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Abstract 
This paper discusses a comprehensive approach for the design checking of structural steel 
members and their bracing systems via the use of buckling analysis combined with appropriate 
column or beam stiffness reduction factors. The stiffness reduction factors are derived from the 
AISC column and lateral torsional buckling strength curves. The resulting analysis provides a 
direct check of the member design resistance without the need for separate checking of the 
underlying Specification limit state equations. In addition, it can be used to directly evaluate 
stability bracing stiffness requirements. The paper presents the stiffness reduction factor 
equations for both columns and beams, and explains how these factors can be incorporated into 
a buckling analysis calculation. The paper closes with a representative beam design example.  
 
1. Introduction 
Within the context of the Effective Length Method of design (the ELM), engineers have often 
calculated inelastic buckling effective length (K) factors to achieve a more accurate and 
economical design of columns. This process involves the determination of a stiffness reduction 
factor, , which captures the loss of rigidity of the column due to the spread of plasticity, 
including initial residual stress effects, as a function of the magnitude of the column axial force. 
Several different tau factor equations are in use in practice, but there is only one that fully 
captures the implicit inelastic stiffness reduction associated with the AISC column curve. This 
tau factor typically is referred to as a. What many engineers do not realize is that the ELM does 
not actually require the calculation of K factors at all. The column theoretical buckling load can 
be calculated directly and used in the design equations rather than being determined implicitly 
via the use of K. Furthermore, if the stiffness reduction 0.9 x 0.877 x q is incorporated within a 
direct buckling analysis, the calculations may be set up such that, if the member or structure 
buckles a given multiple of the required design load, Pu in LRFD, the load Pu is equal to cPn.  
If the load multiplier  corresponding to the buckling load is greater than 1.0, with the column 
stiffnesses calculated based on 0.9 x 0.877 x a, the member or structure satisfies the AISC 
Specification column strength requirements without the need for further checking.  The column 
strength requirements are inherently included the buckling calculations. 
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The above approach can be applied not only to account for column end rotational restraint from 
supports or other structural framing. In addition, it can be employed to directly evaluate the 
column strength given the modeled stiffness of any type or combination of bracing.  Further-
more, since the bracing stiffness requirements of the AISC Specification Appendix 6 are based 
on multiplying the ideal bracing stiffness, which is the bracing stiffness necessary to achieve a 
column buckling strength equal to the required column axial load, by 2/ = 2/0.75 in LRFD, a 
buckling analysis that incorporates the column a factor(s) can be used as a direct method to 
design column stability bracing. Even more exiting and powerful is that the above approach can 
be extended to the member and stability bracing design of beams and beam-columns.   
 
This paper reviews the development and proper use of the column stiffness reduction factor, a.  
However, the major focus of the paper is the extension of the column buckling analysis 
procedures based on a to the assessment of I-section beam lateral torsional buckling as well as I-
section beam stability bracing.  A representative beam design and stability bracing example is 
presented, and the results of this design are compared to the results from rigorous test 
simulations.  
 
2. Methodology  
2.1 Column Inelastic Buckling Analysis using the AISC Inelastic Stiffness Reduction Factor τa 
The column inelastic stiffness reduction factor a is the most appropriate of various options for 
column stiffness reduction estimates for design assessment of steel columns via a buckling 
analysis. This is because a is derived directly from the AISC column strength curve. Therefore, 
when configured properly with a buckling analysis, the internal axial force in the column(s) is 
equal to cPn at incipient buckling of the analysis model. The a factor accounts implicitly for 
residual stress effects and initial geometric imperfection effects, as well as the traditional higher 
margin of safety specified by AISC for slender columns. This factor is not the most appropriate 
inelastic stiffness reduction for a second-order load-deflection analysis, such as an analysis 
conducted to satisfy the requirements of the Direct Analysis Method of design (the DM). The b 

factor has been adopted by AISC for use with the Direct Analysis Method. The b factor 
essentially only accounts for nominal residual stress effects. If used with a second-order analysis 
per the DM, the a factor gives falsely low strength predictions. This is because the engineer 
would effectively be double-counting geometric imperfection effects in the DM if a were used, 
since geometric imperfections are explicitly modeled as part of the DM. (a could still be used as 
part of a separate out-of-plane stability check in planar analysis and design cases where the DM 
is used for assessing the internal forces and the in-plan limit states.)  The use of a in an buckling 
analysis allows the engineer to obtain a reasonable prediction of column strengths without 
needing to run a more elaborate second-order load-deflection analysis.  
 
The a factor has been used extensively for the calculation of column inelastic effective length 
factors for use in the AISC Effective Length Method of design (the ELM). However, as has been 
well documented throughout the literature, one does not have to actually calculate column 
effective lengths to use the ELM. The ELM can be employed with an explicit buckling analysis 
to determine the column internal axial force at theoretical buckling, Pe, or the corresponding 
column axial stress Fe (in essence a “direct” buckling analysis, but the word “direct” is being 
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avoided here to avoid confusion with the DM). This type of application of the ELM, including 
the application of a, is documented in detail in (ASCE 1997).  
 
An expression for a can be derived as follows. The derivation is shown only in the context of 
LRFD to keep the developments succinct and clear.  
 
