this is to be expected 
since CUFSM is based on the assumption that the buckling of each strip within the cross-section 
occurs in a sinusoidal half-wavelength that is equal to the length of the specimen while results 
obtained through shell F.E. models in FINELg have less restrictive constraints and may capture 
buckling with multiple half-waves in the longitudinal direction. This explains why FINELg 
results are roughly constant after the minimum eigenvalue is reached (see Fig. 12a). Hence, in 
Fig. 12b, and for sake of a consistent comparison between both sources, FINELg RSTAB,CS values 
only associated with a buckling mode involving a single longitudinal half-wave have been kept. 
The graphical comparison displays an excellent accordance between both sources. 
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Figure 12: Example of a comparison between CUFSM and FINELg results 

For all situations investigated, comparisons between CUFSM and FINELg results were 
performed and the minimum local buckling eigenvalue were compared. A deviation of maximum 
12% was observed and the associated buckling shapes were identical. Based on these 
comparisons, which comprise different cross-section slenderness and two load cases 
(compression and major-axis bending), both software were shown to be suitable and have been 
used indifferently in the numerical calculation of RSTAB,CS. 

3. Rotational capacity of wide-flange sections: F.E. parametric studies 

3.1. Shell F.E. numerical models 

Non-linear calculations were performed with the use of non-linear F.E.M. software FINELg 
(ULg and Greisch (2012)) with the objective of numerically predicting the rotational capacity. 
Further to the treatment of the web-to-flange zone, several modeling specificities were adopted 
to realistically simulate the mechanical behavior and offer a reasonable alternative to physical 
testing. 

First, lateral torsional buckling has been prevented by fixing the transversal displacement of the 
flanges. This was intended at eliminating second order effects triggered by out-of-plane 
deflections which could influence the ultimate carrying capacity of the members. Too, stiffeners 
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were placed at the top flange load application section to enable a smooth load introduction and to 
avoid premature local web failure. For continuous beams (see Fig. 18, case 3), a stiffener was 
also placed at the middle support. The stiffener’s thickness was set as the maximum thickness 
between the flanges and web. At the end supports, use of kinematic linear constraints and in-
plane lateral support of the elements substituted the presence of stiffeners (see Fig. 13). 

 
Figure 13: FINELg modelling details and load introduction (case 3) 

The meshes adopted for web and flanges were similar to those defined in section 2. In the 
longitudinal direction, meshing was varied along the length (see Fig. 14). A refined mesh was 
used in zones where the development of plastic hinges is expected, i.e. in the vicinity of load 
application points and at the middle support for the continuous beams. The shell elements 
dimensions (length) were then gradually increased in zones with lesser influence on the 
structural behavior (Fig. 14b). 

         
Figure 14: Example of mesh variation in the longitudinal direction 

Typically, multi-linear material laws, such as those displayed in Fig. 15, were adopted, with key 
values as in Table 7. These correspond to state-of-the-art recommendations from E.C.C.S. 
(E.C.C.S. Publication N°44, 1986), and material standards (EN 10210). In the particular case of 
S690 steel grades (100 ksi steel), stricter limitations in terms of yield plateau length and level of 
ductility have been adopted. 

Fork end support 
Fork end support 

Middle support 
with stiffener 

Loading applied 
on top flange + 
vertical stiffener 

Loading applied 
on top flange + 
vertical stiffener 

Continuous lateral bracing 
on top and bottom flange 
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

fy

y 10 y

E = 210 GPa

fu


max = 15%

0.02 E

  -   contitutive law type up to S460 

690

y 4 y

E = 210 GPa

724.5



0.0045 E

  -   contitutive law type for S690

max = 10%  
Figure 15: Adopted constitutive laws 

Table 7: Adopted values for the steel constitutive laws 

Steel Grade 
fy fu max 

(N/mm2) (N/mm2) (%) 
S235 (36 ksi) 235 360 15 
S460 (65 ksi) 460 550 15 

S690 (100 ksi) 690 724.5 10 
 

3.2. Imperfections 

The definition of suitable initial imperfections is essential to the determination of both ultimate 
strength and post-buckling behavior of a member, and thereby deserves specific attention. First 
of all, material imperfections have been accounted for by means of parabolic auto-equilibrated 
residual stresses distributions. As for geometrical imperfections, only local imperfections were 
considered in the F.E. models since lateral torsional buckling was prevented. 

