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Abstract 
A method is presented for calculating discrete brace forces in cold formed C- and Z- sections based 
on lateral and torsion displacement compatibility of the sections. By eliminating pure torsion, the 
calculation of brace forces is simplified with minimal loss in precision. The method also describes 
in detail the process to calculate the brace forces at the support locations which are commonly 
incorrectly applied. To facilitate the use of the method, summary tables are provided for many 
common brace and load combinations.  
 
Introduction 
C- and Z- sections supporting standing seam roof systems are partially braced by the standing seam 
system. The interaction between the purlin the roof system is complex and difficult to quantify. As 
a result of these complexities, one of the strategies for analysis is to largely ignore the restraining 
effects of the sheathing and provide discrete bracing points along the length of the member. The 
magnitude of these brace forces is important because they must be transferred through the structure 
and on large roof systems, the forces can be substantial.  
 
The principal axes of Z-sections are rotated relative to the plane of the web and both C- and Z-
sections are often loaded eccentric to the shear center.  Therefore, adequate bracing is essential to 
ensure that C- and Z-sections can attain a reasonable capacity and minimize deflections and the 
corresponding second order stresses. This paper reviews the classical mechanics solutions to 
determining brace forces and offers some simplifications.  It also compares the calculated brace 
forces to the discrete bracing provisions of the AISI Specification (2012) which for most bracing 
configurations is overly conservative. The provisions are also often misapplied when used for 
braces at the frame lines.  
 
Lateral brace forces are calculated by a combination of displacement compatibility and equilibrium 
equations. To determine the magnitude of the braces along the span of a purlin, a displacement 
compatibility, aka force method, approach is used. Lateral deflection and torsion rotation of the 
purlin are calculated in an unbraced condition, then the brace forces are those forces, assuming the 
brace is rigid, that restore the member to its original position. Once the braces forces along the 
span are determined from displacement compatibility, the forces at the supports or frame lines are 
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determined from equilibrium. Lateral and torsion deformations are treated separately and then 
superimposed. Flexible braces can be analyzed by incorporating braces stiffness into the 
compatibility analysis. However, ignoring brace flexibility will result in a conservative estimate 
of the brace force. Therefore, the analysis presented is based on rigid braces. 
 
1. Load Effects requiring bracing 
The loads applied to purlins that generate braces forces in C- and Z-sections are divided into 3 
categories: (1) the loads applied oblique to the principal axes, (2) the torsion loads, and (3) the 
weak axis (downslope) loads.   
 
1.1 Loads Oblique to Principal Axes 
The deflection of a beam loaded oblique to its principal axes is calculated by reducing the load 
into components directed along the principal axes and superimposing the deflections in the 
principal axis directions. Zetlin and Winter (1955) showed that the calculation of the lateral 
deflection of beam loaded oblique to its principal axes could be simplified by applying a fictitious 
horizontal load and a modified moment of inertia. For the Z-section shown in Figure 1 with an 
externally applied load along the y-axis, W, the fictitious horizontal load along the orthogonal x-
axis is W(Ixy/Ix) where Ixy is the product of inertia and Ix is the moment of inertia of the cross 
section with respect to the orthogonal x and y axes.  The modified moment of inertia, Imy is 
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Figure 1.  Fictitious Horizontal Load  

 
Conventional deflection formulas are applied to calculate the deflection of the beam along the x-
axis resulting from forces applied along the y-axis. The applied load is replaced by the fictitious 
load and the moment of inertia is replaced by the modified moment of inertia. For example, the 
mid-span x-axis deflection of a simple span Z-section shown resulting from a uniformly applied 
load along the y-axis is 
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At the location of the brace, displacement compatibility is enforced. That is, the brace force is the 
magnitude of the concentrated force in the x-direction required to cause the same x-axis 
displacement as the applied load in the y-direction. Again, the conventional formulas for deflection 
can be used with the modified moment of inertia in place of the moment of inertia in the deflection 
formula. For the example of a midpoint brace applied at the shear center of a simple span beam 
the displacement at mid-span caused by the brace is 

xxyW(I    /I  )

W
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Equating the two displacements and solving for the total brace force, PL, the brace force at mid-
span for a uniformly loaded simple span Z-section is 
 

 P,୫୧ୢ ൌ
ହ

଼
ቀw

୍౮౯
୍౮
ቁ L (4) 