Generally, one can write the factored column design resistance as 

                                           0.9 (0.877) 0.9 (0.877)c n e a eP P P      (1) 

where 0.9 is the resistance factor in the AISC Specification for column axial compression, 0.877 
is a factor applied generally to the elastic column buckling resistance in the AISC Specification 
to obtain the nominal column elastic buckling resistance (accounting for geometric imperfection 
and partial yielding effects for columns that fail by theoretical elastic buckling, as well as an 
implicit increased margin of safety for slender columns in AISC), and a is the column inelastic 
stiffness reduction factor. The column inelastic buckling load, considering just a and not 
considering the additional 0.9 and 0.877 factors, may be written as 

                                                                     e a eP P    (2)  

where again, Pe is the theoretical column elastic buckling load.  
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Using this form of the column inelastic strength equation, one can take the natural logarithm of 
both of its sides, and then solve for a as follows: 

                                                        
0.877

ln ln 0.658
a y

n

P

Pc n

c y

P

P

           
 (6) 

                                                       ln 0.877 ln 0.658yc n
a

c y n

PP

P P

 
    

 (7) 

                                                          2.724 lnc n c n
a

c y c y

P P

P P

  
       

 (8) 

(The c factor is included in both the numerator and denominator of the fractions in Eq. (8) to 
facilitate the next step of the development shown below.) The final Eq. (8) has been used widely 
for column inelastic buckling calculations in the context of the AISC Specification. This 
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equation can be applied most clearly by substituting an internal axial force Pu for cPn, such that 
a can be thought of conceptually as an effective reduction on the member flexural rigidity (EI) at 

a given level of axial load in LRFD. As such, the a equation becomes, for 0.390u
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The above equation is valid only for column buckling load levels that are within the inelastic 
buckling range. 

For 0.390u
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, elastic buckling controls and   

                                                             1a   (10)  

The above a expressions can be employed with buckling analysis capabilities, such as those 
provided by the program Mastan (Ziemian 2014), to explicitly (or “directly”) calculate the 
maximum column strength for any axially loaded problem. 
    
The most streamlined application of a with a buckling analysis to determine column strength is 
as follows: 
 
1. Construct an overall buckling analysis model for the problem at hand. (This can be done 

easily for basic structural problems using programs such as Mastan.) 
2. Apply the desired factored loads for a given LRFD load combination to the above model. 

These applied loads produce the column internal axial forces Pu.  
3. Reduce the elastic modulus of the structural members, E, by 0.9 x 0.877 = 0.7893. 
4. Reduce the moments of inertia by a, based on Pu, using Eqs. (9) and (10) with  = 1. 

(Alternately, steps 3 and 4 may be replaced by a single step where either the elastic modulus 
E or the moment of inertia I is reduced by 0.9 x 0.877 x a.) 

5. Solve for the inelastic buckling load of the above model. Vary the applied loads by the 
common scale factor , calculate the internal a values based on the scaled load levels (using 
the loads Pu), and solve for the value of  at which the system buckles. Iterate on these 
calculations until the system buckles at the load level  specified at the start of the buckling 
analysis. The corresponding internal axial forces Pu in the model at incipient buckling are 
“directly” equal to the column axial capacities cPn.  
 

This is a very powerful approach to obtain the most accurate column design axial strengths, 
based on the ELM of design (AISC 2010) and including column inelastic stiffness reductions. 
However, the above procedure is not only valuable for determining the most accurate column 
Pn values by the ELM. It is also very effective at assessing the design stiffness requirements for 
stability bracing.  
 
Traditionally, the ELM has been used with this approach to determine the influence of end 
rotational restraint on columns. The restraints need not be limited to just column end rotational 
restraints though. When applied to column buckling problems, the above procedure gives an 
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accurate estimate of the maximum strength of the column accounting for the lateral restraint 
offered by any bracing system. The engineer simply needs to include the lateral stiffness 
provided by the bracing system in the buckling analysis.  
 
In fact, if desired, rather than solving for the column buckling load for a given set of bracing 
stiffnesses, one can consider a given LRFD applied factored loading Pu (with  = 1) and then 
solve for the required bracing stiffnesses necessary to develop the critical buckling strength equal 
to this factored load level. These bracing stiffnesses are commonly referred to as the ideal 
bracing stiffness values, βi, corresponding to a given desired load level Pu.  
 
Some engineers have suggested that 0.8b, the general stiffness reduction used in the AISC 
Direct Analysis Method, should be used for all problems including calculation of column 
inelastic buckling loads. This is certainly possible, but such an approach misses the clear 
advantage of having a buckling analysis procedure that can determine directly the value of Pn 
accounting for all end and intermediate restraint effects. This issue can be understood by 
comparing the net stiffness reduction factors (SRFs) 0.9 x 0.877 x a to 0.8b as shown in Fig. 1. 
The SRF 0.8b generally does not give an accurate estimate of the column strength Pn when 
used in a buckling analysis calculation. Generally, it does perform reasonably well at given an 
appropriate estimate of the column strengths if used as part of a second-order analysis in which 
appropriate geometric imperfections are included per the requirements of the DM. 
 

 
Figure 1. Comparison of the net column stiffness reduction factors (SRF) 0.9 x 0.877 x a and 0.8b. 