A separate sensitivity analysis was conducted on two beams IPE500 (S235) and HEB300 (S460) 
with case 1 (L / h = 3) and case 2 (L / h = 25) static systems. The study considered the influence 
of different shapes and amplitudes of initial local geometric imperfections on the cross-section 
capacity of WF shapes. Basically, two ways of introducing initial imperfect shapes were 
considered. Type I considers imperfections introduced “manually” in the F.E. mesh through the 
definition of adequate (imperfect) node coordinates. Doing so allows for a free definition of the 
initial buckling waves, and also permits to set geometrical defaults in webs and flanges 
independently, both in shape and amplitude. More classically, type II resorts to linear buckling 
analysis in a preliminary step, whose first eigenmode shape is used to define the imperfect 
geometry of the girder, through the definition of adequate amplitudes. 

In case of type I imperfections, the geometrical imperfect shape of each plate was built on the 
basis of sine, square half-waves in the longitudinal direction. 
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Figure 16: Adopted imperfections shapes and amplitudes 

Type I-case a situations involved a fully independent definition of the half-wave periods between 
flanges and web (see Fig. 16). In the particular case of sections with a high h / b ratio (IPEs), this 
appears somehow inadequate. Case b definitions use equal wavelength in both flanges and web, 
defined as the average of the (flat) buckling lengths (i.e. (h – 2 r – 2 tf + b – 2 r – tw) / 2). 
Different independent amplitudes in web and flanges may however be considered in the F.E. 
model. 

As Fig. 16 shows, different amplitudes and shapes for the geometrical imperfections were tested 
and compared. It is observed on Fig. 17 that the non-dimensional ultimate moment Mult / Mpl is 
slightly influenced by the different imperfections considered. However, they have a significant 
impact on the rotation capacity, especially for the IPE500 shape. Consequently, case b-3 
imperfections with an averaged sine period and corresponding amplitude for each plate were 
selected. This choice was also motivated by the fact that initial imperfections are random and 
cannot realistically bear the shape of an eigenmode, together with the aim of remaining safe-
sided. 

Amplified imperfections  
of case a-1 with FINELg
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Figure 17: Influence of geometrical imperfections 

3.3. Investigated parameters 

Basically, three different bending configurations were considered: a simply supported beam 
under uniform moment (case 1), a simply supported beam under a concentrated force at mid-
span (3-point bending configuration – case 2) and a two equal-span continuous beam with 
concentrated forces applied at each mid-span (case 3), see Fig. 18. The simply supported 
configurations aimed at characterizing the available rotation capacity, while the continuous beam 
arrangement aimed at characterizing the rotation demand and observing – or not – a plastic 
collapse mechanism. Profiles lengths were defined through the selection of a slenderness ratio 
L / h were L represents the length of a span and h the height of the section. For the case 1 
configuration, the L / h ratio was chosen equal to three in order to i) define an initial local 
imperfection with three half-waves along the length of the beam and to ii) limit the influence of 
the edge support conditions. As for the case 2 and case 3 configurations, three different L / h 
were chosen (L / h = 15, 25, 35). These values were adopted so that the specimens are long 
enough for the beams to fail preliminary in bending and not in shear, and also to investigate 
different moment gradients. Three base profiles were chosen; IPE500, HEA300 and HEB300. 
Thicknesses of their webs and flanges were varied while their heights and widths were 
maintained constants in order to vary each plate’s slenderness around the plastic-compact limit 
(class 1-2 limit). Three nominal yield stress fy = 235, 460 and 690 N/mm2 were considered. 