 
The brace force at the mid-span in Equation 4 requires that the purlin is laterally supported at its 
support locations. The magnitude of the brace forces at the support locations is determined from 
equilibrium. Since the brace force at mid-span is generated from a load applied in the y-axis, the 
net sum of forces in the x-axis direction should be zero. Therefore the sum of the brace forces at 
the support location must be equal and opposite to the interior braces. Applying symmetry, the 
total brace force at each frame line is  
 

 P,ୱ୮୲ ൌ െ ହ

ଵ
ቀw

୍౮౯
୍౮
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1.2 Torsion 
Torsion deformations are the combination of pure (St. Venant’s) torsion and warping torsion. The 
open cross sections of C- and Z-sections have very little resistance to pure torsion and most of the 
resistance to deformation results from warping resistance. As a result, when using displacement 
compatibility to determine brace forces, warping torsion dominates the behavior and pure torsion 
can be reasonably eliminated from the solution. By eliminating pure torsion, the solution is greatly 
simplified. 
 
From Carter and Seaburg (1997), the general equation for torsion moment resisted by a cross 
section, T, is 
 
 ܶ ൌ ′ߠܬܩ െ  (6) ′′′ߠ௪ܥܧ
 
Because the pure torsion rigidity, GJ, is small relative to the warping torsion rigidity, ECw,, the 
pure torsion rigidity is considered negligible, (GJ ≈ 0). Therefore, Equation (6) reduces to  
 
 ܶ ൎ  (7) ′′′ߠ௪ܥܧ
 
The following equation then describes the relationship between the function describing the torque 
with respect to the location z along the length and the 4th derivative of the angle of rotation. 
   
ሻݖሺݐ  ൎ  (8)  ′′′′ߠ௪ܥܧ
 
The reader will notice the parallels between the above equation and the more recognized equation 
that relates the 4th derivative of the deflection of a beam to the loading function. 
 
 wሺݖሻ ൌ  (9) ′′′′ݕܫܧ
 
Therefore, in the same way, the deflection of a beam is determined by integrating Eq. 9, Eq 8 can 
be integrated to approximate the torsion rotation of a beam. Note that Eq 8 should not be used to 
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calculate the actual torsion rotations as it will overestimate the rotation for a given load. However, 
when the equation is used for a displacement compatibility analysis, since pure torsion is ignored 
in the primary load condition and the redundant brace condition, the overestimation is balanced in 
resulting in negligible error. 
 
For the example of the simple span beam with a uniformly distributed torque and a torsion brace 
at mid-span, the mid-span rotation resulting from the uniformly distributed torque is 
  

 ϕ ൎ ହ୲ర

ଷ଼ସେ౭
   (10) 

 
The mid-span rotation of the resulting from the mid-span brace is 
 

  ϕ ൎ ైయ

ସ଼େ౭
 (11) 

 
Equating these two rotations, the resulting brace torque is 
 

 ܶ ൌ
ହ

଼
 (12) ܮݐ

 
The above simplified equation is compared to the full torsion equation where both warping and 
pure torsion is considered. The brace torque in the full equation is  
 
 ܶ ൌ ሺߙሻ(13) ܮݐ 
where 
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Equation 14 is plotted in Figure 2 for a representative range of C- and Z-sections from the AISI 
Design Manual (2008) with depths ranging from 6 in. to 12 in. Note that if only warping torsion 
is considered, α = 5/8 and if only pure torsion is considered, α = 1/2. Therefore the range of 
solutions considering both warping and pure torsion will range between 1/2 and 5/8. For short span 
lengths, α matches the value of 5/8 calculated by the approximate warping-only equation. As the 
span length increases, there is some deviation from 5/8. The largest deviations occur for shallow 
purlins with thick gauges and narrow flanges. At a maximum practical span length of 50 feet, the 
deviations of the warping-only approximation are within 5% of the true solution. Only for 
ridiculously long spans on the order of 500 feet does the multiplier approach pure torsion 
dominated value α = ½. 
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Figure 2.  Torsion Multiplier Comparison 

 
By eliminating pure torsion, the solution is greatly simplified with very little loss in accuracy. The 
solution will parallel the solution for the brace forces for loads oblique to the principal axes.  
Therefore, in developing compatibility solutions, the same factors derived for displacement 
compatibility can be applied to torsion compatibility.  
 
