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Abstract 
This paper presents an approach for simulating steel column axial cyclic response including local 
buckling deformation. Two methods are proposed – (1) a nonlinear spring model with 
concentrated nonlinear axial load-displacement (P-δ) behavior, and (2) a nonlinear beam-column 
model with distributed nonlinear section axial load-strain (P-ε) behavior. The models are 
implemented in OpenSees using Pinching4 as the underlying behavior model with parameters 
derived as a function of the dissipated energy, and cross-sectional slenderness λ. Parameter 
relationships are informed by recent lipped C-section cold-formed steel cyclic experiments and 
finite element simulations. The proposed methodology is established for thin-walled cold-formed 
steel members, however the Pinching4 parameters are posed generally as a function of local 
buckling slenderness and could be extended to hot-rolled steel members and cross-sections with 
future validation. 
 
1. Introduction 
Steel columns subjected to dynamic loading such as those resulting from earthquakes wind, and 
others, can experience local buckling deformations that reduce their strength and affect their 
ductility. Local buckling deformations develop under compression and stretch during tension, and 
this effect is more pronounced in thinner cross-sections (e.g., thin-walled cold-formed steel). 
During cyclic loading, buckling deformations reverse and combine with yielding in tension at the 
highly stressed locations compromising the member’s strength and stiffness.  
 
The axial cyclic responses obtained by Padilla-Llano et al. (2014a) for cold-formed steel studs 
under cyclic axial load showed how local buckling affected the P-δ response and influenced 
directly where damage and fracture occurred in the member. Fig. 1 shows that strength and 
stiffness started deteriorating as soon as considerable local web buckling deformations developed 
(at the peak compressive load). Additionally, the rate of energy dissipation increases after the peak 
compression load through yielding by folding and stretching of the buckled web. Results from 
finite element simulations of plates subjected to cyclic loading (previously performed by the 
authors) demonstrated that energy dissipation and damage accumulates in zones that correspond 

                                                 
1 Graduate Research Assistant, Civil & Environmental Engineering, Virginia Tech, <dapadill@vt.edu> 
2 Associate Professor, Civil & Environmental Engineering, Virginia Tech, <cmoen@vt.edu> 
3 Assistant Professor, Civil & Environmental Engineering, Virginia Tech,<meather@vt.edu> 



 2

to the leading buckled half-waves i.e., the half-waves with bigger deformation (Padilla-Llano et 
al. 2014b). Damage localizes in these zones once inelastic strains starts to accumulate until they 
lead failure/fracture around one of these zones at the late stages of the response (see Fig. 2). 
 
This paper presents a computationally efficient approach to model the axial cyclic response of steel 
columns including local buckling. The approach is supported by the experimental and finite 
element analysis results concerning local buckling effects in the thin-walled member axial cyclic 
response presented previously by the authors (Padilla-Llano et al. 2014a,b). The modeling 
approach introduced uses Pinching4 as the format for the underlying behavior model and is 
implemented in OpenSees (Lowes 2004, Mazzoni 2009). Generalized expressions for backbones, 
strength degradation, stiffness degradation and pinching parameters are presented as a function of 
the member cross-section slenderness and the hysteretic energy dissipated. The model parameters 
are derived using P-δ responses obtained from finite element analysis of thin-walled cold-formed 
steel members conducted in ABAQUS (2013). 
 

 
Figure 1: The cyclic axial response P-δ (a) shows strength and stiffness degradation due to local buckling 

deformations (b) in the member. Energy dissipation occurs through yielding of the buckled web.  
 

 
Figure 2: Damage due to cyclic loading accumulates in zones corresponding to the leading half-wave (a, b) or areas 
with bigger initial imperfections (c, d). Damage does not propagate to other areas once it starts at these locations. 
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2. Axial Hysteretic Modeling of Steel Columns Including Local Buckling 
Two approaches to model the axial cyclic load-deformation response of thin-walled members 
experiencing local-buckling are discussed next. The first approach considers nonlinear springs to 
capture the member axial load-displacement (P-δ) response. The second approach consist of a 
nonlinear beam-column element with distributed nonlinear axial load-strain (P-ε) section behavior 
capable of capturing the member load-deformation response. Fig. 1 demonstrates both approaches 
for an axial member subjected to uniform axial loading. The underlying behavior model used in 
both introduced approaches is shown in Fig. 1d and consists of a backbone curve, unloading-
reloading paths that account for pinching, and a damage model for strength and stiffness 
degradation. This formulation is based on the material model Pinching4 as implemented in 
OpenSees (Lowes 2004, Mazzoni 2009). 
 