L

F

L

L/2 L/2

Load case 2

M M

F

L

L/2 L/2

Load case 3

F

L

L/2 L/2

Load case 1  
Figure 18: Description of static systems 

IPE500    HEB300   IPE500    HEB300  
Case 1       Case 1     Case 2      Case 2 

IPE500    HEB300   IPE500    HEB300  
Case 1      Case 1      Case 2     Case 2 
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4. Sensitivity analysis 

As several definitions of the available rotation capacity Rcap can be found in literature, it is 
specified here that the present paper defines the available rotation capacity as reported in Eq. 2. 
In the finite element simulations,  was calculated as the average rotation between the end 
sections rotations.  

 
u pl

pl
capR

 





 (2) 

M

Mmax


pl max u

Mpl

 
Figure 19: Graphical representation of Rcap definition 

4.2. Benefits brought in considering section slenderness 

As already explained, the intention is here to investigate whether or not the proposed λrel,CS may 
be uniquely associated with a cross-section rotational capacity, i.e. a high level of ductility of the 
section in bending, such as is done in many standards through b / t limits. Figs. 19a and 19b 
allow this comparison, for the simply supported configurations.  
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Figure 20: Rcap as a function of λrel,p vs. λrel,CS 

In Fig. 20, λrel,p is taken as the maximum of λrel,p,flange and λrel,p,web, where each λrel,p value is 
relative to each plate assumed as being isolated from the others plates constituents (i.e. with 
“ideal” boundary conditions). On the contrary, λrel,cs takes due account of these interactions, in 
considering the cross-section as a whole. 

As can be observed, a more clear correlation between Rcap and λrel,cs exists than between Rcap and 
λrel,p, where virtually no trend can be pointed out. A deeper look into Fig. 20b results can be 
achieved in separating results where one plate is clearly governing the cross-section behavior 
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from cases where interactions between the plates’ constituents are expected. It is to be 
remembered here that unconventional cross-section dimensions have been defined in this 
purpose, see section 2. 
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Figure 21: Influence of plates’ interaction; load case 1 (left); case 2 (right) 
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Figs. 21a to 21f plot the obtained results for simply supported cases. For constant bending 
moment situations (case 1, left graphs in Fig. 21), the detrimental influence of plates’ 
interactions is obvious, whatever the cross-section shape. For case 2 situations (3-point bending), 
identical observations shall be made, although the influence of shear and moment gradient on 
Rcap causes the interpretation of results more delicate – cf. § 4.3. Accordingly, a complementary 
factor ξp has been defined as follows:  

 
, , , ,

, , , ,

max ( ; )

min ( ; )

rel p flange rel p web
p

rel p flange rel p web

 


 
  (3) 

ξp is aimed at characterizing the theoretical expected level of interaction between plates. Low ξp 
values indicate strong interactions (i.e. the first plate to be affected by local buckling shall not 
receive an important “support” for the adjacent ones, themselves being concerned with their own 
instabilities soon after); in contrary, high ξp values relate to situations where the stability 
behavior of the cross-section is mostly governed by one single element. 

Figs. 22a and 22b allow partially validating the use of ξp as a second key parameter associated 
with Rcap, in addition to λrel,CS. As Fig. 22b shows, a ξp = 1.2 limit value may be adopted to 
characterize cases strongly affected by plates interactions – all ξp ≤ 1.2 cases show limited Rcap 
values, i.e. Rcap ≤ 1. Fig. 22b also suggest, for case 2 situations, that additional influences such as 
primary shear or moment gradient play a significant role, as already pointed out by Kulhmann 
(Kulhmann 1989), since results with Rcap ≤ 1 are observed for ξp ≤ 1.2 values in these cases. 
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Figure 22: Influence of ξp and the plate slenderness λrel,p on the available rotational capacity Rcap 

As an alternative, flange-to-web stiffness ratios have also been considered, as reported on 
Figs. 23a and 23b, where Lf = b – 2 r – tw and Lw = h – 2 r – 2 tf. 



 19

(tf
3·Lw)/(tw

3·Lf)  [-]

5 15 25 35 45 55 65 75

R c
ap

 [
-]

0

2

4

6

8

10

case 1 - Single element
case 1 - Multiple element
case 2 - Single element
case 2 - Multiple element

(tw
3·Lf)/(tf

3·Lw)  [-]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R c
ap

 [
-]

0

2

4

6

8

10

12

14
case 1 - Single element
case 1 - Multiple element
case 2 - Single element
case 2 - Multiple element

 
Figure 23: Influence of the plate stiffness ratios on the available rotational capacity Rcap; a) IPEs – b) HE sections 