 
2.2 Inelastic Lateral Torsional Buckling Analysis using the Stiffness Reduction Obtained from 
the AISC LTB Strength Curves τltb 
Generally, one can write the factored AISC LRFD beam LTB design resistance as 

                                                      0.9b n b e ltb eM M M      (11) 

where Me represents the theoretical beam elastic LTB resistance and Me represents the beam 
inelastic LTB resistance. The term ltb is the stiffness reduction factor corresponding to the AISC 
LTB strength curves. The derivation of this factor parallels the derivation of the column stiffness 
reduction factor, a, presented in Section 2.1. To keep the presentation succinct, the derivation of 
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ltb is not provided here. Rather, just the resulting equations for ltb are summarized. These 

equations are as follows. For all types of I-section members, when u L
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and 
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Conversely, for slender-web I-section members with u b maxL

yc b yc b yc

M MF

F M M

 
 
 

, the following 

simpler form is obtained in comparison to Eq. (13): 

                                

2

1
1

1.1 1.1

1

u

yc pg ycu
ltb

yc LL

yc

M

M R FM

M FF
F

  
                         

 (17) 

Furthermore, for compact- and noncompact-web members, one can substitute 
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and for slender-web members, one can write 
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These substitutions conveniently allow us to write the beam LTB inelastic stiffness reduction in 

terms of the independent variable 
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, which varies over the range of 0 to 1.0.  
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Figures 2 and 3 illustrate how ltb varies relative to the well-known column inelastic stiffness re-
duction factor a for representative beam- and column-type W sections respectively. The behav-
ior of ltb for slender-web I-sections is similar to that shown for the beam-type W21x44 section.  

 
Figure 2. Column and beam  factors for a W21x44 representative beam-type wide-flange section. 

 
Figure 3. Column and beam  factors for a W14x257 representative column-type wide-flange section.  

 
The LTB inelastic stiffness reduction factor, ltb, is generally somewhat larger (i.e., reduces the 
capacity less) than the corresponding column inelastic stiffness reduction factor, a, for a given 
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curves, I-section beams still have significant effective inelastic stiffness when Mu reaches the 
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plateau resistance bMmax. For the above W21x44 and W14x257 examples, ltb = 0.223 and 0.180 
respectively when this level of loading is reached.  
 
When used with a buckling analysis, if the maximum moment at incipient buckling, Mu, is 
larger than bMmax in an analysis in which all the ltb values are based on the corresponding 
internal moments, the member has reached the “plateau LTB strength”; hence, the design 
strength is equal to bMmax.  
 
For proper calculation of the LTB resistance from a buckling analysis, several requirements must 
be satisfied: 
 
1. The buckling analysis software has to rigorously include the contributions from warping 

rigidity ECw as well as the St. Venant torsional rigidity GJ and the lateral bending rigidity EIy 
in the context of doubly-symmetric I-section members.  

2. In addition, for singly-symmetric I-section members, the buckling analysis must account 
rigorously for the behavior associated with the shear center differing from the cross-section 
centroidal axis, which relates to the monosymmetry factor, βx, in rigorous analytical 
equations for the LTB resistance of these types of beams.  

3. The ltb factor is applied equally to all the member elastic stiffness contributions (GJ, ECw 
and EIy) for the execution of the buckling analysis. Physically, it can be argued that the 
effective reduction in the St. Venant torsional rigidity of an inelastic beam is not as large as 
the reduction in the effective EIy and ECw values. However, the use of an equal reduction on 
all three rigidities (at a given cross-section) is simple and sufficient. Furthermore, equal 
reduction on all three cross-section rigidities produces the beam LTB resistance from the 
AISC Specification equations exactly for cases involving uniform bending and simply-
supported end conditions.  

4. The internal force state upon which the buckling analysis is based is to be determined using 
the elastic properties of the structure, as in current practice. This requirement can be waived 
for statically determinate structures or structural systems. However, when conducting a 
buckling analysis of an indeterminate structure, it is essential that the elastic member 
properties are used for determining the internal forces. Otherwise, the member internal force 
relationships will be influenced by the distribution of the internal inelastic stiffnesses, which 
is not considered necessary or appropriate for elastic design. (This statement also applies to 
general column inelastic buckling) 

 
The above requirements can be satisfied with the Mastan software (Ziemian 2014) for doubly-
symmetric beams; hence, Mastan is used for the example presented in this paper. The software 
SABRE2 (Jeong 2014), provides rigorous buckling analysis capabilities for general singly-
symmetric and non-prismatic beam cases. 
 
A sufficient number of elements per member must be employed for the above LTB solutions. For 
frame elements based on thin-walled open-section beam theory and cubic Hermitian 
interpolation of the transverse displacements and twists along the element length (the type of 
frame element employed by Mastan), four elements within each unbraced length tend to be 
sufficient. In addition, for inelastic buckling cases involving a moment gradient, the variation of 
the inelastic stiffness along the member length must be captured. Twenty elements with each 
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span between the major-axis bending support locations tend to be sufficient for problems that do 
not have any reversal of the sign of the moment within the span. Thirty elements within each 
span between the major-axis bending support locations tend to be sufficient for problems 
involving fully-reversed curvature bending. The ltb factors are to be calculated based on the 
internal forces at the mid-length of each the frame elements. If frame elements are used that 
employ numerical integration along the element length (as in SABRE2), the internal forces at 
each of the integration points may be used (this provides additional solution accuracy).  
 
