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Abstract 

This work reports numerical results concerning cold-formed steel simply supported beams buckling and 

failing in distortional modes under uniform bending and exhibiting three cross-section shapes, namely 

(i) lipped channels bent about the major-axis, (ii) zed-sections under skew bending causing uniform flange 

compression (worst case), and (iii) hat-sections subjected to either major-axis or minor-axis bending 

(compressed lips in the latter case). Two end support conditions are considered, differing only in the 

warping restraint, which is either null or full. The beams analyzed have several cross-section dimension 

ratios and lengths, in order to assess their influence on the distortional post-buckling behavior and ultimate 

strength – particular attention is paid to the influence of (i) the flange-web and lip-flange width ratios, and 

(ii) the critical (distortional) half-wave number. In addition, the beams exhibit different yield stresses, 

making it possible to cover wide distortional slenderness ranges. After presenting and discussing the 

numerical elastic and elastic-plastic post-buckling results obtained, consisting of equilibrium paths, 

deformed configurations, plastic strain distributions, failure moments and collapse mechanisms, the paper 

shows that the currently codified Direct Strength Method (DSM) design curve fails to predict adequately 

the failure moments of some of the beams analyzed an addresses the development/proposal of novel DSM 

strength curves, providing better quality predictions of all the numerical failure moments available. 

 

1. Introduction 

Most cold-formed steel members exhibit slender cross-sections, a feature making them highly prone to 

several individual (local – L, distortional – D, global – G) or coupled (L-G, L-D, D-G and/or L-D-G) 

buckling phenomena – in fact, depending on the member geometry and loading, any of these instability 

phenomena may be critical. It is well known that distortional buckling governs the structural response 

members with “intermediate lengths”. As far as the distortional failure of cold-formed steel beams is 

concerned, the research work available includes experimental investigations (e.g., Yu & Schafer 2006, 

2007 and Wang & Young 2014), numerical simulations (e.g., Landesmann & Camotim 2016) and design 

proposals, mainly concerning the development/improvement of Direct Strength Method (DSM)-based 

approaches (e.g., Schafer & Peköz 1998, Schafer 2008 and Yu & Schafer 2007). Recently, Landesmann 

& Camotim (2016) provided solid numerical evidence that the currently codified DSM beam distortional 
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design curve (MND) overestimates the failure moments of lipped channel beams with intermediate-to-high 

slenderness values. They also showed that the amount of overestimation depends on the beam cross-

section geometry (dimension ratios) and end support conditions. Concerning the latter, it is worth noting 

that the experimental failure moment data used to develop and calibrate the existing DSM distortional 

strength curve was obtained essentially from 4-point bending tests, which involve uniformly bent beam 

segments with “warping continuity” conditions at their end cross-sections, i.e., end support conditions 

lying in-between “free warping” and “prevented warping”. It should also be pointed out that the current 

MND curve was calibrated almost exclusively against experimental failure moments of beams with small-

to-moderate distortional slenderness (D<1.5) – therefore, it is not surprising that this design curve yields 

quite good estimates within this slenderness range. In summary, the “bias” (in terms of distortional 

slenderness) of the failure moment data available precluded an adequate calibration in the moderate-to-

high distortional slenderness range (D>1.5). Fig. 1, adapted from Schafer (2008), plots, against the local 

or distortional slenderness, the 574 normalized failure moments considered in the development of the 

current local (MNL) and distortional (MND) strength curves. In addition, it should be mentioned that these 

failure moments were obtained from laterally restrained beam tests carried out by 17 researchers and 

concerning (i) lipped channel beams bent about the major-axis, (ii) zed-section beams under skew 

bending (about an axis parallel to the flanges) and (iii) hat-section and trapezoidal beams (with or without 

intermediate stiffeners) bent about the minor-axis. It is still worth noting that, in Fig. 1, one has 

max=(My/Mcr)
0.5, where Mcr is the beam critical/lowest (local or distortional) buckling moment  the use 

of this “mixed slenderness” was due to difficulties in distinguishing between local and distortional failures, 

due to the bracing and support conditions (Schafer (2008)). These difficulties led Schafer to perform tests 

on beams designed to exhibit clear local (Yu & Schafer 2003) and distortional (Yu & Schafer 2006) 

failures. However, the latter beams exhibited again small-to-moderate distortional slenderness values 

(comprised between 0.68 and 1.53). The above facts led the authors to carry out a detailed investigation 

on the behavior of uniformly bent cold-formed steel beams exhibiting different cross-sections shapes and 

failing in pure distortional modes (i.e., unaffected by coupled phenomena involving distortional buckling). 
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Figure 1:  DSM beam local and distortional design curves and experimental local and distortional failure moment data 

(adapted from Schafer 2008) 

 
This work reports numerical results concerning over 4000 cold-formed steel simply supported beams 

buckling and failing in distortional modes under uniform bending and exhibiting three cross-section 

shapes, namely (i) lipped channels bent about the major-axis, (ii) zed-sections under skew bending causing 

uniform flange compression (worst case), and (iii) hat-sections subjected to either major-axis or 

minor-axis bending (compressed lips in the latter case) – Fig. 2 shows the various cross-section 

shapes bucked into beam distortional modes. Two end support conditions are considered, differing in the 

warping and local displacement/rotation restraints, which are either completely free or fully prevented. 

The beams analyzed have several cross-section dimension ratios and lengths, in order to assess their 
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Figure 2: Uniformly bent beam cross-sections buckled in distortional modes: (a) lipped channel (major-axis bending), (b) hat-

section (major-axis bending), (c) hat-section (minor-axis bending) and (d) zed-section (skew bending  horizontal neutral axis) 

 
influence on the distortional post-buckling behavior and ultimate strength – particular attention is paid 

to (i) the web-flange and flange-lip width ratios3, and (ii) the critical (distortional) half-wave number. In 

addition, the beams have different yield stresses, covering wide slenderness ranges (0.25-4.00 

intervals). After presenting and discussing the numerical elastic and elastic-plastic post-buckling results 

obtained, which consist of equilibrium paths, deformed configurations, plastic strain distributions, 

failure moments and collapse mechanisms, the paper shows that the currently codified Direct Strength 

Method (DSM) design curve fails to predict adequately the distortional failure moments of some of 

the beams analyzed and addresses the development/proposal of novel DSM strength curves, providing 

better quality predictions of all the numerical failure moments available. Moreover, it will be assessed 

whether the proposed curves are valid for major and minor-axis bending, like the currently codified 

DSM beam distortional design curve. Finally, it is still worth noting that the output of this work will be 

subsequently used in an ongoing research effort aimed at developing rational DSM-based design 

approaches for cold-formed steel beams affected by L-D interaction, namely the so-called NDL and NLD 

design approaches (Martins et al. 2015), which are based on the beam strength curves concerning 

individual distortional (and local) failures4. 
 