 
Figure 3: Axial hysteretic models for thin-walled steel axial members subjected to  

uniform axial load and experiencing local buckling 
 
2.1. Spring Model - Concentrated Nonlinearity 
The spring model uses rigid beam elements connected to nonlinear springs where all the nonlinear 
behavior concentrates. These springs are located at preselected locations along the modeled 
member length and their number and distribution would depend on the loading conditions. Fig. 1b 
illustrates how a thin-walled steel member subjected to uniform axial loading can be modeled 
using a spring at the top end to capture the axial cyclic load-deformation response. For axial loads 
varying along the member length, additional springs should be located strategically such that the 
member response is accurately modeled. Using nonlinear springs is a computationally inexpensive 
approach but requires adjusting the hysteretic material model parameters depending on possible 
different member lengths and loading conditions. 
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2.2. Nonlinear Beam-Column Model - Distributed Nonlinearity 
The nonlinear beam-column element model with distributed nonlinearity is implemented using an 
axial load-strain P-ε formulation to model the response at the cross-section level (Fig. 1c). The 
parameters to define the cross-section P-ε behavior are derived from the corresponding values 
defining the nonlinear spring model previously described. The strains coordinates in the backbone 
P-ε for thin-walled axial members subjected to uniform axial loading are obtained by dividing the 
axial displacement δi by the member length L, thus εi =δi/L. Parameters to model strength 
degradation, stiffness degradation and pinching are the same defined for the nonlinear spring 
model. The distributed nonlinearity approach allows flexible modeling of thin-walled steel 
members subjected to different axial loading conditions (e.g. non-uniform axial load) using the 
same set of parameters for all cross-sections in the beam-column element. 
 
The authors have previously shown how the two modeling approaches are capable of capturing 
the axial cyclic response of tested cold-formed steel members (Padilla-Llano et al. 2014b). Next, 
the just cited work is extended for thin-walled steel members where the parameters defining the 
spring and cross-section behavior in Fig. 1d are formulated for any local cross-section slenderness. 
 
3. Finite Element Analysis Database for Hysteretic Model Calibration 
Parameters for the underlying hysteretic model that define the spring and beam-column behavior 
are obtained through direct calibration of Pinching4 to match simulated axial load-displacement 
(P-δ) monotonic and cyclic responses of thin-walled members. A set of twenty two thin-walled C-
shaped columns were modeled using ABAQUS (2013) to study the monotonic and cyclic behavior 
of axial members exhibiting local buckling deformations. The cross-sections were selected from 
the Structural Stud Manufacturers Association catalog (SSMA 2011) covering a range of local 
cross-section slenderness λℓ =(Py/Pcrℓ)0.5 from 0.69 to 3.39 (Py=AFy, A=cross-section area; Fy=yield 
stress). The capacity in compression for all modeled columns as predicted by the American Iron 
and Steel Institute (AISI) Direct Strength Method (AISI 2007) is governed by local buckling.  
 
The models are implemented using S9R5 thin-shell elements and member length was set such that 
at least five buckling half-waves could develop in compression. The geometry and boundary 
conditions are illustrated in Fig. 2a. Initial geometric imperfections are simulated using the 1D 
spectral approach described by Zeinoddini et al. (2012). The modulus of elasticity is assumed as 
E=203.4GPa and Poisson’s ratio ν=0.3. Steel plasticity is implemented using combined isotropic-
kinematic hardening with one backstress with the parameters summarized in Fig. 2c. Material 
damage is also simulated to capture the strength and stiffness reduction from tearing and fracture 
caused by cold-bending and stretching during cyclic loading.  
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Figure 4: Finite element model geometry (a), displacement-controlled loading protocol (b),  

and steel material hardening parameters (c) 
 
The members are loaded at one end by imposing a displacement history using the displacement-
controlled testing protocol for cold-formed steel members introduced by Padilla-Llano et al. 
(2014a). This protocol is symmetric with steps of increasing amplitude and two cycles per step. 
Each step’s amplitude is 40% larger than the previous (i.e., δi=1.4δi-1), see Fig. 2b. The protocol is 
anchored at the fourth step to the elastic displacement δe=(0.776)2PcrℓL/AE where Pcrℓ is the elastic 
local buckling load. The finite element analysis protocol was validated against the experimental 
cyclic responses of cold-formed steel studs experiencing local buckling deformations obtained by 
Padilla-Llano et al. (2014a), see Fig. 3. 
 
