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Abstract 

The elastic stability of rings/long FRP tubes under external fluid pressure is very well studied. 

The formula for critical hydrostatic buckling pressure of thin cylindrical shells has been derived 

in closed form. These composite shells have attracted a lot of attention to use in deep water 

offshore drilling due to the weight advantage. A new design is proposed here using an FRP tube 

lined with a steel pipe. The metal shell also acts as a permanent mandrel for the filament winding 

process of the outer laminated composite shell. A generalized closed form analytical formula for 

the buckling of thin FRP-Steel multi-angle laminated long cylinders is developed. Standard 

energy based formulation is used to express the kinematics and equilibrium equations of the 

shells. Effective moduli are obtained to introduce the constitutive equations of thin shells. These 

equations are directly integrated to produce effective axial, coupling and flexural rigidities. 

Comparisons are made with some existing results. 

 

1. Introduction 

The stability analysis of tubular components has attracted a lot of attention since the mid 1800’s. 

This is attributed to their wide range of applications in aerospace, automotive, marine, civil and 

offshore structures. In those applications, cylindrical shells are subjected to a combination of 

loads that result in compromising their structural integrity. One of such important loads for under 

water applications is external hydrostatic pressure. Traditionally, the majority of pipelines and 

tubes were constructed of steel and other metals. Nevertheless, the use of fiber-reinforced 

polymers has rapidly increased since the 1950’s due to their high stiffness and strength to weight 

ratio as well as their fatigue and corrosion resistance. 

 

Filament wound laminated composite cylindrical shells were proposed to use for offshore 

oil drilling and production to significantly reduce the weight of risers and tethers and make it 

possible to push the envelope further by exploring deeper water applications (Sparks 1986). 

However, metal pipe pieces are typically connected by attaching flanges to the end of each tube 

and bolting the flanges together as the tubes are lowered in place, see Fig. 1. Using the same 

splicing technique for composite tubes introduces high stress concentration hot spots at the 

junction of the tube and the flange requiring a change in the design. It is also very hard to 

manufacture the flange ends with the tubes in one piece through the filament winding process. 

To overcome this difficulty while maintaining this efficient splicing technique, the author is 
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proposing the use of hybrid steel-composite tubes. With this design, a steel shell is used as a 

mandrel to filament wind the composite shell wall on top. The metal inner shell helps cure the 

outer composite shell faster since metals conduct heat very efficiently. The hybrid shell produced 

is more cost effective if glass fibers are used instead of carbon fibers. Unlike carbon fiber-

reinforced polymer, the coefficient of thermal expansion of the steel and glass fiber-reinforced 

polymer is very close, thus avoiding the development of extra thermal stresses. Moreover, carbon 

FRP is conductive promoting corrosion while glass FRP is electricity inert offering better control 

of corrosion. Accordingly, the hybrid construction suggested here is a combination of steel and 

glass FRP. 

 

 

 

 

 

 

Figure 1: Typical steel tube splicing for offshore drilling applications. 

 

Bresse (1866) was the first to calculate the buckling pressure of a thin elastic isotropic ring under 

external hydrostatic pressure. Bryan (1888) modified the buckling pressure formula for a long 

cylinder after few years. Timoshenko (1933) examined the response of elastic isotropic rings 

having out of roundness imperfection. 
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where E is the isotropic modulus of elasticity, v  is the isotropic Poisson’s ratio, t is the ring 

thickness and R is the mean radius. 

Ambartsumyan (1961) modified the above formula to account for the critical buckling pressure 

of homogeneous orthotropic long cylinders, as follows:  
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where E2 is the hoop modulus, 12v  is the Poisson ratio for axial load and 21 12 2 1v v E E . Rasheed 

and Yousif (2001) developed a closed form generalized analytical formula for the critical 

buckling under external fluid pressure of thin laminated rings and long cylinders having any 

composite orthotropic lay-up with the stiffness coupling terms included. 
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It is obvious that the above equation reduces to that of equations (1) and (2) for thin isotropic or 

homogeneous orthotropic rings/long cylinders respectively, since 
0orthB  

 and  in 

such cases. Rasheed and Yousif (2005) extended their critical buckling pressure formula to thin 

laminated rings and long cylinders having any composite anisotropic lay-up with the stiffness 

coupling terms included. 
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The present work is intended to develop closed form analytical expressions for the effective 

axial, coupling and flexural hoop stiffness of the hybrid steel-FRP design proposed here in. A 

similar critical buckling pressure formula of thin long cylinders having the stiffness coupling 

terms included is arrived at. This formula is used to assess some new experiments of composite 

construction with aluminum liner. 