2. Buckling Analysis – Beam Geometry Selection 

First of all, it is necessary to identify/select geometries (cross-section dimensions and lengths) of cold-

formed steel (E=210GPa, v=0.30) simply supported beams that buckle and fail in “pure” distortional 

modes when subjected to uniform bending – since such beams are known to exhibit small-to-moderate 

distortional post-critical strength reserve, it suffices to find geometries associated with distortional critical 

buckling (McrD) moments significantly below their local (McrL) and global (McrG) counterparts5. As done 

in previous studies, the beam geometry selection was carried out by means of a “trial-and-error” 

procedure involving the performance of GBT-based buckling analysis sequences using the code GBTUL 

(Bebiano et al. 2008), taking advantage of its unique modal nature, which makes it possible to obtain 

buckling moments associated with “pure” local, distortional and global (lateral-torsional) modes. This 

selection procedure involves four combination of cross-section shape and bending axis, namely (i) lipped 

channels (C) bent about the major-axis, (ii) zed-sections (Z) under skew bending causing uniform flange 

compression (worst case), (iii) hat-sections (HM) bent either about the major-axis and (iv) hat-sections 

                         
3 Note that, in the context of columns, Silvestre et al. (2005) showed that the cross-section dimensions play an important role in 

the column distortional post-buckling behavior. 
4 The most recent results of this ongoing investigation will be reported in the near future (Martins et al. 2016). 
5  In fact, the main difficulty is to preclude the occurrence of interaction with local buckling modes (i.e., L-D interaction), since the selected 

beams have “reasonably short” lengths. In order to avoid this coupling phenomena, beams with McrL/McrD>2 were selected. Nevertheless, it 

is possible that a few slender beams are still affected by some amount of L-D interaction caused by a “secondary-local bifurcation”  

fortunately, such type of L-D interaction has been shown to have a minute impact on the beam failure moment (Martins et al. 2015). 
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(Hm) bent about the minor-axis (lips under compression). In all cases, two end support conditions are 

considered. The first ones correspond to end cross-section (i) simply supported with respect to major-axis 

and minor-axis bending, (ii) with the torsional rotations prevented and (iii) free warping displacements 

and transverse bending rotations – hereafter termed by SCA. As for the second support conditions, 

hereafter termed SCB, they differ from the first ones in the fact that the warping displacements and 

transverse bending rotations are fully prevented – physically speaking, these support conditions 

corresponds to rigidly attaching thick plates to the beam end cross-sections. 
 
The output of this effort are the 30 sets of cross-section dimensions, for each combination of cross-section 

shape and bending axis, bw, bf, bl, t (web-flange-lip widths and wall thickness – see Fig. 2) and lengths L 

provided in Annex A (Tables A.1-A.4)6. The web-to-flange and flange-to-lip width ratios, as well as the 

ratios between the critical buckling moments (McrL/McrD and McrG/McrD) are also given in these tables. It is 

still worth mentioning that the overwhelming majority of the beams selected exhibit single half-wave 

distortional critical buckling modes. For illustrative purposes, Figs. 3(a)-(c) show the variation of Mcr with 

L (logarithmic scale) for beams C19+SCA, Z8+SCB and Hm21+SCB, and also the critical (distortional) 

buckling mode shapes of the beams with the lengths selected. 
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Figure 3: Mcr vs. L curves and critical buckling mode shapes of (a) C19+BCA, (b) Z8+BCB and (c) Hm21+BCB beams 
 
3. Distortional Post-Buckling Behavior 

This section presents and discusses relevant numerical results concerning the distortional post-buckling 

behavior of cold-formed steel beams under uniform bending and, in particular, identifies the key 

parameters influencing this structural response. After providing a brief description of the shell finite 

element model adopted, the worst initial geometrical imperfection shape, in the sense that it leads to the 

lowest strength, is determined for all the beam cases considered in this work. Then, several parametric 

studies are carried out, in order to assess the influence on the beam behavior, strength and collapse of (i) 

the change in end support conditions (from SCA to SCB), (ii) the cross-section dimensions, namely the 

flange-lip and web-flange width ratios, and (iii) the critical buckling mode half-wave number. Finally, all 

the above behavioral features are addressed in more detail for the hat-section beams under minor-axis 

bending, since they constitute a problem significantly less studied than the remaining ones. 
 
3.1 Finite Element Modeling 

The beam elastic and elastic-plastic post-buckling behaviors were determined by means of ABAQUS 

(Simulia 2009) shell finite element analyses (SFEA), employing models similar to those used in previous 

                         
6 For simplicity reasons, the beams with SCA and SCB share the same cross-section dimensions  only the lengths are different. 
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column studies. Indeed, the only differences concern the loading (bending, instead of axial compression) 

and support conditions  they consist of (see Martins et al. 2015 for a more complete description): 

(I) Loading. Equal major-axis (C and H-beams), minor-axis (H-beams) and skew (Z-beams) bending 

moments are applied at the two end-sections, either (i1) by means of sets of nodal concentrated forces 

statically equivalent to 1kNcm (SCA-beams) or (i2) directly on the rigid end plate centroids (SCB-

beams) – Fig. 4 shows SCA and SCB lipped channel beams under uniform major-axis bending. 

(II) Support Conditions. The SCA-beams have locally and globally pinned end cross-sections that can 

warp freely and are prevented from twisting. These support conditions were modelled by imposing 

null transverse displacements (along the X and Y axes – see Fig. 4(a)) at the end cross-sections and, 

in order to avoid numerical difficulties related to the load application, both end cross-sections are free 

to move axially (the axial rigid-body translation is precluded by preventing the axial (along Z) 

displacement of the mid-span mid-web point). As for the SCB-beams, their end cross-sections are 

attached to rigid plates, thus ensuring full warping and local displacement/rotation restraint, whose 

external surfaces rest on spherical hinges that are prevented from twisting (Camotim & Dinis 2013) 

 see Fig. 4(b), showing also an end support detail7. Therefore, the beam end cross-sections 

are locally fixed and globally pinned (simply supported). 
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Figure 4: End support and loading conditions of beams with (a) SCA and (b) SCB end support conditions. 

  
3.2 Initial Geometrical Imperfections 

Since it is well known that the initial geometrical imperfection shape always plays a crucial role in the 

non-linear behavior of thin-walled cold-formed steel members, it is essential to determine the most 

detrimental critical buckling mode shape, i.e., that leading to the lowest beam strength and failure moment. 

In this context, it is worth recalling that Prola & Camotim (2002) unveiled a non-negligible beam 

distortional post-buckling asymmetry, with respect to the cross-section distortion “sign” (i.e., outward 

or inward compressed flange-lip motions). In order to confirm/illustrate this finding, Fig. 5(a) shows the 

elastic post-buckling equilibrium paths M/McrD vs. (v+v0)/t (v is the mid-span top flange-lip corner 

vertical displacement and v0 is the corresponding imperfection/initial value) of C19+SCA beams8 

containing “pure” distortional initial imperfections with both “signs”, sharing the same amplitude 0.1t. 