Each model in the column set was analyzed to obtain axial load-displacement (P-δ) monotonic and 
cyclic responses. This set of responses were characterized to obtain the amount of strength 
degradation, stiffness degradation, hysteretic energy dissipated and pinching. The procedures to 
characterize the load-displacement P-δ response are described elsewhere (Padilla-Llano et al. 
2013a,b). 
 

 
Figure 5: Experimental and simulated cyclic responses are compared to  

validate the finite element analysis protocol. 
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4. Hysteretic Model for Members Including Local Buckling 
The monotonic and cyclic axial displacement (P-δ) responses for each of the 22 models were used 
to obtain backbone curves and calibrate parameters for strength degradation, stiffness degradation 
and pinching compatible with the Pinching4 model. General expressions were then derived for 
each parameter as a function of the cross-section local slenderness λℓ, the yield load Py and the 
corresponding elastic yield displacement δy=PyL/AE (or strain εy=δy/L). The resulting generalized 
expressions are described next. 
 
4.1. Backbone Curve 
Expressions for the four coordinate pairs (δi, Pi) [or (εi, Pi)] that define the backbone curve in 
compression are summarized in Table 1 and illustrated in Fig. 4a. The load values Pi are set as a 
function of the local slenderness λℓ where the peak load P2 is set equal to the DSM strength 
expression in AISI-S100-07 (AISI 2007). All values of Pi are limited to a maximum of Py with the 
case where all Pi/Py = 1.0 corresponding to a column with a very stocky cross-section (i.e. compact 
cross-section). To determine the displacement δ1 (strain ε1) that marks the end of the elastic range 
in compression, it is necessary to calculate the initial stiffness k1 expressed as a fraction (that 
depends on λℓ) of the elastic stiffness ke=AE/L (see Fig. 5). The expressions for the initial stiffness 
k1 and the compressive load P1 suggests that the cross-section is considered fully effective for λℓ 
≤0.689, and considered slender if λℓ >1.23. The remaining δi (εi) values are calculated as indicated 
in Table 1.  
 
The tension backbone coordinate pairs (δi, Pi) [or (εi, Pi)] are set as a function of the yield load Py 
and the corresponding elastic yield displacement δy (or strain εy). One of the shortcomings of the 
Pinching4 hysteretic model as currently implemented is that while the backbone can be separately 
defined in compression and tension, the strength and stiffness degradation parameters are universal 
to both loading directions (see section 5.2). However, the effect of the accumulation of damage in 
compression compare to tension is significantly different as shown by the finite element analysis 
and the experimental work conducted by the authors (Padilla-Llano et al. 2014a). Therefore, a 
tension backbone was developed with load values Pi slightly larger than Py, such that the overall 
simulated response match best the responses from ABAQUS. The tension backbone coordinates 
are listed in Table 2. 

 
Figure 6: Compression backbone general expressions for local buckling 

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1.0

1.2

P i
/P

y

λ = (Py /Pcrℓ)0.5

P  /P1 y

P  /P2 y

P  /P3 y

P  /P4 y

Abaqus (b)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

δ i
/δ

y
ε i

/ε
y

(o
r

)

λ = (Py /Pcrℓ)0.5

δ  /δ1 y

δ  /δ4 y

δ  /δ3 y

δ  /δ2 y

Abaqus



 7

 

 
Figure 7: Initial member stiffness as a function of local slenderness. 

 
Table 1: Compression backbone general expressions for local buckling 
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Table 2: Tension backbone general expressions for local buckling 
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coefficients β2,s and β4,s are calibrated using the responses from the finite element analysis 
database.  
 
Strength degradation is characterized as the positive difference on strength between the monotonic 
backbone force (fmax,o) and the cyclic force envelope (fmax,i). Strength degradation differs 
substantially between compression and tension excursions as shown in Fig. 6a. In Pinching4, 
deterioration of the strength envelope is defined using the same set of parameters for tension and 
compression. Further, the damage accumulated during compression excursions is used to reduce 
the strength envelope for the subsequent excursions in tension (and vice versa). If damage 
accumulated from previous excursion is used in the current (but opposite in direction) excursion, 
then strength degradation will be slightly underestimated and overestimated during the 
compression and tension excursions respectively. This shortcoming was addressed herein by 
setting the loads Pi for the tension backbone slightly larger than Py (see section 5.1) while setting 
parameters β2,s and β4,s equal for both loading directions. β2,s and β4,s are derived using the average 
strength degradation in tension and compression for each member. 
 