Considering the relatively bad correlation and since this last attempt do not take due account for 
the cross-section overall dimensions and shape (IPEs governed by web buckling or HE sections 
governed by web buckling) nor the steel grades, the ξp ≤ 1.2 criterion has been kept further to 
characterize situations with strong plate interactions. Figs. 24a to 24f propose the obtained 
results for the present numerical database (cases 1 and 2). 
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Figure 24: Influence of ξp on the available rotational capacity Rcap; IPE sections (left) – HE sections (right) 

Thus, although being strictly defined on the basis of resistance/stability parameters, ξp is seen to 
somehow reflect the capacity of a cross-section to reach high Rcap values. The following 
particular example (see also Fig. 24) precisely illustrates this; case A is associated with a weak 
flange compared to the web (ξp = 3.69), while case B has equally weak flanges and web through 
modified thicknesses (ξp = 1.00). 

The associated M- curves and Rcap values, for a nearly identical λrel,CS ≈ 0.5 value show that the 
use of ξp may nicely complement λrel,CS to predict the rotation capacity. It may also be interesting 
to note that, owing to material ductility and despite the “cross-section effect” that drastically 
penalizes the overall level of cross-sectional deformation capacity, case A top flange early 
buckling does not precludes the attainment of high strains, so as the cross-section to exhibit a 
relatively high Rcap = 2.98 value; on the contrary, case B leads to a Rcap = 1.09 value. 
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Figure 25: Moment - rotation response of two “HEB300-based” sections 

This observation is in contradiction with the usual treatment of Rcap in design codes such as 
Eurocode 3, since Rcap is only associated with a single λrel,p value. Accordingly, identical λrel,p 

shall lead to identical Rcap values, which, as Fig. 24 shows, may be suitable for case 1 situations 
(left plots) but not for case 2 situations (right plots). As an example, Fig. 25b provides, for a 
given λrel,CS ≈ 0.5, Rcap values from 0 to 8. Hence, the approach is seen to be inappropriate and 
the need for additional parameters to be included or new criteria to be developed are evidenced 
by these results. 
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4.3. Influence of shear 

Since a high level of shear force is known to have an important (detrimental) influence on the 
resistance to bending (Eurocode 3 (CEN 2005), US standards (AISC 2005)), present paragraph is 
devoted to the influence of shear on the rotation capacity. In Eurocode 3, W.F. sections are 
implicitly assumed as resisting shear through their webs, while the flanges mostly carry bending 
moments; a reduction in (plastic) bending capacity is only necessary when the applied shear 
force V exceeds 50% of Vpl, where Vpl designates the plastic shear capacity: 

 
3
y

pl vV A
f

  (4) 

Av being constituted by the webs, fillets and a small part of the flanges in the vicinity of the web-
flange junction. Because bending resistance and cross-sectional rotational capacity shall be 
associated to different mechanical natures (resistance vs. ductility), the question whether shear 
bears the same influence on Rcap remains open. As Fig. 26 shows, a correlation between Rcap and 
the V / Vpl ratio is not obvious on IPE sections, where high Rcap values (i.e. Rcap ≥ 3) as well as 
low ones may be reached for varying V / Vpl ratios; results for HEA and HEB sections are 
however more distinct (see Fig. 25a), where a high level of shear force is systematically 
associated with low Rcap values; this observation shall however be tempered by the fact that 
many of these results are related to sections characterized by low ξp ratios. Accordingly, no direct 
and obvious influence of the level of shear force on the cross-section rotational capacity shall be 
drawn at this point. 
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Figure 26: Influence of shear ratio on the rotation capacity Rcap; a) IPE sections – b) HE sections 

4.4. Influence of steel grade 

The use of different steel grades, with a higher relative influence of local buckling, different 
maximum strain values εmax and fu / fy ratios, shall affect cross-section rotational capacity as well. 
In general, HEA and HEB sections were observed to lead to a decrease in rotation capacity when 
the steel grade increased. However, this trend was less clear for the IPE sections as they are seen 
to possess a smaller rotation capacity compared to the HE sections, cf. Figs. 27a to 27d. 
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Figure 27: Influence of steel grade on Rcap 