Obviously, the above inelastic LTB solutions are not manual engineering solutions. However, for 
that matter, neither is the general second-order elastic analysis of an indeterminate frame. 
Although engineers can conduct approximate analysis to perform initial sizing of the members in 
an indeterminate frame structure, they do not generally rely on these analyses, manual moment 
distribution calculations, etc. for final design at this day and time. With the appropriate software 
implementation of the above ltb calculations using a frame element based on thin-walled open-
section beam theory, the above procedure is quite easy to apply. The software performs the 
appropriate elastic matrix analysis of the structure to determine the required member internal 
forces. Then the software performs an inelastic eigenvalue buckling analysis based on these 
forces to evaluate the design. If the software automatically handles the internal inelastic stiffness 
reductions based on the magnitude of the internal forces, the inelastic buckling analysis is 
relatively straightforward to apply.  
 
This approach can be quite powerful to provide highly accurate assessments of end restraint, 
continuity, general moment gradient and finite bracing stiffness effects on the LTB resistance of 
beam and frame members. One key attribute of the power of this approach is that, similar to the 
a approach for column buckling, once one has determined the load level corresponding to 
incipient inelastic buckling using the ltb factor, the internal forces in the model at the buckling 
load correspond precisely to the design moment resistances bMn. Furthermore, this approach 
allows the consideration of any and all restraints from bracing and member end conditions to be 
directly and automatically considered in the design assessment, by including them in the 
structural analysis model. Regarding the assessment of the required stiffness for stability bracing, 
this assessment is accomplished as a direct and integral part of the calculation of the member 
LTB resistances. If the load parameter  is greater than 1.0 from the buckling analysis, with the 
internal element stiffnesses calculated based on the ltb equations given the internal forces at the 
load level , then the beam member has sufficient design strength for LTB. (Note that other limit 
states including flange local buckling, web crippling, connection limit states, etc. must be 
checked separately, just as they would be in ordinary design.)  
 
If desired, rather than solving for the beam LTB load given bracing stiffnesses, one can consider 
a given LRFD applied factored loading Mu (with  = 1) and then solve for ideal bracing 
stiffnesses necessary to develop this factored load level at buckling. The ideal bracing stiffnesses 
are then multiplied by 2/ to obtain the required bracing stiffness for design.  
 
2.3 Validation and Demonstration of LTB Stiffness Reduction Equations 
 
Consider the LTB resistance of W21x44 beams having torsionally and flexurally simply-
supported end conditions and unbraced lengths ranging from zero to 20 ft. Figure 4 shows the 
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results for the uniform bending case as well as a basic moment gradient case involving an 
applied moment at one end and zero moment at the other end of the beams.  

 
Figure 4. Lateral Torsional Buckling design resistances for W21x44 beams (Fy = 50 ksi), calculated using the AISC 

Specification equations and using a buckling analysis with the corresponding stiffness reduction factor 0.9ltb. 
 
The following observations can be made from this LTB study:  
 
1. The buckling analysis results for the LTB resistance under uniform bending match exactly 

with the calculations from the AISC Specification Section F2 equations. Therefore, only one 
curve is shown for the uniform bending case in Fig. 4.  

2. The buckling analysis results for the LTB resistance under the moment gradient fit closely 
with the calculations from AISC Specification Section F2 using a moment gradient factor Cb 
= 1.75. However, this LTB curve is slightly different from the one obtained using the Section 
F2 LTB equations directly. The differences between these curves are important, and may be 
explained as follows: 
a. For longer unbraced lengths, where the beam is elastic and ltb = 1, the buckling load 

determined from Mastan is approximately 6 % larger than the capacity determined from 
the AISC Section F2 equations with Cb taken as 1.75. The Mastan solution is a more 
accurate assessment in this case. The 1.75 value for Cb is a lower-bound approximation 
developed by Salvadori (1955). The Mastan solution is approximately 11 % larger than 
the solution with Cb = 1.67 obtained from AISC Eq. (F1-1) for this problem. AISC Eq. 
(F1-1), originally developed by Kirby and Nethercot (1979), gives a “lower” lower-
bound solution than Professor Salvadori’s equation for this problem.  

b. For intermediate unbraced lengths at which the maximum moment at incipient buckling 
is larger than bFLSxc = 0.9(0.7FySxc) (equal to 214 ft-kip for the W21x44), the inelastic 
buckling analysis solution is again fully consistent with the AISC Section F2 equations, 
but is a more accurate assessment of the LTB resistance than the direct use of the AISC 
Section F2 equations. In this case, as the buckling resistance increases above bFLSxc, 
some reduction in the LTB resistance occurs due to the onset of yielding at the locations 
where the internal moment is largest. The approach taken in AISC Chapter F is to simply 
scale the uniform bending LTB resistance by Cb, but with a cap of bMmax on the 
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maximum flexural resistance. As discussed by Yura et al. (1978), this approach tends to 
over predict the true response to some extent in the vicinity of where the elastic or 
inelastic LTB design strength curve intersects bMmax, although the approximation is 
considered to be acceptable. The LTB resistances obtained from the buckling analysis are 
slightly smaller than those obtained directly from the AISC Chapter F2 equations in the 
vicinity of the location where the LTB resistance reaches its plateau resistance bMmax, 
reflecting the more rigorous accounting for inelastic stiffness reduction effects on the 
LTB resistance in the buckling analysis based solution.  