For the brace forces at the frame lines, it is import to consider the eccentricity of the reactions at 
the supports. Along the interior of the span, the torsion moments are calculated relative to the shear 
center. At the frame support location, it is generally assumed that the reaction is along the web of 
the C- or Z- section. Therefore, when the shear center does not coincide with the web of the purlin, 
this eccentricity causes an additional moment at the support location. The total moment along the 
length of the purlin is balanced by the moment at the support locations using equilibrium equations. 
 
Using the example of the uniformly loaded simple span C- section braced at the mid-span, the total 
moment along the span is  
 

௭ܯ  ൌ ൫െݓ௫݁௦௬   (15)   ܮ௬݁௦௫൯ݓ
 
The concentrated moment at the mid-span brace is 
  

 ܶ_ௗ ൌ െ ହ

଼
௭ܯ ൌ െ ହ

଼
൫െݓ௫݁௦௬   (16) ܮ௬݁௦௫൯ݓ

 
The concentrated moment at each support brace is 
 

 ܶ_௦௧ ൌ െ ଵ
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ଵ
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௪

ଶ
ቁ  (17) ܮ

 
Where m, is the eccentricity of the shear center as shown in Figure 3. The term representing the 
component of the applied load directed along the y-axis, wy, is rearranged to fit the uniform 
solution framework presented in the following sections, 
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ଵ
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ଵ
൫ݓ௬݉൯(18) ܮ 

 
Note that the 5/16 multiplier in the second term will match the multiplier in Equation 5. 
 
1.3 Downslope forces 
For C- and Z- sections used in sloped roof systems, the forces acting on the sloped purlin are 
resolved into components parallel and perpendicular to the web of the section as shown in Figure 
3. Those forces perpendicular to the web, ie directed along they y-axis, are referred to as the 
downslope forces. The displacement compatibility solution for downslope forces is performed in 
a traditional manner. The purlin is allowed to deflect laterally according to the downslope forces 
and the brace force is the force that is required to restore the lateral displacement to the original 
position. For a beam subjected to a uniform load w, the downslope force is wy, and the brace force 
at mid-span is       

 P,୫୧ୢ ൌ
ହ

଼
൫w௬൯L (19) 

 
The forces at the frame lines again are those that satisfy equilibrium. The sum of forces at the 
frame line and supports equal the total downslope force. For example, the brace force at each 
frame line for a uniform downslope force braced at mid-span is  
 

 P,ୱ୮୲ ൌ
ଷ

ଵ
൫w௬൯L (20) 

 
2.  Generalized Compatibility Equation 
Utilizing the general nomenclature from the AISI Specification (2012), a general equation 
framework is established for compatibility solutions of brace forces. The generalized equation 
combines unsymmetric bending effects, torsion effects, and downslope load effects. Brace forces 
are defined according to the span between the supports. The equations include brace forces along 
the interior of the span in addition to the brace forces at the support location. The total brace force 
at a location, PL, is divided into a brace force at the top flange, PL1, and at the bottom flange, PL2.  
The general equations of the compatibility solution are 
 

 Pଵ ൌ CଵKᇱ െ Cଶ
౮
ଶ
 Cଶ



ୢ
 (21) 

 Pଶ ൌ CଵKᇱ െ Cଶ
౮
ଶ
െ Cଶ



ୢ
 (22) 

Where 

 Kᇱ ൌ
୍౮౯
ଶ୍౮

 (23) 

 M ൌ Cଶ ቀെU୶eୱ୷  U୷ሺeୱ୶ െ Cଷmሻቁ  CଵCଷU୷m (24) 
 
Ux and Uy are the applied loads in the x and y direction respectively and are defined according to 
the load cases in Tables 1-5. Coefficients C1 and C2 depend on the load case and the bracing 
configuration and are defined in Tables 1-5. Coefficient C3 equals zero for interior braces and 
equals one for braces at support locations. 
 
Solutions to various loadings and bracing configurations are shown in Tables 1-5. Bracing 
configurations include midpoint brace, third point braces, single brace unsymmetrically placed and 
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two braces symmetrically placed. Loading configurations include full uniform load distribution, 
partial uniform load distribution and concentrated point loads. Load cases can be superimposed 
but bracing configurations cannot.  
 