Because strength degradation is member length and cross-section slenderness independent in both 
tension and compression (see Fig. 6a), parameters β2,s and β4,s are set constant (see Table 3). Note 
also that there is some residual strength after the energy dissipation capacity is exhausted (i.e., 
Ei/ET =1.0).  
 
4.3. Cyclic Stiffness Degradation 
Cyclic stiffness degradation is also defined as a function of the cumulative hysteretic energy 
dissipated in each excursion Ei and the total energy dissipation capacity ET (see section 5.5). As 
in the case of strength degradation, when Ei/ET =1.0 further decrease in stiffness is not expected. 
Stiffness degrades as indicated in Table 3, where the coefficients β2,k and β4,k are calibrated using 
the responses from the finite element analysis database.  
 
Stiffness degradation is characterized as the difference between the member initial stiffness k1 and 
the unloading stiffness in every excursion ki where unloading stiffness values are obtained as 
described by Padilla-Llano et al. (2013a,b). The differences between unloading stiffness 
degradation in tension and compression are even greater than the differences in strength 
degradation as shown in Fig. 6b. In addition, the figure shows that stiffness degradation in 
compression is more pronounced for more slender members (indicated by the lighter colors), while 
in tension degradation is independent of the member length and cross-section slenderness. 
Stiffness appears to reduce to zero as the cumulative energy dissipated Ei reaches the maximum 
value ET. 
 
As in the case of strength degradation, deterioration of the stiffness is defined using the same set 
of parameters for tension and compression using the current implementation of the Pinching4 
model. Thus, the damage accumulated during compression excursions is used to reduce the 
stiffness for the subsequent excursions in tension (and vice versa). Overestimated and 
underestimated stiffness in compression and tension excursions respectively is expected if the 
same set of parameters β2,k and β4,k is used in both loading directions. No steps were taken to 
address this shortcoming as the initial stiffness k1 should not be modified. The resulting expression 
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for stiffness degradation parameters β2,s and β4 as a function of the cross-section slenderness λℓ are 
summarized in Table 3 and illustrated in Fig. 7. 
 

 
Figure 8: Strength degradation (a) is independent of the member length and cross-section slenderness, while 
stiffness degradation (b) is a function of the member cross-section slenderness. Both strength and stiffness 

degradation are expressed as a function of the hysteretic energy dissipated. 
 

 
Figure 9: Stiffness degradation parameters as a function of the cross-section slenderness 
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4.4. Unloading-Reloading Behavior (Pinching) 
The unloading-reloading behavior is defined by six parameters, uP+, uP-, rδ+, rδ-, rP+ and rP-. The 
parameters rδ- and rδ+ are the ratio of the deformation at which reloading starts (points d and f in 
Fig. 2d) to the maximum/minimum historic deformation, dmin and dmax. Parameters rP- and rP+ are 
the corresponding ratios of the load at the point at which reloading starts (points d and f) to the 
load corresponding to the maximum historic displacement, f(dmin) and f(dmax). Parameters uP- and 
uP+ are the ratios of the load developed after unloading (point c and e in Fig. 1d) to the load 
coordinate of backbone point 3, P3- and P3+.  
 
The unloading-reloading parameters were obtained as described by Padilla-Llano et al. (2013a,b) 
for each of the responses in the finite element database and are shown in Fig. 8. The figure shows 
that the pinching parameters are similar for all members analyzed and therefore and average value 
for uP+, uP-, rδ+, rδ-, rP+ and rP- was adopted (see Table 4). 
 

 
Figure 10: Unloading-reloading path parameters for (a) tension-to-compression and (b) compression-to-tension 
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the range of deformations of the current excursion (see inset in Fig. 9a). If this normalized energy 
dissipated per excursion (NHEpe,i) is plotted versus the cumulative normalized axial deformation 
(∑δ/δy), the plot will look like the one shown in Fig. 9a. It can be seen that NHEpe,i increases up to 
a maximum value and then decreases towards zero as cumulative normalized deformation 
increases. This is a typical behavior observed in all the cyclic responses from the finite element 
analysis database and also observed for the experiments conducted by Padilla-Llano et al. (2014a).  
 