 

2. Analytical Formulation 

Multi-angle laminated composite filament wound around a steel layer is considered in this 

formulation. However, to constrain the tube to orthotropic behavior, angle plies with (  )  are 

merged into one layer. This restricts the applicability of the present formulation to lay-ups with 

adjacent (  )  and (  )  plies. Nevertheless, this type of stacking sequence is widely used in 

filament wound cylinders since this manufacturing process inherently dictates adjacent (  )  

layers. 

Kinematics: 

The kinematic relations follow the same expressions derived for thin isotropic rings (Brush and 

Almroth 1975). Figure 2 shows the Cartesian (X2, X3) and the polar (r,) coordinate systems 

used. For the intermediate class of deformations assumed, the hoop strain and circumferential 

line rotation are small. This results in the following displacement and strain-displacement 

relationships: 
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where 
* * *, ,u v  are the radial, tangential displacements and rotation of a through-the-thickness 

circumferential line element (Figure 2), , ,u v   are the corresponding displacement components 

of the mid-surface line. The hoop strains are accordingly expressed by: 
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where 
*

,  
are the hoop strains along the mid-surface and any other parallel surface, 

respectively, 
R 

 is the circumferential curvature of mid-surface. The same linear strain 

distribution is considered for the axial and shearing strains in thin shells for the sake of the 

closed form solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.2 The shell in-plane geometry and deformation components 

 

Constitutive Equations: 

Transforming the material principle directions of every layer into the shell principle directions, 

the in-plane ply stress-strain relationship becomes: 
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where ijQ
 are explicitly defined in composite textbooks in terms of the ply orthotropic material 

properties and the fiber inclination angle  with respect to the ring axis (Jones 1975). The 

assumption of orthotropic shell response dictates that adjacent ( )  layers are merged together. 

This causes 
 

16Q
 and 

 
26Q

 coefficients of equation (7) to vanish and the rest of the coefficients 

to equal the average value from the (  )  and (  )  plies. Reflecting this simplification and 

substituting equation (6) into (7): 
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Due to the special displacement boundary conditions associated with the long cylinder problem, 

the above equation is possible to reduce to yield effective hoop local modulus.  
*
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In the case of a steel layer, the hoop effective modulus is simply defined as:  
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In the case of a hoop orthotropic layer, the hoop effective modulus eventually reduces to:  
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Similarly, in the case of a cross-ply layer, the hoop effective modulus reduces to:  

                                                                           (12) 

 

Also, in the case of an angle-ply layer, the hoop effective modulus is expanded as:  
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Non-Linear Equilibrium Equations for External Fluid Pressure: 

It can be easily shown that the strain energy stored in the orthotropic long cylinder is a function 

of the hoop stresses and strains only, since the axial displacements vanish: 
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Knowing that )( dzdA   for a unit length of the cylinder in the axial direction and using 

equations (9), equation (14) becomes: 
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 and N is the number of different layers in the stacking sequence. 

 

The potential of external fluid pressure loading is: 
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where (p) is the external pressure, (
2

0 RA 
) is the initial cross sectional area of the outer 

surface , (A) is the corresponding area in the deformed configuration. Writing (A) in terms of the 

displacement components and manipulating [8]: 
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Defining the potential energy as U W   , taking ( 0   ), performing integration by parts, 

manipulating and considering arbitrary virtual displacements ( vu  , ), the nonlinear equilibrium 

equations appear to be similar to those of isotropic rings:  
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Pre-buckling Solution: 

The pre-buckling solution is obtained by substituting 
, 0, 0ou u v   

, equations (6), 

eff effN A B    
 and eff effM B D    

 into equations (18). The first one is trivially 

satisfied and the second one gives: 

o
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The second term above is negligible compared to that on the right hand side, yielding: 

o
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Bifurcation Solution: 

Substituting equations (6) and eff effN A B    
 and eff effM B D    

 into (18), perturbing 

the displacements u and v ( 0 1 1,u u u v v  
) and linearizing: 
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Note that the above equations differ from those of isotropic rings only by their additional 

coupling terms. For circular rings, 1 1 1, ,u u v
and 1v  must be periodic, (u) is symmetric and (v) is 

anti-symmetric with respect to (X3) axis [8], Fig. 2: 

 ncvandncu sincos 1121                                                                             (22) 
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and solving the eigenvalue system above for (): 
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Equation (23) yields the critical buckling pressure, which may simply be expressed as: 
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Effective Moduli: 

Closed form expressions of the effective axial, coupling and flexural stiffness may be written for 

special cases of stacking sequence. For example, if the lay-up is composed of steel-hoop 

composite, the stiffness coefficients are written as: 
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Also, if the lay-up is composed of steel/cross-ply composite, the stiffness coefficients are: 
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Also, if the lay-up is composed of steel/angle-ply composite, the stiffness coefficients are:  
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3. Applications 

Sumana et al. (2015) have designed, built, tested and analyzed several composite tubes filament 

wound on top of an aluminum liner and subjected to external fluid pressure. The material 

properties of the aluminum and S-glass FRP are given in Table 1, as reported by Sumana et al. 