The observation of these post-buckling results prompts the following comments: 

                         
7 Note that the spherical hinges are deemed attached to the rigid end plates through an arrangement (not shown) that prevents twisting. 
8 This procedure was conducted for all the remaining five beam types considered (i.e., C+SCB, HM+SCA, HM+SCB, Z+SCA and 

Z+SCB). However, due to space limitation, no results and figures are presented for these cases – nevertheless, it should be 

mentioned that the same tendency was observed (the distortional initial imperfection involving inward compressed flange-lip motions 

is the most detrimental). The Hm+SCA and Hm+SCB beam types will be addressed in Section 3.6.  
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Figure 5: Imperfection sensitivity study (C19+SCA beams): elastic post-buckling equilibrium paths M/McrD vs. (v+v0)/t for 

beams with (a) inward and outward initial imperfections and (b) outward initial imperfections with various amplitudes 

 
(i) The inward equilibrium path always lies below its outward counterpart, which means that 

the corresponding initial imperfection shape is the most detrimental (leads to the lowest strength). 

(ii) The outward equilibrium path exhibits inward top flange-lip motions in the pre-buckling stages. 

Dinis & Camotim (2010) showed that this quite surprising behavior stems from the occurrence of 

flange curling (e.g., Bernard et al. 1996), which means that the final nature (v>0 or v<0) of the 

outward equilibrium path is the result of a balance between two opposing tendencies: (ii1) an outward 

one, due to the initial imperfection shape, and (ii2) an inward one, due to the flange curling effect – of 

course, this implies the existence of a “limit imperfection amplitude”, associated with a “nature 

switch”. Fig. 5(b) shows M/McrD vs. (v+v0)/t equilibrium paths concerning beams containing five 

outward initial imperfections with amplitudes varying between 0.10t and 0.30t. It can be readily seen 

that the “limit imperfection amplitude” lies between 0.15t and 0.175t – note that the equilibrium path 

associated with 0.10t has also been depicted in Fig. 5(a). Moreover, there is a clear distortional 

asymmetry with respect to the imperfection “sign”, as first unveiled by Prola & Camotim (2002). 
 
3.3 Influence of the Support Conditions 

The influence of the end support conditions (SCA and SCB) on the distortional post-buckling behavior 

of (simply supported) is addressed in this section – a C-beam geometry was chosen to illustrate this 

influence, namely bw=200, bf=100, bl=10, t=2.5 and L=450 (mm). Fig. 6(a) shows several post-buckling 

equilibrium paths (elastic and elastic-plastic) M/McrD vs. (v+v0)/t concerning beams with the above 

geometry and support conditions SCA and SCB, both containing distortional initial imperfections 

involving inward compressed flange-lip motions (the most detrimental shape, as shown earlier) with a 

0.1t amplitude. On the other hand, Fig. 6(b) shows deformed configurations and plastic strains on the 

onset of collapse of the two beams exhibiting yield stresses corresponding to D=1.0, 2.5 and 3.5 – note 

that the D=1.0 beam displacements are amplified 2 times. The observation of these figures shows that:  

(i) The SCB beams exhibit a much more pronounced distortional post-buckling strength than their 

SCA counterparts, which stems essentially from the end support warping fixity – for instance, note 

the difference between the elastic equilibrium path tangent stiffness values for M/McrD>1.0. 

Moreover, the SCB beams also exhibits a higher elastic-plastic strength reserve (and ductility) than 

the SCA beams – the failure moments of the latter are reached almost simultaneously with the onset 

of yield, occurring after a fairly smooth fast continuous elastic stiffness erosion/degradation. 
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(ii) As intended, all beams exhibit typically distortional failure configurations, which are akin to the 

initial geometrical imperfection shape. The failure modes of the two sets of beams (see Fig. 6(b)) are 

qualitatively similar and associated with the yielding of the mid-span compressed flange-web corner 

and lip free edge regions (i.e., plastic strain distributions typically occurring at distortional collapses). 

The exceptions are the stocky beams (D=1.0), which collapse abruptly under “almost uniform” 
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Figure 6: (a) Elastic and elastic-plastic post-buckling equilibrium paths M/McrD vs. (v+v0)/t for beams with identical cross-section 

dimensions and distinct boundary conditions (b) failure modes and plastic strains for D=1.0, 2.5, 3.5 
 
(ii) As intended, all beams exhibit typically distortional failure configurations, which are akin to the 

initial geometrical imperfection shape. The failure modes of the two sets of beams (see Fig. 6(b)) are 

qualitatively similar and associated with the yielding of the mid-span compressed flange-web corner 

and lip free edge regions (i.e., plastic strain distributions typically occurring at distortional collapses). 

The exceptions are the stocky beams (D=1.0), which collapse abruptly under “almost uniform” 

 normal stress distributions. Although not shown here, the plastic strain distributions in the descending 

branch are characterized by further spread of plasticity, leading to the formation of a “distortional 

plastic hinge” in the beam mid-span region (see Martins et al. 2015). 

(iii) Surprisingly, the elastic equilibrium paths depicted in Fig. 6(a) show that, for 0.5<M/McrD<1.2, the 

SCA beam exhibits a marginally higher normalized strength than its SCB counterpart. A close 

observation of the D=1.0 SCB beam collapse mechanism shows stress concentrations near the end 

cross-sections (see Fig. 6(b)), due to fairly short length, which is responsible for the above decrease 

in normalized strength. In order to confirm this assertion, a similar study was conducted with longer 

beams (buckling in modes exhibiting two distortional half-waves), and it was concluded that the 

SCB beam is always stiffer than its SCA counterpart (as expected) – these results are not show here. 
 
3.4 Influence of the Cross-Section Dimensions 

3.4.1 Ratio bf /bl 

In order to assess the influence of the flange-lip width ratio bf /bl on the behavior and ultimate strength of 

uniformly bent beams, this section presents and discusses results concerning C+SCA and HM+SCB 

beams with the same web-flange width ratio (bw/bf), equal to 1.25 (bw =150, bf =120, t=3.5 and L=420mm 

or L=700mm for the C and HM beams, respectively) and 2.0 (bw =200, bf =100, t=2.5 and L=450mm 
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or L=700mm for the C and HM beams, respectively), both having three bf /bl ratios9, namely 12, 10 and 8. 