 
Figure 3.  Nomenclature and Positive Force Directions 

 
For distributed load cases other than those shown, the loads can be approximated by concentrated 
loads. The distributed loads should be divided between the braces with the concentrated load 
applied at the centroid of the distributed load segment between braces. For example, the triangular 
load distribution shown in Figure 4, can be divided into 2 concentrated loads each located at the 
centroid of the load bounded by the brace locations.   

 
Figure 4. Approximation of Distributed Load  

 
Compatibility solutions for multi-span systems are only provided for uniform load distributions.  
For multi-span systems with bracing or load configurations other than those provided, the system 
can be approximated as a simple span system. This approximation will result in a conservative 
approximation for interior braces. For braces at the frame lines, the brace forces will be 
conservative for low slope roofs and unconservative for roofs with steep pitches.  Since interior 
braces are typically the greater focus of design, it is more desirable to be conservative at the interior 
braces.   
 
3.  Comparison to AISI Equations 
The current AISI provisions for discrete bracing from Section D3.2.1 of the AISI Specification are 
derived from the same compatibility principles originally presented by Zetlin and Winter (1955) 
and revisited in this paper. However, the compatibility solution in the specification is generalized 
to envelop all load cases and brace configurations. While the envelope solution maintains a certain 
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level of simplicity, the solution is overly conservative for uniform load distributions and is often 
misinterpreted for braces at the support locations.      
 
For the most basic bracing configuration, a simply supported beam with a mid-span brace 
subjected to uniform loading, the AISI specification is 20% conservative when compared to the 
actual compatibility solution. As additional braces are added along the span and for multi-span 
systems, the method is even more conservative with percentages exceeding 50% in some cases. 
For large roof systems where these brace forces can accumulate in collectors, the forces can be 
substantial so it is desirable to improve the ability to more accurately predict the brace forces.  
 
The other problem with the current envelope procedure in the AISI Specification is that it is 
misinterpreted for brace forces at the frame lines. For brace forces resulting from unsymmetric 
bending, the braces at the frame lines balance the interior brace forces since there is no net 
horizontal force from unsymmetric bending. The common interpretation of the AISI Specification 
is that the brace forces at the frame lines from unsymmetric bending come from the portion of the 
load tributary to the exterior brace. This interpretation can lead to gross errors in predicting the 
brace forces at the frame lines, often predicting forces in the opposite direction of the actual force. 
This can be problematic for bracing system details that are often tension-only or compression-only 
details.    
 
4.  Conclusions 
The method provided in this paper to predict the brace forces in cold-formed C- and Z-sections 
includes effects form unsymmetric bending, torsion and downslope roof forces. The method 
follows a framework similar to the framework already familiar to designers accustomed to using 
the AISI Specification. However, rather than use simple multipliers intended to envelope all load 
and bracing configurations, the method presented provides coefficients specific to each loading 
and bracing configuration. The coefficients are organized in a table format for easy reference. The 
method also makes explicit recommendations for the brace forces at the support locations. The 
presented method more accurately predicts the brace forces for cold-formed C- and Z- sections 
than the current provisions in the AISI Specification which can be grossly over-conservative.     
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Table 1. Equation Coefficients: Simple Span, Uniform Load Distribution, Single Brace 

Load Case Figure 
Load, 

U 
 Brace Location 
 B1 B2 B3 

1SB-U1 wL 

C1 -5/16 5/8 -5/16 

C2 3/16 5/8 3/16 

1SB-U2 
a < L/2 

L/2 < (a+b) 

wb 

C1 െ
1
2 ܻ YUi െ

1
2 ܻ 

C2 
1
2
൬2 െ 2 ቀ

ܽ
ܮ
ቁ െ

ܾ
ܮ
െ ܻ൰ YUi 

1
2
൬2 ቀ

ܽ
ܮ
ቁ 

ܾ
ܮ
െ ܻ൰ 

1SB-U3 
(a+b) <  L/2 

ܻଶ ൌ
ܮ
ܾ
ቈ
ܾ
ܮ
൬
18ܽ  9ܾ െ ܮ2

ܮ2
൰ 

ܮ െ 8ܽ
ܮ8

 3 ቀ
ܽ
ܮ
ቁ
ଶ
 ቀ

ܽ
ܮ
ቁ
ସ
െ ൬

ܽ  ܾ
ܮ

൰
ଷ

൬
ܮ4 െ ܽ െ ܾ

ܮ
൰ 

ܻଷ ൌ
ܮ
ܾ
ቈ
3ܾ
ܮ2

൬
2ܽ  ܾ
ܮ

൰  ቀ
ܽ
ܮ
ቁ
ସ
െ ൬

ܽ  ܾ
ܮ

൰
ସ

 