(2015). The aluminum pipe has an inner diameter of 80 mm, a wall thickness of 1 mm and a total 

length of 800 mm. The FRP was filament wound permanently on top of the aluminum liner using 

alternating cross-ply and angle-ply layers with a total thickness of 1 mm, 2 mm and 3 mm, 

respectively. The different layups implemented by Sumana et al. which are applicable to this 

paper are 0/90, and . However, the sections at the two ends of the tube were fixed 

against deformation inside the pressure chamber (Sumana et al. 2015). On the other hand, the 

tube in the present analysis is assumed to be in a state of plane strain with all sections along its 

length deforming equally. If the tested tubes are long enough to have the tube mid-section not 

affected by its ends, the present solution would match the experimental one. However, if the tube 

ends affect the deformability of the middle section, then the present solution represents a lower 

bound solution to the test results. By examining the results obtained from the experiments 

compared to those generated by the present formula, it is evident that the AL-0/90 and the AL-

 tube specimens have the present solution represent a lower bound pressure to the 

experimental buckling pressure. This is attributed to the stiffening effect of the tube ends and the 

axial compression induced by the end capping pressure. On the other hand, the AL-  tube 

specimen with 1 mm FRP still result in the same lower bound solution while the tube specimens 

with 2mm and 3 mm FRP show the opposite results. This may be attributed to the specific angle 

of 55 that has unequal effective hoop and axial moduli compared to the angle of 45 and 0/90 

which has equal effective hoop and axial moduli in both cases. Overall, the present results have 

reasonable agreement to the experimental results despite the difference in the boundary 

conditions of the present analytical solution and the experimental results. 

 

Table 1. Material Properties of Sumana et al. Tubes 

Tube Material E11 E22 G12 12

S Glass FRP 53.48 GPa  17.7 GPa  5.83 GPa 0.278 

Aluminum 6061-T6 70 GPa 70 GPa 26.32 GPa 0.33 

 

Table 2. External Buckling Pressure Comparison between Experiments and Present 

Solution 

Tube Layup Exp. Pcr  Present Pcr tFRP 

AL-0/90 2.1268 MPa 1.5160 MPa 1 mm 

AL-0/90 6.6555 MPa 4.9350 MPa 2 mm 

AL-0/90 13.9949 MPa 11.1720 MPa  3 mm 

AL-  1.6939 MPa 1.2620 MPa 1 mm 

AL-  5.3597 MPa 4.0920 MPa 2 mm 

AL-  11.9832 MPa 9.3130 MPa 3 mm 

AL-  1.6140 MPa 1.4560 MPa 1 mm 

AL-  4.2720 MPa 4.7400 MPa 2 mm 

AL-  10.6018 MPa 10.7400 MPa 3 mm 
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4. Conclusions 

A generalized buckling formula is developed for laminated orthotropic long cylinders made of 

glass fiber reinforced polymer lined with a metal pipe under external fluid pressure. The equation 

is expressed in terms of effective axial, coupling and flexural stiffness in the hoop direction, 

which are determined in closed form furnishing simple design calculations. The formula 

accounts for the effects of the axial and flexural modulus independently as well as the 

contribution of the ply coupling terms. The present formula is benchmarked against experimental 

results in the literature on the simpler cases of orthotropic laminated long cylinders.  

 

Sumana et al. (2015) have designed, fabricated and tested nine composite tubes lined with 

identical aluminum pipes to study their buckling under external pressure. The buckling pressure 

formula is generally found to yield a lower bound solution of these tubes compared to the 

experiments due to the end boundary conditions of the tubes inside the pressure chamber. The 

only exception was the case of AL-  tubes with thicker FRP in which unequal effective 

moduli are experienced in the hoop vs. the axial directions. Overall, the results of the present 

formula are generally close to those of the experiments on the conservative side. This should 

encourage the engineers to use this solution in actual designs. 
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