 
3. Beam Torsional Bracing Example 

 
3.1 Problem Description 
The grillage shown in Fig. 5, which is similar to a beam torsional bracing example presented in 
AISC (2002), supports glass roof panels subjected to uniformly distributed load. The W30x90 
members (Fy = 50 ksi) are flexurally and torsionally simply-supported at their ends and are 
subjected to a maximum internal moment of Mu = 850 ft-kip (> bMn = 144 ft-kip for Lb = 60 ft 
and Cb = 1.14). Therefore, bracing is needed from the secondary W12x40 beams (Fy = 50 ksi).  
 

 
   

Figure 5. Beam Torsional Bracing Example. 
 
The W12x40 beams have ample stiffness to brace the W30x90 members, but only if the 
connections are sufficient and the distortional flexibility of the W30x90 cross-section does not 
overly limit the effective torsional bracing stiffness.  
 
The relevant properties and dimensions for this problem are as follows: 

E = 29,000 ksi 
L = 60 ft.    overall length of the W30x90 beams 
ho = 28.9 in.     distance between the mid-thickness of the W30x90 flanges 
tw = 0.470 in.    web thickness of the W30x90 beams 
Iy = 115 in4    lateral bending moment of inertia of the W30x90 beams 
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Ib = 310 in4     moment of inertia of W12x40 secondary beams 
Lb = 30 ft.    length of the secondary beams 

 
Full-depth one-sided transverse stiffeners (4.13 in x 0.375 in) are used at each of the secondary 
beam locations as shown in Fig. 5. The height hs is idealized as a length over which the web of 
the W30x90 is rigidly constrained to deflect in a straight line (due to the additional stiffening 
coming from the welded connection to the W12x40 beam webs). The torsional bracing is 
modeled as a rotational spring at the middle of this length.  
    
3.2 Assessment using AISC Appendix 6 with refinements from Yura (2001) and AISC (2002) 
Given the idealization summarized in Section 3.1, the effective torsional bracing stiffness 
provided by the secondary beams and their connection to the W30x90 girders may be calculated 
as follows (Yura 2001): 
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Any distortional flexibility of the beam within the height of the connection region hs, as well as 
the torsional flexibility of the overall girder system due to differential major-axis bending of the 
girders, is assumed to be negligible.  
 
As explained in AISC (2002), the required torsional bracing stiffness can be determined most 
accurately from the following refinement of  the AISC Specification Appendix 6 Eq. (A-6-11): 
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where: 
 = 0.75 
L  = 60 ft.    overall W30x90 span length 
Mu = 850 ft-kip    for the specified factored design loading 

b noM  = 144 ft-kip   strength of the W30x90 in the absence of any intermediate 
   bracing, including the associated moment gradient factor Cbu = 1.14 
n = 11     number of intermediate brace points 
Iyeff = Iy = 115 in4    lateral bending moment of inertia of the W30x90 beams 
and 
Cb = 1.0     moment gradient factor, based on near uniform bending at the  

mid-span unbraced lengths of the W30x90 beams 
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Therefore, it can be concluded that the W30x90 beam and the above bracing system has adequate 
stiffness to resist the required loads corresponding to Mu = 850 ft-kip. If an unstiffened 
connection detail such as the one evaluated in AISC (2002) is considered for this problem, the 
distortional flexibility of the W30x90 web severely limits the effective torsional bracing stiffness 
such that the unstiffened detail will not for the above level of loading.  
 
From recommended AISC 2016 provisions (AISC 2015), the bracing strength requirement for 
this case is 

                                                0.02 17.0 ft-kipbr uM M                                             (25)  
 

The subsequent test simulation solutions indicate a strength requirement in this problem of 2.2 % 
of the maximum moment to develop the limit load capacity of the W30x90 beams. This is based 
on an out-of-alignment of the top flange of 30 ft x 12in/ft x 1/500 = 0.72 inches at the girder 
mid-span, which corresponds to a twist imperfection of o = 0.72 in. / 28.9 in. = 0.0249 rad given 
that the bottom flange is assumed to have zero out-of-alignment. This twist imperfection is 
slightly smaller than the net rotation assumed in AISC (2002) considering movement in the 
bolted connections of the W12x40 beams due to hole clearances. However, 99 % of the flexural 
capacity is developed when the bracing moment reaches 2.0 %. Therefore, 2.0 % is considered 
an acceptable required strength for the stability bracing design in this problem.  
 
Given the above strength requirement, a welded connection can be designed to transfer the 
required shears and moments to the W12x40 beams. The 4.33 x 0.375 inch transverse stiffeners 
on the W30x90 beam are sufficient to transfer the bracing moment Mbr to the main girders, but 
they actually start to yield at slightly larger than 2.0 % bracing moment, as discussed 
subsequently. Also, the 9.5 inch depth of the coped W12x40 web is adequate to transfer the 
required moment.  
 