4.5. Influence of L / h ratio 

Present paragraph only refers to load case 2 situations. When the L / h ratio varies, the moment 
gradient also varies and affects the rotational capacity. Indeed, local buckling only develops once 
the compression flange has yielded over a sufficient length so that a buckled shape roughly equal 
to 120% of the width of the flange in compression is able to develop. Hence, with a steep 
moment gradient, yielding of the beam is confined to the adjacent region of maximum moment 
and will start to extend longitudinally when the plastic moment Mp is reached. Therefore, when 
the L / h ration increases, the steepness of the moment gradient decreases and lower rotation 
capacities values are attained. Fig. 28a and 28b show examples of results displaying different 
L / h ratios; they refer to case 2 situations (3-point bending) for which the influence of shear can 
be disregarded (V / Vpl ≤ 0.5) – case 1 results are also plotted for comparison purposes –. From 
these figures, it is clear that the rotation capacity increases when the L / h ratio increases, i.e. the 
slope of the moment gradient in the plastic hinge zone is more pronounced. This obviously has to 
be associated with a more favorable extent of yielding along the longitudinal axis of the beam, 
since, for shorter beams, the moment gradient is steeper so that the elastic regions in the vicinity 
of the plastic hinge tend to more easily mobilized. Similar observations were made for all steel 
grades, in an even clearer extent for IPE-based sections for which the webs usually controls the 
mechanical behavior. 

Case 1 Case 2 : 
L / h = 2

Case 2 : 
L / h = 3

Case 2 : 
L / h = 1
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Figure 28: Influence of L / h for S690; a) IPE sections – b) HE sections 

Figs. 29a and 29b also report the results for case 1 situations where a constant bending moment 
is applied. For the HE cases, rotation capacities were lower than their non-zero moment gradient 
counterparts. In contrast, for the IPE sections, results were contradictory, leading to both higher 
and lower rotation capacities for case 1 configurations. 
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Figure 29: Influence of L / h for S235; a) IPE sections – b) HE sections 

4.6. Rotational capacity: demand vs. availability 

Having exposed aspects related to the available rotation capacity, present paragraph is dedicated 
to the characterization of the demand versus available rotation capacity, through case 3 finite 
element results. The latter shall constitute a database of numerical reference results allowing 
separating cases where a full plastic mechanism could be reached (development of three plastic 
hinges, i.e. Rdem < Rcap and plastic analysis is allowed) from those who could not (system 
collapse load is lower than theoretically predicted one, Rdem > Rcap and plastic analysis should be 
prevented). In this respect, Figs. 32a and 32b indicate and separate cases who could not reach at 
least 98% of the theoretical system plastic limit load – relatively few cases are to be reported. 

Focusing on results for which a full collapse mechanism could be reached, the possibility to 
discuss alternative criteria to Fig. 1 one becomes open. In particular, one may refer to the 
following ones: 
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 Rcap ≥ 3.0 (5) 

 λrel,p ≥ 0.5 (6) 

Both Eq. 5 and 6 criteria represent an indirect alternative to Fig. 1 one (Rdem < Rcap); one may 
also report the class 1-2 limits in Eurocode 3 classification system as another well-known one, 
but the background of these limits lies in the adoption of b / t limits based on Eq. 6, so that the 
latter was not considered further. These criteria however only rely on prescribing a minimum 
level of available rotation capacity to authorize a plastic analysis, regardless of the rotation 
demand. 

In the particular case 3 configuration considered here, it is relatively easy to reach the theoretical 
Rdem = 0.25 value from Table 8 data as follows: 

 
2,3 1 2,3

1 1

25
128

2
32

1 1 0.25pl pl pl

pl pl
dem

FL
EI y

R
FL

EI y

  
 

     


 (7) 

Table 8: Theoretical limit values 
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Owing to symmetric loading and equal spans, the first plastic hinge forms at the middle support 
(section 1), for a Fpl,z1 load level; additional bending moments are then redistributed to the 
sagging regions until simultaneous development of hinges at sections 2 and 3 is effective, and a 
plastic collapse mechanism formed. The corresponding system collapse load and pl are 
calculated through virtual work principles and an assumed elastic distribution of bending 
moments in the rigid beam segments between plastic hinges. 

The Rdem = 0.25 value, based on the well-known “plastic hinge theory”, is to be discussed when 
predicted through the finite element shell models. Indeed, the assumption of a zero-length plastic 
hinge is obviously not reflected numerically. Also, the numerical models made use of more 
sophisticated material laws (see Fig. 15) than the theoretically-assumed rigid-plastic one; in 
particular, strain hardening effect may deeply affect the system response, especially for low steel 
grades. 