ܻସ ൌ
ܮ
ܾ
ቈ
ܾ
ܮ
൬
18ܽ  9ܾ െ ܮ2

ܮ2
൰  ቀ4 െ

ܽ
ܮ
ቁ ቀ
ܽ
ܮ
ቁ
ଷ
െ ൬

ܽ  ܾ
ܮ

൰
ଷ

൬
ܮ4 െ ܽ െ ܾ

ܮ
൰ 

 

1SB-U4 
L/2 < a 

 

1UB-U5 
a < x 

x < (a+b) 

wb 

C1 െ൬
ܮ െ ݔ
ܮ

൰ ܻ YUi െቀ
ݔ
ܮ
ቁ ܻ 

C2 
2ܽ  ܾ  ݔ2 ܻ

ܮ2
 YUi 

ܮ2 െ 2ܽ െ ܾ
ܮ2

 ൬
ݔ െ ܮ
ܮ

൰ ܻ 

1UB-U6 
x > (a+b) 

ܻହ ൌ
ܮ
ܾ
ቈ
1
8
ቀ

ݔ
ܮ െ ݔ

ቁ
ଶ
െ
ܮሺ2ܾݔ െ 2ܽ െ ܾሻ

ܮሺܮ4 െ ሻଶݔ

ܽሺ3ܽ െ ሻݔ2

4ሺܮ െ ሻଶݔ


ܽସ

ܮଶሺݔܮ8 െ ሻݔ

ሺܽ  ܾሻଷሺܽ  ܾ െ ሻܮ4

ܮሺݔܮ8 െ ሻଶݔ

ሺ2ܽܮܾ  ܾሻ

ܮሺݔ2 െ ሻଶݔ
 

ܻ ൌ
ܮ
ܾ
ቈ
ܾ
ܮ

ሺ2ܽ  ܾሻሺ2ܮ െ ሻݔ

ܮሺݔ4 െ ሻݔ

ܽସ െ ሺܽ  ܾሻସ

ܮଶሺݔܮ8 െ ሻݔ
 

ܻ ൌ ቈ
ଶሺ2ܽܮ4ܾ  ܾሻ  ଶሺ2ܽݔ2ܾ  ܾ െ ሻܮ2  ܽଷሺ4ܮ െ ܽሻ  ሺܽ  ܾሻଷሺܽ  ܾ െ ሻܮ4

ܮሺݔ8ܾ െ ሻଶݔ
 1UB-U7 

x < a 

 
  

L/2 L/2

w

B1 B2 B3

L/2L/2

w

a b c

B3B2B1

ca

L/2L/2

b

w

B3B2B1

c

L/2

b

L/2

a

w

B3B2B1

ca

L
x

b

w

B3B2B1

L

c

x

a

w

b

B1 B2 B3

x

c

L

a b

w

B1 B2 B3



 10

Table 2. Equation Coefficients: Simple Span, Concentrated Load, Single Brace 

Load Case Figure 
Load, 

U 
 Brace Location 
 B1 B2 B3 

1SB-P1 

P 

C1 -1/2 1 -1/2 

C2 0 1 0 

1SB-P2 
a > L/2 

C1 െቆ
3
2
൬
ܾ
ܮ
൰ െ 2 ൬

ܾ
ܮ
൰
ଷ

ቇ 3 ൬
ܾ
ܮ
൰ െ 4 ൬

ܾ
ܮ
൰
ଷ

 െቆ
3
2
൬
ܾ
ܮ
൰ െ 2 ൬

ܾ
ܮ
൰
ଷ

ቇ 

C2 െ
1
2
൬
ܾ
ܮ
൰  2 ൬

ܾ
ܮ
൰
ଷ

 3 ൬
ܾ
ܮ
൰ െ 4 ൬

ܾ
ܮ
൰
ଷ

 1 െ
5
2
൬
ܾ
ܮ
൰  2 ൬

ܾ
ܮ
൰
ଷ

 