3.3 Assessment via Buckling Analysis 
To perform a design assessment for this problem using a buckling analysis, one can execute the 
following steps: 
 
1. Construct a buckling analysis model of one of the W30x90 beams, including the modeling of 

the effective elastic rotational restraint at the attachments to the W12x40 secondary beams. 
Since Mu = 850 ft-kip is greater than 0.7bMy = 643 ft-kip for the W30x90, the primary 
beams have significant inelastic stiffness reduction at their mid-span at the required load 
level. Figure 6 shows the 0.9ltb values determined at the mid-length of each of the 24 
elements used for the buckling analysis of the W30x90 beam. These 0.9ltb values are to be 
applied to all the beam cross-section rigidities associated with LTB (GJ, ECw and EIy). For 
this problem, the simplest way to accomplish this is to apply these reductions to the elastic 
modulus E for each of the 24 beam elements.  

2. Apply the factored loading of qu = 1.890 klf to the model, which produces Mu = 850 ft-kip at 
the member’s mid-span. This load can be applied with sufficient accuracy by applying 
concentrated loads of 9.444 kip at each of the W12x40 beam connection locations.  

3. Reduce the W30x90 elastic rigidity contributions GJ, ECw and EIy by bltb = 0.9ltb in each 
of the frame elements used to model the member. Although this step requires some effort to 
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set these values manually, this calculation can be included easily as part of a fast streamlined 
inelastic buckling analysis software procedure.  

4. Vary the effective elastic rotational stiffness at the secondary beam connection locations until 
the model buckles at the above required load. The corresponding bracing stiffness is the ideal 
bracing stiffness βTi required to develop the above applied loading. The ideal bracing 
stiffness obtained from this assessment is  

in-kip
2463

radTi                    (26) 

 
Figure 6. Variation of 0.9ltb along the length of the W30x90 primary beams due to the variation in 

Mu/Mn along the member length. 
 
5. Apply the conventional factor 2/ to the ideal bracing stiffness obtained from the above 

buckling analysis to obtain the required bracing stiffness.  

                                                        
2 in-kip

6568
radT Ti   


 (27) 

This value can be compared to the value of 4508 in-kip/rad obtained from Eq. (24) in Section 
3.2. The above value is considered to be a more accurate estimate of the required torsional 
brace stiffness, since it is obtained from a rigorous buckling analysis model, particularly 
since the rigorous buckling analysis accounts for LTB inelastic stiffness reduction as 
illustrated in Fig. 6 whereas Eq. (24) does not include any accounting for the effect of beam 
inelasticity. Equation (24) assumes that the W30x90 beam’s elastic stiffness is available to 
resist the brace point lateral displacements throughout the member length. Prado and White 
(2014) and Lokhande and White (2014) show from extensive parametric test simulations that 
the torsional bracing requirements are indeed influenced by beam inelasticity. 

6. Compare the above required torsional bracing stiffness to the provided torsional bracing 
stiffness, including the consideration of distortional flexibility of the stiffened W30x90 cross-
section at the brace points. The calculation of the provided torsional bracing stiffness is given 
by Eq. (23).  
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Since βTprov is significantly greater than the above βbr, we can conclude that the W12x40 
secondary beams combined with the one-sided 4.13 x 0.375 inch full-depth transverse stiffeners 
provide ample stiffness to develop the required design load associated with Mu = 850 ft-kip in the 
W30x90 beams.  

 
Based on recommended AISC 2016 Appendix 6 provisions (AISC 2015), the bracing strength 
requirement is the same as in Section 3.3.1 Eq. (25), i.e., 0.02 17.0 ft-kipbr uM M  .  
 
It should be noted that the above model provides a direct assessment of the W30x90 beam LTB 
resistances. No separate check of the Specification LTB strength equations is necessary once 
these calculations have been performed. This assessment includes a rigorous assessment of the 
influence of the torsional bracing stiffnesses as well as continuity effects between the adjacent 
unbraced lengths along the span. As noted previously, strength limit states other than LTB must 
still be checked.  
 
Another powerful feature of the inelastic buckling solution is that it can be used to justify the 
stiffening of the W30x90 web at only a selected number of secondary beam locations (rather 
than providing the same stiffening at each of W12x40 beams). This solution is not shown here in 
the interest of keeping the presentation brief. Equation (24) is based on the assumption of 
equally-spaced equal-stiffness torsional bracing throughout the span of the beam that is being 
braced. In addition, Eq. (24) is an entirely elastic derivation, involving the implicit assumption 
that the elastic stiffness of the primary beam is available to help resist the brace point 
displacements, as well as the assumption that the beam strength is scaled by Cb, regardless of 
whether the “plateau LTB resistance” (bMp for a compact-section beam) is exceeded.  
 