Figs. 7(a1)-(c2) show elastic and elastic-plastic equilibrium paths M/McrD vs. (v+v0)/t of C+SCA (bw /bf =2.0 

and three bf /bl values10 – Figs. 7(a1)-(c1)) and HM+SCB (bw /bf =2.0 and three bf /bl values9 – Fig. 7(a2)-

(c2)) beams. From the observation of these figures it can be readily conclude that: 

(i) The ratio bf /bl plays an important role in the beam distortional post-buckling behavior ultimate 

strength of beams, as can be attested by looking at Figs. 7(a1)-(c2): a bf /bl decrease causes a drastic 

MU/McrD reduction – the comparison between the tangent stiffness values of the C+SCA (Figs. 

7(a1)-(c1)) and HM+SCB (Figs. 7(a2)-(c2)) beam elastic equilibrium paths reinforces this conclusion 

– in the former, the elastic limit point occurs for gradually smaller MU/McrD values as bf /bl decreases. 

(ii) In order to quantify the ultimate strength reduction/variation, Table 1 shows the MU/McrD and 

MU/My values for C+SCA and HM+SCB beams exhibiting all combinations of (ii1) D=1.0, 2.5, 3.5 

(ii2) bw /bf=1.25, 2.0 and (ii3) bf /bl=12, 10, 8. This table shows that, for constant bw /bf  and D, MU/McrD 

and MU/My decrease with bf /bl. For instance, in the C+SCA-beam with bw /bf=1.25 the ratio 

MU/McrD decreases 29% when the bf /bl varies from 12 to 8. Naturally, such differences will entail a 
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Figure 7: M/McrD vs. (v+v0)/t equilibrium paths for (1) C+SCA and (2) HM+SCB beams with bf /bl ratios equal to (a) 12, (b) 10 and (c) 8 

                         
9 For simplicity purposes, the flange width is kept constant and only the lip width varies. 
10 Since the results obtained for the beams with bw /bf =1.25 are qualitatively similar to those presented, they have been omitted from the paper. 
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Table 1: Influence of bf /bl on the beam ultimate strength for different (i) distortional slenderness and (ii) bw/bf values 

Beam 
w

f

b

b
 D 

12
f

l

b

b
  10

f

l

b

b
  8

f

l

b

b
  

/U yM M  /U crDM M  /U yM M  /U crDM M  /U yM M  /U crDM M  

C+SCA 

1.25 

1.0 0.835 0.835 0.827 0.827 0.811 0.811 

2.5 0.207 1.291 0.191 1.192 0.174 1.085 

3.5 0.134 1.638 0.121 1.486 0.095 1.169 

2.00 

1.0 0.868 0.868 0.861 0.861 0.840 0.840 

2.5 0.214 1.335 0.203 1.271 0.189 1.183 

3.5 0.124 1.515 0.108 1.328 0.105 1.292 

HM+SFB 

1.25 

1.0 0.718 0.718 0.685 0.685 0.643 0.643 

2.5 0.337 2.104 0.310 1.935 0.275 1.721 

3.5 0.244 2.991 0.220 2.700 0.178 2.179 

2.00 

1.0 0.735 0.735 0.718 0.718 0.695 0.695 

2.5 0.323 2.018 0.315 1.970 0.292 1.823 

3.5 0.231 2.831 0.219 2.682 0.196 2.402 

 
 “vertical dispersion” of the whole set of MU/My values corresponding to a given D  recall that the 

DSM distortional strength curve depends solely on D. 
 
3.4.2 Ratio bw/bf  

Attention is now turned to assessing the impact of the web-flange width ratio bw/bf on the beam behavior 

and ultimate strength (keeping all other dimensions unchanged). C+SCA (bf =100, bl =10, t=2.5 and 

L=450mm) and Z+SCB-beams (bf =100, bl =10, t=3.0 and L=700mm) beams are now analyzed, for 

bw/bf values equal to 2.0 (bw =200 and bf =100), 2.5 (bw =250 and bf =100) and 3.0 (bw =300 and bf =100). 

Figs. 8(a1)-(c2) show their elastic and elastic-plastic equilibrium paths M/McrD vs. (v+v0)/t (the latter for 

D=1.0, 2.5, 3.5). On the other hand, Table 2 provides the MU/McrD and MU/My values of the above beams. 

The observation of these results prompts the following remarks: 

(i) The ratio bw/bf plays a minute role in the distortional post-buckling behavior and ultimate strength, 

of the two beam types, as clearly demonstrated by the MU/McrD and MU/My values given in Table 2 

and the equilibrium paths depicted in Figs. 8(a1)-(c1) and 8(a2)-(c2). Nevertheless, it is possible to 

observe the following tendency: MU/McrD and MU/My (slightly) increase when bw/bf  increases. 

(ii) The comparison between influences of the ratios bf/bl (previous section) and bw/bf (this section), 

clearly show that the former plays a much more important role in the ultimate strength of beams 

undergoing distortional collapses. 
 
3.5 Critical Buckling Mode Half-Wave Number 

The last parameter whose influence on the beam behavior and ultimate strength is going to be assessed is 

the (distortional) critical buckling mode half-wave number nD. To illustrate this influence, two C+SCB 

beams are analyzed, exhibiting the same cross-section dimensions (bw =200, bf =100, bl =10 and t=2.5mm) 

and having lengths L=770mm and L=1200mm, corresponding to critical buckling modes with one 

and two distortional half-waves, respectively. Once again, Figs. 9(a1)-(a2) show elastic and elastic-plastic 

equilibrium paths M/McrD vs. (v+v0)/t of beams with D=1.0, 2.5, 3.5 – v is either the mid-span top flange-

lip corner vertical displacement (nD=1) or the most inward flange-lip corner vertical displacement (nD=2). 

Moreover, Figs. 9(b1)-(b2) show the deformed configurations, at the onset of collapse, of the above beams 

and Table 3 provides their MU/McrD and MU/My values. Observing these post-buckling results shows that: 
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Figure 8: M/McrD vs. (v+v0)/t equilibrium paths for (1) C+SCA and (2) Z+SCB beams with bw /bf ratios equal to (a) 2.0, (b) 2.5 and (c) 3.0 

 
Table 2: Influence of bw/bf on the beam ultimate strength for different distortional slenderness values 

Beam D 
2.0w

f

b

b
  2.5w

f

b

b
  3.0w

f

b

b
  

/U yM M  /U crDM M  /U yM M  /U crDM M  /U yM M  /U crDM M  

C+SCA 

1.0 0.859 0.859 0.864 0.864 0.864 0.864 

2.5 0.203 1.271 0.209 1.308 0.216 1.351 

3.5 0.108 1.327 0.122 1.490 0.127 1.552 

Z+SCB 

1.0 0.835 0.835 0.843 0.843 0.851 0.851 

2.5 0.325 2.032 0.335 2.093 0.336 2.102 

3.5 0.220 2.696 0.234 2.862 0.236 2.889 

 

(i) The evolutions of the plastic strains along the equilibrium paths, up to collapse, of the L=770mm 

(nD=1) beams follow the trends exhibited by the C+SCB beams analyzed in Section 3.3. 