1SB-P3 
a <  L/2 

C1 െ൬
3
2
ቀ
ܽ
ܮ
ቁ െ 2 ቀ

ܽ
ܮ
ቁ
ଷ
൰ 3 ቀ

ܽ
ܮ
ቁ െ 4 ቀ

ܽ
ܮ
ቁ
ଷ
 െ൬

3
2
ቀ
ܽ
ܮ
ቁ െ 2 ቀ

ܽ
ܮ
ቁ
ଷ
൰ 

C2 1 െ
5
2
ቀ
ܽ
ܮ
ቁ  2 ቀ

ܽ
ܮ
ቁ
ଷ
 3 ቀ

ܽ
ܮ
ቁ െ 4 ቀ

ܽ
ܮ
ቁ
ଷ
 െ

1
2
ቀ
ܽ
ܮ
ቁ  2 ቀ

ܽ
ܮ
ቁ
ଷ
 

1UB-P4 
x = a 

C1 -b/L 1 -a/L 

C2 0 1 0 

1UB-P5 
x < a 

x < (a+b) 

 

C1 െ
ܾሺܮ െ ሻݔ

ݔܮ2
ቆ
ଶܮ െ ଶݔ െ ܾଶ

ሺܮ െ ሻଶݔ
ቇ 

ܾ
ݔ2

ቆ
ଶܮ െ ଶݔ െ ܾଶ

ሺܮ െ ሻଶݔ
ቇ െ

ܾ
ܮ2

ቆ
ଶܮ െ ଶݔ െ ܾଶ

ሺܮ െ ሻଶݔ
ቇ 

C2 

ܾ
ܮ2

൭2 െ
ܮ െ ݔ
ݔ

ቆ
ଶܮ െ ଶݔ െ ܾଶ

ሺܮ െ ሻଶݔ
ቇ൱ 

ܾ
ݔ2

ቆ
ଶܮ െ ଶݔ െ ܾଶ

ሺܮ െ ሻଶݔ
ቇ 

1
ܮ2

൭2ܽ െ ܾ ቆ
ଶܮ െ ଶݔ െ ܾଶ

ሺܮ െ ሻଶݔ
ቇ൱ 

1UB-P6 

C1 െ3ቀ
ܽ
ܮ
ቁ  4 ቀ

ܽ
ܮ
ቁ
ଷ
 6 ቀ

ܽ
ܮ
ቁ െ 8 ቀ

ܽ
ܮ
ቁ
ଷ
 െ3ቀ

ܽ
ܮ
ቁ  4 ቀ

ܽ
ܮ
ቁ
ଷ
 

C2 1െ3ቀ



ቁ  4 ቀ




ቁ
ଷ
 6 ቀ

ܽ
ܮ
ቁ െ 8 ቀ

ܽ
ܮ
ቁ
ଷ
 1െ3ቀ




ቁ  4 ቀ




ቁ
ଷ
 

 
  

L/2L/2
B1

P

B2 B3

L/2
B1

L/2

P

B2 B3

a b

B3B2
L/2

B1
L/2

a bP

a

x = a
B1

bP

B2 B3

x

a

B1

b

B2

P

B3

a

L/2
B1

L/2

P

B2 B3

aP
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Table 3. Equation Coefficients: Simple Span, Third Point Braces 
Load 
Case 

Figure 
Load, 

U 
 Brace Location 
 B1 B2 B3 B4 

3DB-U1 wL 

C1 -11/30 11/30 11/30 -11/30 

C2 4/30 11/30 11/30 4/30 

3DB-P1 
a < L/3 
L/2 < 
(a+b) 

 

P 

C1 െ
2
3 ଵܻ െ

1
3 ଶܻ Y1 Y2 െ

1
3 ଵܻ െ

2
3 ଶܻ 

C2 
ܾ
ܮ
െ
2
3 ଵܻ െ

1
3 ଶܻ Y1 Y2 

ܽ
ܮ
െ
1
3 ଵܻ െ

2
3 ଶܻ 

ଵܻ ൌ
ଷ

ହ
ቀ



ቁ 8 െ 27 ቀ




ቁ
ଶ
൨               ଶܻ ൌ

ଷ

ହ
ቀ



ቁ 18 ቀ




ቁ
ଶ
െ 2൨ 

3DB-P2 
a > L/3 
a<2L/3 

 