3.3 Comparisons to Test Simulations 
Figure 7 plots the moment at the mid-span of the W30x90 beams versus the maximum bracing 
moment in the secondary beams, expressed as a percentage of the W30x90 mid-span moment. 
The curves in this plot are obtained from four separate test simulations. The test simulations are 
refined spread-of-plasticity structural analyses, conducted using the S4R general purpose shell 
element in ABAQUS (Simulia 2013), including specified initial geometric imperfections and 
residual stresses as discussed below and following the requirements of Appendix 1 of the AISC 
Specification. The results are generated considering the two different geometric imperfections 
shown in Fig. 8.  The “larger” of these imperfections involves an equal out-of-alignment of 
1/500 in all of the unbraced lengths on each side of the mid-span, resulting in an overall o of the 
top flange of 0.72 inch at the mid-span, as discussed previously. The “smaller” of these 
imperfections involves an out-of-alignment of 1/500 only in the Lbr = 5 ft unbraced lengths on 
each side of the critical brace at the W30x90 mid-span. In addition, a top-flange out-of-
straightness of Lbr/2000 = 0.03 inch is specified in opposite directions in the unbraced lengths on 
each side of the mid-span (this imperfection is used, rather than Lbr/1000, as a representative 
average out-of-straightness within the unbraced lengths). The bottom flange is modeled as 
perfectly straight in all of these simulations. Both of these imperfection patterns satisfy the AISC 
Code of Standard Practice (COSP) tolerances. In addition, results are generated with the one-
sided stiffener having the actual yield strength of Fy = 50 ksi and with the stiffener modeled as 
infinitely elastic.  
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For the residual stresses used in the test simulations, 0.9 times 0.5 of the Lehigh residual stress 
pattern is employed. The 0.9 factor corresponds to factoring of the material strength ordinates by 
0.9 as required by Appendix 1 of the AISC Specification. One-half of the magnitude of the 
residual stresses in the Lehigh residual stress pattern is used because this value of the residual 
stresses tends to produce test simulation results that match reasonably well with the AISC LTB 
strength curves, which in turn capture very close to the mean LTB resistances obtained from 
experimental tests (White and Jeong 2008; White and Kim 2008; Subramanian and White 2015). 

 
 

Figure 7. Mid-span internal moment in the W30x90 primary beams versus the largest bracing moment in the 
secondary W12x40 beams (occurring in the bracing beam attached at the mid-span) from four different test 

simulations. 

 
Figure 8. “Larger” and “smaller” out-of-plane initial geometric imperfection displacements considered on the top 

flange of the W30x90 beams (Lbr = 5 ft and L = 60 ft). 
 
Figure 7 shows that the W30x90 is sufficient to develop the required moment capacities for the 
design scenario considered. However, the maximum capacity of the W30x90 beams is less than 
bMp = 1061 ft-kip, although if one checks the AISC Appendix 6 bracing requirements to 
develop bMp, it can be concluded that the bracing stiffness provided should be sufficient to 
develop the factored plastic moment capacity. The larger imperfection case with inelasticity 
modeled in the stiffener shows the smallest strength of Mmax = 897 ft-kip.  If the stiffener is 
assumed to be infinitely elastic, only a slightly larger strength of Mmax = 915 ft-kip is developed. 
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It is determined that the selected imperfection has a significant impact on the maximum capacity 
of the primary beams. If the smaller imperfection is considered, the system develops an Mmax = 
980 ft-kip in the W30x90 beams, still 8 % smaller than bMp. Therefore, an additional test 
simulation is conducted with the smaller imperfection and in which a double-sided transverse 
stiffener is used that has a total width equal to the 10.4 inch width of the W30x90 flanges at each 
of the bracing locations. This case develops an Mmax of 1024 ft-kips, which is within 3.5 % of the 
factored design plastic moment.  
 
For the beams with the one-sided stiffener, larger imperfections, and either actual or infinitely 
elastic properties, the required bracing moment in the secondary beams is 1.4 % of Mu (11.9 ft-
kip) at Mu = 850 ft-kip. If the maximum capacity of the “elastically-stiffened” beam of 915 ft-kip 
were utilized, a required bracing moment of 4.2 % (38.43 ft-kip) would be required. 
Nevertheless, 97 % of this member’s moment capacity is developed (i.e., 886 ft-kip) when the 
bracing required moment reaches 2.0 % of the girder mid-span moment, and this result is 
obtained for both the solutions with the elastic as well as the inelastic stiffener. Generally, a 
required bracing moment of 2.0 % has been found to be acceptable as a simple estimate for all 
cases, based on the criterion that at least 95 % of the maximum moment capacity is developed in 
the member that is being braced (Prado and White 2014; Lokhande and White 2014).  
 
Figure 7 shows that at slightly more than 2 % bracing moment, the actual 4.13 x 0.375 inch one-
sided stiffener starts to yield in the case where the beam has the larger imperfection, thus limiting 
the maximum capacity of the W30x90 beams to 897 ft-kip and resulting in a bracing moment at 
the primary beam limit load of only 2.2 %.  
 
In addition, Fig. 7 shows that the bracing moments are significantly smaller for the beams with 
the smaller imperfection until just before the maximum capacity of the beams is achieved. The 
torsional bracing moments at the limit load for the beams with the smaller imperfection are 1.8 
% when the one-sided stiffener is used, and 1.9 % when the large two-sided stiffener is used. 
However, at 95 % of the maximum capacity of these beams, the torsional bracing moments are 
only 0.7 % and 0.4 % respectively.  
 
3.4 Additional Comparisons to Test Simulation Results 
Figure 9 shows the maximum strength of the W30x90 beams versus the total effective torsional 
bracing stiffness, obtained from: (1) the AISC Appendix 6 provisions, (2) the above Buckling 
Analysis procedures, and (3) refined Test Simulation calculations. These curves consider a 
scenario in which the size of the secondary bracing beams is varied, giving an overall variation 
in βTprov. These types of curves are often referred to as “knuckle curves” in the literature. For the 
Appendix 6 calculations, given a total effective bracing stiffness βTprov, Eq. (24) is solved for Mu 
to generate the points along the Appendix 6 knuckle curve. For the Buckling Analysis 
calculations, the procedure outlined earlier is employed, but with a variable βb. For the Test 
Simulation solutions, the 4.13 x 0.375 inch one-sided stiffener results are considered with the 
larger and smaller imperfections shown in Fig. 8. In addition, the 10.4 x 0.375 inch two-sided 
stiffener results are shown for the smaller imperfection.  
 