 
Figure 30: Typical plastic failure mode for case 3 configuration (yield pattern, HEB section) 
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All these aspects are reflected in Fig. 31a, regrouping all numerical results that were observed to 
develop a plastic mechanism. The figure shows that the rotational demand slightly varies around 
the 0.25 theoretical value, with respect to various influences. First of all, situations where local 
buckling of one single element governs the behavior (1.10 < ξp < 4.00) are seen to reach Rdem 
values slightly lower than 0.25. In contrast, situations where cross-section plates may exhibit an 
interactive local buckling (ξp < 1.10) display more variable responses, with Rdem values ranging 
from 0.20 to 0.45. This variability is also observed for the HE sections (Fig. 31b), and, further to 
a dependency to ξp and steel grade, can be shown to be associated with the influence of the 
moment gradient through the L / h ratio – Fig. 31b also plots results for which the influence of 
shear can be eliminated (i.e. V / VR < 0.50). 
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Figure 31: Comparison of theoretical and FINELg predictions in terms of rotational demand; a) IPE sections, b) HE 

sections 

Figs. 32a and 32b propose another representation of all case 3 results, with respect to λrel,p and 
λrel,CS, respectively. They allow checking the relative pertinence of Eqs. 5 and 6 with respect to 
the Rdem < Rcap criterion. Their analysis yields the following observations and conclusions: 

 A relatively low number of cases could not reach the plastic collapse mechanism; 

 Eq. 5 criteria, here leading to Rdem / Rcap = 0.083 and represented through the blue vertical 
lines in Fig. 32, is clearly seen to be inappropriate, in allowing too few situations to resort 
to plastic analysis than what the numerical analyses show. These too restrictive 
predictions were obviously expected, given the low Rdem values around 0.25; 

 Eq. 6 proposal appears to be inappropriate as well, however in a lesser extent as seen in 
Fig. 32a. Indeed, it both yields “false” predictions (cases where λrel,p < 0.5 but 
Rdem / Rcap > 1.0 results) and too conservative results (cases with λrel,p > 0.5 but plastic 
analysis to be allowed, Rdem / Rcap < 1.0). Fig. 32b also shows that λrel,CS < 0.5 could be a 
safer alternative, as no results with a λrel,CS < 0 but Rdem / Rcap > 1.0 are observed; 
nevertheless, this alternative shall be seen as too restrictive as well, many results with 
λrel,CS > 0.5 but Rdem / Rcap < 1.0 being reported here. Therefore, additional research is 
needed to deal with these last results through a λrel,CS-based criteria that shall obviously 
incorporate all key parameters influences detailed in the previous paragraphs. 

V /VR < 0.5 V /VR < 0.5 
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Figure 32: Various criteria to allow plastic analysis 

5. Conclusions and future steps 

The present paper, dedicated to the study of wide flange sections rotational capacity, was aimed 
at investigating in which extent an original overall cross-section relative slenderness λrel,CS could 
be used in separating sections allowing plastic collapse mechanism from these who cannot. 

In a first step, the paper discussed a key parameter RSTAB,CS in the calculation of λrel,CS. It showed 
that the use of either finite strip method-based tool (CUFSM in the present case) or shell finite 
element software could be equally used for a numerically prediction of RSTAB,CS, provided special 
attention is paid to the web-to-flange area modelling. 

Then, the paper described shell finite element parametric studies led to characterize both the 
rotational capacity and the rotational demand, with respect to many parameters such as shear, 
steel grade, moment gradient, cross-section geometry, … Particular attention was devoted to 
discussing the shapes and amplitudes of geometrical initial imperfections, which were shown to 
be a highly influential parameter on Rcap values. 

Last, section 4 investigated the relative influence of key parameters on the rotational capacity, 
and discussed the potentiality to use a λrel,CS-based criterion to allow for a plastic analysis. On the 
basis of the considered configuration, it was found that although providing more consistent 
results than the traditional use of λrel,p, the sole use of λrel,CS could not lead to satisfactory 
predictions. Additional developments are needed to provide a better selection of situations where 
plastic design could be allowed, in associating λrel,CS with other key parameters as studied herein. 
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