(ii) The observation of Figs. 9(b1)-(b2) readily shows the similarities between the D=2.5 and D=3.5 

beam failure mechanisms: both are associated with the yielding of the lip free edge an web-flange 

corner regions. However, the longitudinal location of such regions is different: mid-span, for the 

nD=1 beam, and crest of the inward half-wave, for nD=2 beam. 
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Table 3: Influence of the critical buckling mode half-wave number on the C+SCB beam ultimate strength (D =1.0, 2.5, 3.5) 

Beam D 
1Dn   2Dn   

/U yM M  /U crDM M  /U yM M  /U crDM M  

C+SCB 

1.0 0.813 0.813 0.811 0.811 

2.5 0.279 1.744 0.259 1.621 

3.5 0.195 2.395 0.166 2.030 
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Figure 9: (a) M/McrD vs. (v+v0)/t equilibrium paths M/McrD vs. (v+v0)/t of C+SCB beams with one nD=1 (L=770mm) and nD=2 

(L=1200mm), and (b) failure modes and plastic strain distributions of such beams with D=1.0, 2.5, 3.5 

 
(iii) The MU/McrD and MU/My values provided in Table 3 show that the critical buckling mode half-wave 

number also plays an important role in the ultimate strength of beams failing in distortional modes, 

particularly those with high slenderness values. For instance, for D=3.5 the MU/My and MU/McrD 

values decrease from 0.195-2.395 to 0.166-2.030 when nD increase from 1 to 2. 

(iv) Naturally, beams can also buckle in modes exhibiting three or more half-waves. However, this only 

occurs for beams with lengths for which, at least under uniform bending, it is very rare to find “pure” 

distortional collapse  indeed, interaction with local buckling is bound to take place (“secondary local 

bifurcation L-D interaction”  Martins et al. 2015), a phenomenon outside the scope of this work. 

D=1 

D=2.5 

D=1 

D=2.5 

D=3.5 

D=3.5 
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3.6 Hat-Sections Beams under Minor-Axis Bending 

This section deals with hat-section SCB beams subjected to uniform minor-axis bending (Hm+SCB 

beams) and goes over all the topics addressed previously, namely (i) the initial geometrical imperfections, 

(ii) the influence of the cross-sections dimensions and (iii) the influence of the critical buckling mode 

half-wave number. Figs. 10(a)-(b) show the elastic and elastic-plastic (D=1.0, 2.5, 3.5) post-buckling 

equilibrium paths M/McrD vs. (v+v0)/t of H1+SCB (see Table A.4) containing inward and outward “pure” 

distortional initial imperfections, both with amplitude 0.1t  Fig. 10(c) shows deformed configurations of 

the elastic-plastic beams. On the other hand, Figs. 11(a)-(c) show elastic elastic-plastic M/McrD vs. (v+v0)/t 

equilibrium paths of beams with bw=120, t=2.5 and L=500mm, and three bf /bl ratios, namely 3 (bf=55mm 

and bl=18.3mm), 5 (bf=60mm and bl=12mm) and 7 (bf=60mm and bl=8.57mm), in order to assess its 

influence on the beam ultimate strength. Similarly, Figs. 12(a)-(c), intended to assess the influence of the 

web-flange width ratio, shows M/McrD vs. (v+v0)/t equilibrium paths for beams with bf=60, bl=10, t=2.5 

and L=500mm, and three bw/bf values: 1.0 (bw=60mm), 1.50 (bw=90mm) and 2.0 (bw=120mm). Finally, 

Figs. 13(a)-(c) assess the impact of the critical buckling mode half-wave number on the load-carrying 

capacity of the Hm+SCB beams  they shows the M/McrD vs. (v+v0)/t equilibrium paths of beams with 
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Figure 10: Hm+SCB beams: (a) elastic and (b) elastic-plastic (D=1.0, 2.5, 3.5) M/McrD vs. (v+v0)/t equilibrium paths, and (c) deformed 

configurations at failure for (1) D=1.0 and (2) D=2.5 3.5, and (3) at (v+v0)/t=35 
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Figure 11: Hm+SCB beams: elastic and elastic-plastic (D=1.0, 2.5, 3.5) M/McrD vs. (v+v0)/t equilibrium paths for bf /bl equal to 

(a) 3, (b) 5 and (c) 7 
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Figure 12: Hm+SCB beams: elastic and elastic-plastic (D=1.0, 2.5, 3.5) M/McrD vs. (v+v0)/t equilibrium paths for bw /bf  equal to 

(a) 1.0, (b) 1.5 and (c) 2.0 

 
bw=120mm, bf=60mm, bl=12mm and t=2.5mm, and L=500mm (nD=1), L=1000mm (nD=2) and 

L=1300mm (nD=3). The observation of all these results prompts the following comments: 

(i) Fig. 10(a) shows that (i1) the outward initial imperfections are the most detrimental and (i2) the 

“inward equilibrium path” exhibits outward flange-lip motions in the pre-buckling stages – these 

observations are opposite to those made in the context of major-axis bending (see Section 3.2).  

(ii) Fig. 10(b) depicts the elastic-plastic equilibrium paths, corresponding to beams with D=1.0, 2.5, 3.5 

and containing the most detrimental initial imperfections. It is readily observed that the D=2.5, 3.5 

beams fail in the elastic range (Fig. 10(c2)), after a smooth continuous stiffness erosion/degradation  

plasticity only occurs in the descending branch, at the mid-span lip free edge regions – see Fig. 10(c3). 

As for the D=1.0 beam, the yield and failure moments practically coincide – see Fig. 10(c1). 

(iii) The flange-lip width ratio also plays an important role in the distortional post-buckling behavior of 

hat-section beams bent about the minor-axis, as can be attested by looking at Figs. 11(a)-(c) – the 

failure moment increases with the ratio bf/bl. Table 4 quantifies this relation: e.g., for D=3.5, MU/My 
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Figure 13: Hm+SCB beams: elastic and elastic-plastic (D=1.0, 2.5, 3.5) M/McrD vs. (v+v0)/t equilibrium paths of beams 

with (a) nD=1 (L=500mm), (b) nD=2 (L=1000mm) and (c) nD=3 (L=1300mm) 
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Table 4: Influence of the ratio bf /bl on the failure moment of ultimate strength of Hm+SCB beams with D=1.0, 2.5, 3.5 

Beam D 
3

f

l

b

b
  5

f

l

b

b
  7

f

l

b

b
  

/U yM M  /U crDM M  /U yM M  /U crDM M  /U yM M  /U crDM M  

Hm+SCB 

1.0 0.660 0.660 0.737 0.737 0.794 0.794 

2.5 0.127 0.793 0.145 0.906 0.156 0.977 

3.5 0.065 0.793 0.074 0.906 0.080 0.977 

 
Table 5: Influence of the ratio bw /bf on the failure moment of ultimate strength of Hm+SCB beams with D=1.0, 2.5, 3.5 