C1 െ
2
3 ଵܻ െ

1
3 ଶܻ Y1 Y2 െ

1
3 ଵܻ െ

2
3 ଶܻ 

C2 
ܾ
ܮ
െ
2
3 ଵܻ െ

1
3 ଶܻ Y1 Y2 

ܽ
ܮ
െ
1
3 ଵܻ െ

2
3 ଶܻ 

ଵܻ ൌ
ଷ

ହ

ସ

ଷ
െ 40




 21 ቀ




ቁ
ଷ
െ 24 ቀ




ቁ
ଷ
൨               ଶܻ ൌ

ଷ

ହ
40 ቀ




ቁ െ

ହ

ଷ
 21 ቀ




ቁ
ଷ
െ 24 ቀ




ቁ
ଷ
൨ 

3DB-P3 
a>2L/3 

 

C1 െ
2
3 ଵܻ െ

1
3 ଶܻ Y1 Y2 െ

1
3 ଵܻ െ

2
3 ଶܻ 

C2 
ܾ
ܮ
െ
2
3 ଵܻ െ

1
3 ଶܻ Y1 Y2 

ܽ
ܮ
െ
1
3 ଵܻ െ

2
3 ଶܻ 

ଵܻ ൌ
ଷ

ହ
ቀ



ቁ 18 ቀ




ቁ
ଶ
െ 2൨             ଶܻ ൌ

ଷ

ହ
ቀ



ቁ 8 െ 27 ቀ




ቁ
ଶ
൨    

  

L/3
B2

L/3
B1

w

B4
L/3

B3

L/3
B2

L/3
B1 B3

L/3
B4

ba P

L/3L/3
B2B1

L/3
B3 B4

ba P

b

L/3

a

B2
L/3

B1

P

B3
L/3

B4
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Table 4. Equation Coefficients: Simple Span, Two Symmetric Braces 
Load 
Case 

Figure 
Load, 

U 
 Brace Location 
 B1 B2 B3 B4 

2SB-U1 wL 

C1 -Y ܻ ൌ
11
162

൫ܮൗܿ ൯
ଶ

ቀ3 െ 4൫ܿ ൗܮ ൯ቁ
 Y -Y 

C2 
1
2
െ ܻ Y Y 

1
2
െ ܻ 

2SB-P1 
a < c 

P 

C1 ଵܻ ቀ
ܿ
ܮ
െ 1ቁ െ ଶܻ ቀ

ܿ
ܮ
ቁ Y1 Y2 ଶܻ ቀ

ܿ
ܮ
െ 1ቁ െ ଵܻ ቀ

ܿ
ܮ
ቁ 

C2 ቀ1 െ
ܽ
ܮ
ቁ  ଵܻ ቀ

ܿ
ܮ
െ 1ቁ െ ଶܻ Y1 Y2 

ܽ
ܮ
െ ଵܻ ቀ

ܿ
ܮ
ቁ  ଶܻ ቀ

ܿ
ܮ
െ 1ቁ 

ଵܻ ൌ


మ
ቂܿ െ

ሺమିమሻሺଶିଷሻ

ሺଷିସሻሺିଶሻ
ቃ               ଶܻ ൌ



మ
ቂ
ሺమିమሻሺିሻ

ሺଷିସሻሺିଶሻ
ቃ 

2SB-P2 
c < a    

a<(L-c)  

C1 ଵܻ ቀ
ܿ
ܮ
െ 1ቁ െ ଶܻ ቀ

ܿ
ܮ
ቁ Y1 Y2 ଶܻ ቀ

ܿ
ܮ
െ 1ቁ െ ଵܻ ቀ

ܿ
ܮ
ቁ 

C2 ቀ1 െ
ܽ
ܮ
ቁ  ଵܻ ቀ

ܿ
ܮ
െ 1ቁ െ ଶܻ Y1 Y2 

ܽ
ܮ
െ ଵܻ ቀ

ܿ
ܮ
ቁ  ଶܻ ቀ

ܿ
ܮ
െ 1ቁ 

ଵܻ ൌ
ଶሺሻሺమିమିమሻሺିሻమିሺమିమିమሻሺమିଶమሻ

ሺଷିସሻሺିଶሻమ
               ଶܻ ൌ

ଶሺሻሺమିమିమሻሺିሻమିሺమିమିమሻሺమିଶమሻ

ሺଷିସሻሺିଶሻమ
 

2SB-P3 
a>(L-c) 