The rationale therefore is: there should be a cumulative normalized deformation CDF0 for which 
NHEpe,i is equal to zero and beyond that point the member is unable to dissipate more energy (see 
Fig. 9). The value for ET is determined as the cumulative hysteretic energy Ei corresponding to the 
cumulative normalized axial deformation CDF0. Values for ET were estimated for all members in 
the finite element analysis database and used to obtain the expression in Eq. 1 (see Fig 7). Note 
that ET increases rapidly to infinite as slenderness λℓ becomes smaller, therefore a maximum limit 
for the total energy dissipation capacity is proposed (ET ≤113.2Pyδy) for the members with fully 
effective cross-sections (i.e., λℓ ≤0.689). This limit is currently set somewhat arbitrary but further 
work is being conducted to establish this limit based on mechanics and maximum strength 
principles. 
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Figure 11: The total energy dissipation capacity ET is obtained as the cumulative energy dissipated corresponding to 
a cumulative normalized deformation CDF0. The cumulative deformation CDF0 is the value where the normalized 

hysteretic energy per excursion NHEpe,i vanishes. 
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Figure 12: Total energy dissipation capability as a function  

of the cross-section slenderness 
 
In Pinching4, ET is expressed as a factor γE times the maximum between the areas below the 
monotonic backbone curves in tension and compression. Thus, in the case of the model described 
in this paper γE =ET /ABBT, where ABBT = 9.4Pyδy is the area below the tension backbone. Next 
section presents an example showing the strategy to model axial members experiencing local 
buckling deformations using the expressions previously derived. 
 
5. Simulating the Axial Cyclic Response In Steel Columns Including Local Buckling 
The two modeling approaches, nonlinear springs and the nonlinear beam-column element 
illustrated in Fig.3 are used to simulate the response of CFS axial members experiencing local 
buckling tested by Padilla-Llano et al. (2014). The spring model is implemented using rigid beam 
elements connected to zeroLength elements in OpenSees that is located at the loaded end as shown 
in Fig. 13b. The nonlinear beam-column model is implemented using dispBeamColumn elements 
from OpenSees connected between the two end nodes (see Fig. 13b). The parameters are derived 
using the expressions in Table 1-4.  
 
The results using both modeling approaches show almost identical responses (see Fig. 13a) but 
underestimate the energy dissipated when compared to the experimental response (see Fig. 13b). 
The differences in energy and load deformation response between the models and the experimental 
response steams from the way Pinching4 is implemented. The unloading-reloading from tension 
excursions to compression is restricted in Pinching4 to be always monotonically increasing which 
prevents the models from capturing well the behavior during reloading in compression. This 
restriction evidently reflects in the amount of energy dissipated as well. The authors are focusing 
efforts to provide a hysteretic cross-section behavior model for the nonlinear-beam column that 
overcomes some of the issues of using Pinching4 in modeling the axial cyclic behavior in steel 
columns.  
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Figure 13. Simulated and experimental response (a); spring and beam-column models (b);  

energy dissipated (c). 
 
6. Conclusions 
This paper introduced a nonlinear model for simulating steel columns including the effects of local 
buckling deformations in the behavior and hysteretic energy dissipation. Model parameters are 
proposed in a generalized form as function of the member cross-sectional slenderness λℓ that can 
be input directly into Pinching4 in OpenSees. Simulation of a member axial cyclic behavior can 
be achieved using two presented approaches, one that considers a nonlinear spring with lumped 
hysteretic behavior, and a second approach that models the hysteretic behavior at the cross-section 
level through the use of a nonlinear beam-column element.  
 
Both, the nonlinear spring and the nonlinear-beam column approaches supported by the hysteretic 
behavior model can capture the axial member cyclic response reasonably efficiently. However, 
spring models can present disadvantages such as displacement compatibility and difficulty when 
adapting the model to different loading configurations such as non-uniform axial loading, or axial 
loading combined with bending. In this regard, the distributed nonlinear behavior approach allows 
flexible modeling of steel members subjected to different axial loading conditions, e.g. the non-
uniform axial load condition resulting from the contributions of individual fasteners attached to a 
chord stud in a CFS shear wall, among others. The authors continue working on the generalization 
of the parameters defining the hysteretic cross-section behavior model for the nonlinear beam-
column approach addressing the issues that steam from using the current implementation of 
Pinching4.  
 
The proposed methodology is established for thin-walled cold-formed steel members, however the 
Pinching4 parameters are posed generally as a function of local buckling slenderness and could be 
extended to hot-rolled steel members and cross-sections with future validation.  
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