Beam D 

1.0w

f

b

b
  1.5w

f

b

b
  2.0w

f

b

b
  

/U yM M  /U crDM M  /U yM M  /U crDM M  /U yM M  /U crDM M  

Hm+SCB 

1.0 0.805 0.805 0.788 0.788 0.781 0.781 

2.5 0.154 0.965 0.152 0.953 0.151 0.943 

3.5 0.079 0.965 0.078 0.953 0.077 0.943 

 
Table 6: Influence of the critical buckling mode half-wave number on the failure moment Hm+SCB beams with D=1.0, 2.5, 3.5 

Beam D 
1Dn   2Dn   3Dn   

/U yM M  /U crDM M  /U yM M  /U crDM M  /U yM M  /U crDM M  

Hm+SCB 

1.0 0.737 0.737 0.821 0.821 0.803 0.803 

2.5 0.145 0.906 0.163 1.018 0.177 1.105 

3.5 0.074 0.906 0.083 1.018 0.090 1.105 

 

 increases from 0.065 (bf /bl=3) to 0.074 (+14%) (bf /bl=5) and to 0.080 (+23%) (bf /bl=7). On the other 

hand, the web-flange width ratio plays again a minute role (see Figs. 12(a)-(c) and Table 5). The 

MU/My and MU/McrD values are practically constant for a given D  rigorously speaking, they 

slightly decrease with bw/bf (unlike in the beams bent about the major-axis). 

(iv) Finally, Figs. 13(a)-(c) and Table 6 show the influence of the critical buckling mode half-wave 

number on the beam ultimate strength: when nD increases, the MU/My and MU/McrD values also 

increase (unlike in the beams bent about the major-axis). For instance, the ratio MU/My, which may 

be viewed as associated with the DSM distortional curve, increases from 0.074 to 0.090 (+21%) 

when the beam buckling mode half-wave number grows from 1 to 3. 
 
Before concluding this numerical investigation, it is worth recalling the following observations: 

(i) The initial geometrical imperfections, end support boundary conditions, flange-lip width ratio and 

critical buckling mode half-wave number play an important role in the beam post-buckling behavior 

and ultimate strength – conversely, the web-flange width ratio has a minute/negligible influence. 

(ii) Two approaches can be adopted for the proposal of DSM-based distortional curves (ii1) the first 

one by considering all the parameters identified in the item above into a single expression and (ii2) 

the second, by maintaining the philosophy inherent to the DSM, i.e., depending solely on the D, 

which will invariably overestimate a significant set of beams, mainly due to the flange-lip width 

ratio and the critical half-wave number influence – this is not a specific disadvantage of the DSM 

since the traditional “Effective Width Method” (EWM) also does not take into account these two 
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parameters11. In this work, the second approach is adopted, however, it should be noted that the 

proposed curves will be strongly affected by the geometries selected/determined in Section 2. 
 
4. Direct Strength Method Design 

The Direct Strength Method (DSM), developed by Schafer & Peköz (1998) based on an original idea 

from Hancock et al. (1994), is nowadays universally accepted by the technical/scientific community as an 

efficient and reliable approach for the design of cold-formed steel members. This is mainly because the 

member (column or beam) strength against either (i) individual local, distortional and global individual 

or (ii) interactive failures involving the above buckling phenomena can be accurately predicted on the 

sole basis of the elastic buckling and yield stresses. For beams with (i) cross-sections symmetric with 

respect to the bending axis or (ii) cross-sections for which first yield occurs in compressed fibres12, the 

currently codified DSM design curve against distortional failures is defined by (AISI 2012) 
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where MND is the beam distortional nominal strength, My and Mp are the beam yield and plastic moments, 

respectively, D=(My/McrD)0.5 is the beam distortional slenderness and Cyd=(0.673/D)0.5≤ 3. 
 
Figs. 14(a)-(d) show the variation of MU/My against D for the C-beams (Fig. 14(a)), HM-beams 

(Fig. 14(b)), Z-beams (Fig. 14(c)) and Hm-beams (Fig. 10(d)), jointly for the SCA and SCB support 

conditions13. These figures also show (i) the currently codified DSM distortional design curve (MND/My)
14 

and (ii) a few proposed DSM-based distortional strength curves. The observation of Fig. 14 shows that: 

(i) Almost all MU/My values are well aligned along a “Winter-type” curve with a small “vertical 

dispersion” (although more pronounced in the SCB beams – see Section 3.3). 

(ii) As expected, the currently codified DSM distortional design curve provides very substantial failure 

moments overestimations for beams with moderate-to-high slenderness values (D>1.25) even for 

the SCB-beams – the HM+BCB MU/My values are those closer to the codified DSM distortional 

design curve. However, there are a few exceptions: the C2+SCB, HM2+SCB and Z2+SCB beams 

(bw=150mm, bf=120mm, bl=10mm, t=3.50mm, LC=LH=550mm, LZ=700mm), whose MU /My values 

practically coincide with the current DSM predictions – this is explained by the fact that these 

beams have a flange-lip width ratio equal to 12 (the highest value considered) (see Section 3.4.1). 

On the other hand, the influence of the inclusion of the rigid end plates (SCA vs. SCB) is more 

relevant (higher additional strengths) in the H-beams, followed by the Z-beams and the C-beams. 

                         
11 The effect of the initial imperfection is not taken into account since all the beams analyzed (2nd-order analysis) contain the 

worst initial geometric shape. As for effect of beams with the two boundary conditions, it was found out (see Section 3.3) that 

they cannot be considered jointly – the consideration of these two types of beams must be addressed separately (the implicit 

consideration of the boundary conditions thought the McrD in the DSM distortional curve is not enough). 
12  It is worth noting that the inclusion of the inelastic strength reserve was based on the work of Shifferaw & Schafer (2012). 

However, these authors analyzed exclusively C and Z beams with boundary conditions similar to the SCB. 
13 For each beam geometry selected, 17 distinct distortional slenderness values were generated randomly, following a continuously uniform 

distribution in the interval [0.25, 4]. In this way, the optimization procedure discussed next involves beam slenderness values with the same 

“weight”, thus avoiding the situation depicted in Fig. 1. 
14 Since the inelastic strength reserve depends on the cross-section plastic moment, and 30 different cross-sections were considered for each 

beam type, it was decided to include only the extreme cases, i.e., those associated with the minimum and maximum plastic moments. In 

addition, the determination of the Z-section plastic moments (skew-bending) was made following the procedure described by Dwight (1999). 
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Figure 14: (i) MU /My vs. D plots of (a) C, (b) HM, (c) Z, and (d) Hm beams, and (ii) current and proposed DSM design curves 

 
(iii)  The observation made in item (iii) of Section 3.3 is confirmed by looking at Fig. 14(a): in the vicinity 

of D=1.0, the C+SCB beams exhibit ultimate strength slightly above the C+SCA beam ones – this 

also applies to the Z-beams (Fig. 14(c)), although to a smaller extent.   