C1 ଵܻ ቀ
ܿ
ܮ
െ 1ቁ െ ଶܻ ቀ

ܿ
ܮ
ቁ Y1 Y2 ଶܻ ቀ

ܿ
ܮ
െ 1ቁ െ ଵܻ ቀ

ܿ
ܮ
ቁ 

C2 ቀ1 െ
ܽ
ܮ
ቁ  ଵܻ ቀ

ܿ
ܮ
െ 1ቁ െ ଶܻ Y1 Y2 

ܽ
ܮ
െ ଵܻ ቀ

ܿ
ܮ
ቁ  ଶܻ ቀ

ܿ
ܮ
െ 1ቁ 

ଵܻ ൌ


మ
ቂ
ሺమିమሻሺିሻ

ሺଷିସሻሺିଶሻ
ቃ      ଶܻ ൌ



మ
ቂܿ െ

ሺమିమሻሺଶିଷሻ

ሺଷିସሻሺିଶሻ
ቃ 

 
  

c
B2

c

w

B1 B3

L

B4

c

L

c
B3B2B1 B4

ba P

b

L

c
B2

c

Pa

B1 B3 B4

b

c

L

a

c
B2B1

P

B3 B4
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Table 5.  Equation Coefficients: Multi-Span, Uniform Load 

Load Case Figure 
Load, 

U 
 Brace Location 
 B1 B2 B3 

1SB-EX-U 

wL 
 

C1 -5/28 4/7 -11/28 

C2 11/56 4/7 13/56 

1SB-IN-U 

C1 -1/4 1/2 -1/4 

C2 1/4 1/2 1/4 

1US-EX-U 

 

C1 െܻ ቆ
ሺܮ െ ܮሻଶሺ2ݔ  ሻݔ

ଷܮ2
ቇ ܻ ൌ

ଶܮ

4
ቈ

ሺܮ  ሻݔ2
ሺܮ െ ܮሻሺ3ݔ  ݔሻݔ

 െܻቆ
ሺ3ܮଶ െ ݔଶሻଶݔ

ଷܮ2
ቇ 

C2 
3
8
െ ܻ ቆ

ሺܮ െ ܮሻଶሺݔ  ሻݔ2

ଷܮ2
ቇ Y 

5
8
െ ܻ ቆ

ሺ3ܮଶ െ ݔଶሻଶݔ
ଷܮ2

ቇ 

1US-IN-U 

 

C1 െܻ ቆ
ሺܮ െ ܮሻଶሺݔ  ሻݔ2

ଷܮ
ቇ ܻ ൌ

ଶܮ

ܮሺݔ8 െ ሻݔ
 െܻ ቆ

ܮଶሺ3ݔ െ ሻݔ2

ଷܮ
ቇ 

C2 
1
2
െ ܻ ቆ

ሺܮ െ ܮሻଶሺݔ  ሻݔ2

ଷܮ
ቇ Y 

1
2
െ ܻ ቆ

ܮଶሺ3ݔ െ ሻݔ2

ଷܮ
ቇ 

   B1 B2 B3 B4 

2SB-EX-U 

C1 െ
342
1404

 
531
1404 

450
1404

 െ
639
1404

 

C2 
184.5
1404

 
531
1404

 
450
1404

 
238.5
1404

 

2SB-IN-U1 

C1 െ
1
3

 
1
3

 
1
3

 െ
1
3

 

C2 
1
6

 
1
3

 
1
3

 
1
6

 

2SB-IN-U2 

C1 -Y ܻ ൌ
ሺܮ െ ܿሻଶ

4ܿሺ2ܮ െ 3ܿሻ
 Y -Y 

C2 
1
2
െ ܻ Y ܻ 

1
2
െ ܻ 

 

L/2
B2

L/2
B1

w

B3

L/2

w

B1
L/2

B2 B3

x

w

B1

L

B2 B3

x
B1

L

B2 B3

w

L/3
B2

L/3

w

B1 B3
L/3

B4

L/3
B1

L/3L/3
B3B2 B4

w

L

c
B3B1

c
B2

w

B4