 18

Figure 9 is helpful to understand the behavior associated with the Appendix 6 and Buckling 
Analysis solutions, and the inability of the W30x90 beams to develop bMp in spite of the use of 
large torsional bracing stiffness values. The following points can be gleaned from this plot: 
 
 The refined AISC Appendix 6 Eq. (23) suggests that the W30x90 beams are able to develop 

bMp = 1061 ft-kip at a relatively small effective torsional bracing stiffness value of only 
7605 in-kip/rad. This behavior is related to the fact that Eq. (23) assumes fully elastic 
behavior of the W30x90 beams, whereas the beams have substantial inelastic stiffness 
reduction as they approach bMp = 1061 ft-kip at their mid-span.  

 The Buckling Analysis solution, based on the use of reduced stiffnesses of 0.9ltb as a 
function of the internal moment levels along the W30x90 beams, predicts that the primary 
beams are able to develop bMp = 1061 ft-kip at an ideal brace stiffness of βTi = 11,980 in-
kip/rad., which then translates to a required bracing stiffness of  

 
2 in-kip

31,920
rad

Ti
T


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
 (28) 

 The knuckle curve determined by the Buckling Analysis procedure does a reasonable job of 
capturing the shape of the test simulation based knuckle curves for the larger imperfection. 
However, the Buckling Analysis solution predicts that the W30x90 beams can achieve bMp 
for effective torsional brace stiffnesses βT greater than 31,920 in-kip/rad, whereas the test 
simulations with the larger imperfection only achieve a maximum resistance of 897 and 915 
ft-kip at an effective torsional bracing stiffness of approximately 22,000 in-kip/rad. With the 
smaller imperfection and the large two-sided transverse stiffener, the W30x90 beams reach a 
maximum strength of 1024 ft-kip at a βT  of approximately 22,000 in-kip/rad.  

 

  
Figure 9. W30x90 beam design strength versus total effective torsional bracing stiffness knuckle curves from 

Appendix 6 and Buckling Analysis and Test Simulations,.  
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Several potential underlying reasons for the mid-span moment at the limit load being 
significantly smaller than bMp  in the test simulations are as follows: 
 
a) Test simulations based on geometric imperfections set at the AISC Code of Standard Practice 

maximum tolerances and using common traditional nominal residual stress patterns 
commonly indicate some difficulty in reaching bMp at unbraced lengths close to Lp for 
problems with uniform or near uniform bending. For the W30x90 beams used here, Lp = 7.38 
ft however, whereas the unbraced length employed in this example is Lbr  = 5 ft. Therefore, 
the considerations appear to be deeper than just the conservative nature of typical test 
simulation results involving near uniform bending.  

b) Rigid bracing benchmark results shown in Prado and White (2014) indicate that there is some 
minor variation in the maximum strength achieved for beams with both flanges restrained 
laterally, only the compression flange restrained laterally, or only twisting of the member 
restrained at the brace points. The rigid bracing strengths for torsional bracing are the 
smallest, and the rigid bracing strengths with both flanges restrained laterally are the largest. 
This type of behavior would appear to be a factor in the maximum strengths reached in this 
problem as well, but based on Prado and White (2014), it would not be expected that this 
behavior is the major reason why the W30x90 beams do not reach bMp in this example.  

c) The “larger” imperfections result in a value of o at the mid-span of the W30x90 girders that 
is relatively large compared to their 5 ft unbraced lengths. By considering the smaller 
imperfections, the strengths are increased measurably; however, the most substantial increase 
is obtained when the girders are also heavily stiffened at the torsional bracing locations. It is 
apparent that the test simulation beam strengths in this example problem are sensitive to both 
the overall geometric imperfection as well as the stiffening of the beam cross-section. As 
such, it is recommended that maximum limits on o, or o/Lbr should be considered by the 
COSP. In addition, it is suggested that the sensitivity of beam strengths to cross-section 
distortion when torsionally-braced I-section beams are loaded to moment levels involving 
substantial cross-section plasticity 

 
The above sensitivities to o and the beam cross-section stiffening highlight the limitations of 
common member resistance equations in design codes in general. Common resistance equations 
do not capture any variation in the member capacity as a function of these types of parameters. 
Refined test simulation solutions, which are permitted by AISC Appendix 1, can account for 
these effects.  However, these types of solutions are certainly not routine.  
 

4. Conclusion  
This research addresses the proper configuration of a buckling analysis to determine the 
maximum buckling strength of columns and beams directly, accounting rigorously for all 
restraints coming from bracing and unbraced length end conditions, without the need to 
separately evaluate the resistances using the AISC design strength equations. In addition the 
proposed method can be used to assess the required stiffness of stability bracing within the same 
analysis. An example design problem is presented that suggests some additional consideration 
should be given to twist imperfection magnitudes and potential imperfection sensitivities in 
torsionally braced beams.  
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In ongoing research, the authors are pursuing the development of prototype computer-aided 
engineering software that facilitates the rapid application of these procedures, including the 
extension of these methods to the design of beam-columns.  
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