(iv) Figs. 14(a)-(d) clearly show that the consideration of the inelastic strength reserve for D≤0.673, 

recently included in the AISI (2012), may lead to unsafe designs, particularly for Z-beams. In fact, 

the work of Shifferaw & Schafer (2012), which is at the root of this design feature, dealt only with 

C and Z-beams with end support conditions simulating those exhibited by the central beam segment 

in a 4-point bending test arrangement – “continuous warping”, following somewhere in between the 

SCA and SCB support conditions (closer to the latter). While the C+BCB beam results (Fig. 14(a)) 

evidence the presence of an additional strength reserve, the same is not true for their Z-beam 

counterparts – note that the Z-beams analyzed in the present work have their top flanges uniformly 

compressed, a more severe situation than that addressed by Shifferaw & Schafer (2012). As for the 

HM and Hm beams (SCA and SCB), they exhibit a non-negligible inelastic strength reserve, 

which is, naturally, higher in the BCB beams. 

(v) Concerning the BCA beams, it can be observed that the MU/My values are fairly well predicted by 

the elastic buckling curve (1/D)2, for D>1.0, regardless of the beam type. This is easily explained 

by the fact that the failure moment is reached almost simultaneously immediately with first yield (no 

visible elastic-plastic strength reserve is available), making it understandable that the elastic buckling 

curve provides good estimates of the beam load-carrying capacity. 
 
The currently codified DSM beam distortional design curve is clearly inadequate to estimate failure 

moments in the moderate-to-high slenderness range and, moreover, beams subjected to major and minor-

axis bending cannot be handled jointly. In order to change/improve this situation, and using the failure 

moment data acquired in this work, it seems possible to make a (preliminary) proposal concerning novel 
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DSM-based distortional design curves to estimate the failure moments of simply supported cold-formed 

steel beams under uniform (i) major-axis bending (C and HM beams), (ii) skew bending (Z beams) and 

(iii) minor-axis bending (Hm beams). Such curves were obtained by means of the following procedure: 

(i) Definition of the initial plateau, on the basis of the numerical failure moment data concerning 

the stocky beams, whose collapse is governed exclusively by plasticity (the instability effects are 

negligible). Based on the results presented in Figs. 14(a)-(d), it was decided to maintain the plateau 

of the currently codified curve (D=0.673). 

(ii) Determination of a “Winter-type” curve, cast in the form 
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where the design variable vector [ , , ]a b cx , whose components are the 3 unknowns15 defining the 

“Winter-type” curve,  1 b c
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here MU,i and MND,i are the ith numerical failure moment and corresponding DSM estimate, My,i is 

the ith elastic bending moment and N is the total number of numerical failure moments for 

beams with D>0.673. Note that the equality constraint in (2) is required to fulfil the criterion given 

in item (i). Moreover, the first inequality constraint in (2), associated with the derivative of MND with 

respect to D, is intended to ensure a decreasing monotonic function (not necessary if b=c). 

Finally, the remaining inequalities in (2) are imposed to avoid excessively unsafe failure moment 

predictions, even at the cost of a higher objective function value (i.e., higher differences between the 

curve and numerical failure moments). Depending on the beam type, d=0.85 or d=0.90 was adopted. 

                         
15 The currently codified DSM beam distortional curve (see eq. (1)) has only two parameters (b=c). However, it was concluded that an 

expression with three parameters yields better results, which explains why such expression is employed in this work. 
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(iii) The above optimization problem corresponds to a simple multivariable constrained minimization 

problem with continuous variables, which can be solved employing any classical technique (with or 

without derivatives) – the discussion of such methods is beyond the scope of this work. 
 
Table 7 provides the solution of the minimization defined in (3), i.e., the values of the unknowns a, b, c 

associated with the DSM distortional beam strength curves proposed for each combination of (i) beam 

type (cross-section shape and bending axis) and (ii) end support conditions  between parentheses are 

indicated the unknown rounded values adopted (note that the corresponding strength curves have already 

been depicted in Figs. 14(a)-(d). Moreover, Figs. 15(a)-(d) plot, against D, the MU/MND values concerning 

the C, HM, Z and Hm beams, respectively  each figure contain SCA and SCB values. The observation 

of the results presented in Table 7 and Figs. 15(a)-(d) prompts the following remarks: 

(i) Figs. 15(a)-(d) clearly show the improvement in failure moment prediction achieved by the proposed 

design curves, along the whole distortional slenderness range considered, as reflected by the MU/MND 
 

Table 7: Values of the unknowns concerning the proposed DSM beam distortional strength curves 

 
SCA SCB 

a b c a b c 

C-beams 0.2468 (0.25) 1.7592 (1.75) 1.7274 (1.75) 0.2363 (0.23) 1.5502 (1.55) 1.4488 (1.45) 

HM-beams 0.2937 (0.30) 1.3041 (1.30) 1.7113 (1.70) 0.2320 (0.23) 1.2962 (1.30) 1.2385 (1.25) 

Z-beams 0.2477 (0.25) 1.7567 (1.75) 1.7339 (1.75) 0.1980 (0.20) 1.8254 (1.80) 1.3238 (1.35) 

Hm-beams 0.2741 (0.27) 1.6831 (1.70) 1.9268 (1.92) 0.2963 (0.30) 1.6222 (1.60) 2.0915 (2.10) 
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Figure 15: Plots of MU/MND against D for the (a) C, (b) HM, (c) Z and (d) Hm beams with SCA and SCB support conditions 
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indicators: mean values close to 1.00 and low standard deviations (not exceeding 10%, value 

obtained for the C+BCB beams). Naturally, there are a few overly safe estimates, associated with the 

beams with large flange-lip width ratios (see Section 3.4.1). On the other hand, the unsafe estimates 

concern the low flange-lip width ratios, e.g., Hm17 and Hm18 SCA beams (see Fig. 15(d)). 

(ii) Table 7 shows that the strength curves obtained for the C and Z SCA beams are identical – the curve 

for the HM+SCA beams stems from a slightly lower b value. Moreover, the differences between the 

curves obtained for the various SCB beam types are higher (distinct elastic-plastic strength reserves).  
 
Since the DSM design approach associated with a specific ultimate limit state require the definition of a 

“cross-section domain of application” (the so-called “pre-qualified cross-sections”), the next step is to 

identify which beam types can be designed by means of a given strength curve. It was found that the 

failure moments of the C, HM and Z beams with the same end support conditions (SCA or SCB) may 

be estimated through a single design curve, as discussed below  the Hm beams must be handled 

separately. Figs. 16(a)-(b) plot, against D, the MU/My values concerning the C, HM and Z-beams with (i) 

SCA and (ii) SCB support conditions – recall the final strength curves concerning the Hm beams were 

already presented (see Table 7 and Fig. 14(d)). Once again, the “best design curves” were obtained from 

the solution of the optimization/minimization problem defined in (3), now involving jointly three beam 

types – the curves determined are also depicted in Figs. 16(a)-(b), where the corresponding a, b, c values 

are given. Finally, Figs. 17(a)-(b) (joining results included in Figs. 15(a)-(c)) plot, against D, the MU/MND 

values concerning the three beam types. The observation of these figures shows that: 

(i) The MU/MND indicators are now, obviously, more conservative than those obtained earlier. The DSM 

design curve for SCA beams is governed, in the low-to-moderate distortional slenderness range, by 

the HM beam failure moment predictions  there are only small differences between the predictions 

concerning the three types of slender beams. On the other hand, the C beam failure moment estimates 

govern the SCB DSM design curve in the moderate-to-high distortional slenderness range. 

(ii) The “vertical dispersion” is much more pronounced for the SCB beams, due to the different inelastic 

strength reserve exhibited by various beam types  such strength reserve is absent in all SCA beams. 

(iii) The proposed DSM design/strength curves are more adequate than the codified one to estimate the 

failure moments of simply supported beams failing in distortional modes. However, the authors 

recognize that there is a (natural) dependence on the cross-section dimensions and length (through 

the critical buckling mode half-wave number) that cannot be explicitly accounted by the DSM 

without “soiling” its roots and elegance, because such dependence cannot be captured solely by the 

distortional slenderness – this implies unavoidable beam failure moment excessive underestimations. 
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Figure 16: (i) MU /My vs. D plots of the C, HM, Z beams with (a) SCA and (b) SCB support conditions, and current and 

proposed DSM beam distortional design curves 
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Figure 17: Plots of MU/MND against D for the C, HM, Z beams with (a) SCA and (b) SCB support conditions 

 
Lastly, Fig. 18(a) revisits Fig. 1 and adds the two design curves proposed in this work, thus enabling to 

compare the quality of their predictions with that of the current strength curve. Fig. 18(b), on the other 

hand, plots, against the D, the experimental and numerical failure moments obtained by Yu & Schafer 

(2006) and already mentioned in Section 1. The observation of these results shows that: 

(i) The overwhelming majority of the tests results considered to calibrate the current MND strength curve 

are also fairly well predicted by the two proposed curves, even if a bit more on the safe side for 

D >1.0 (see Fig. 18(a)). As pointed out earlier, most of these test results concern rather stocky beams, 

for which there are very little differences between the failure moment predictions provided by the 

current and proposed (for SCA and SCB beams) – recall that the beam segments involved in the 

four-point bending tests exhibited “warping continuity” at their end cross-section, while the proposed 

design curves were developed in the context of simply supported beams whose end cross-sections 

had warping either completely free or fully prevented. 

(ii) Moreover, the two proposed curves underestimate considerably the failure moments yields very of a 

small number of reasonably slender beams, as shown in Fig. 18(a) – this may be due to the bracing 

arrangement adopted in the tests which, according to Schafer (2008), “typically restrained distortional 

buckling in part, but not necessarily in full”, thus leading to higher failure moments. 

(iii) By looking at Fig. 18(b), it is readily recognized that the two proposed design curves underestimate a 

large fraction of the results reported by Yu & Schafer (2006) by larger margins than the currently 

codified strength curve. However, none of these results concerns beams with slenderness above 1.5, 

a range for which the current strength curve has been shown to be inadequate. 
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Figure 18: DSM beam distortional design curves (current and proposed) and experimental distortional failure moments 

(a) used to develop the current strength curve (b) reported by Yu & Schafer (2006) (both figures adapted from Schafer 2008) 
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5. Conclusion 

A numerical investigation on the distortional post-buckling behavior, ultimate strength and DSM design 

of simply supported cold-formed steel beams subjected to uniform bending was reported. The beams 

analyzed had three cross-section shapes and different bending axes, namely (i) lipped channels (major-

axis bending), (ii) hat-sections (major and minor-axis bending) and (iii) zed-sections (skew bending 

causing uniform flange compression  worst case). Moreover, the beams analyzed exhibited (i) two 

simply supported conditions (SCA and SCB), differing in the warping and local displacement/rotation 

restraints, (ii) several yield stresses, intended to cover a wide distortional slenderness range, and (iii) 

various cross-section dimensions ratios and lengths, to assess their influence on the distortional post-

buckling behavior and ultimate strength. 
 
Initially, a beam geometry selection procedure was presented, aimed at identifying simply supported 

beams buckling and failing in distortional modes. Then, the elastic and elastic-plastic (distortional) post-

buckling behaviors of several beams were investigated, in order to (i) determine the most detrimental 

initial imperfection shape, (ii) assess the effect of the two end support conditions considered (SCA and 

SCB), (iii) investigate the influence of the cross-section dimensions, namely the flange-lip and web-flange 

width ratios, and (iv) to assess the impact of the critical buckling mode half-wave number. Then, an 

extensive parametric study was carried out, by means of non-linear (materially and geometrically) shell 

finite element ABAQUS analyses, aimed at gathering beam distortional failure moment data intended to be 

used in assessing the quality of their estimates provided by the currently codified DSM beam distortional 

design curve. Since this assessment revealed poor quality estimates, particularly for slender beams, 

additional research was devoted to developing/proposing novel DSM distortional strength curves able to 

cover all the beams analyzed in this work. 
 
Among the various findings reported in this paper, the following ones deserve to be specially mentioned: 

(i) The distortional initial imperfections involving inward compressed flange-lip motions are the most 

detrimental in the lipped channel and Hat-section beams bent about the major-axis, as well as in the 

Zed-section beams bent to exhibit a neutral axis parallel to the flanges. However, in the Hat-section 

beams bent about the minor-axis the most detrimental initial imperfections involving outward 

flange-lip motions (both flange-lip assemblies are compressed). Note that this distortional post-

buckling asymmetry is only relevant for beams buckling in modes with odd half-wave numbers. 

(ii) The end support conditions, flange-lip width ratio and the critical buckling mode half-wave number 

play important roles in the distortional post-buckling ultimate strength of all the beams analyzed in 

this work. Moreover, roles played by the flange-lip width ratio and critical buckling mode half-wave 

number were found to be more relevant in the BCB beams. 

(iii) The elastic and elastic-plastic distortional post-buckling behaviors of SCA and SCB beams with the 

same geometry and yield stress are clearly distinct in stiffness and strength. In particular, unlike SCB 

beams, non-stocky SCA beams exhibit practically no elastic-plastic strength reserve, which explains 

why their failure moments are fairly well predicted by the elastic buckling strength curve. 

(iv) The currently codified DSM distortional design curve is unable to predict adequately the failure 

moments of the simply supported beams analyzed in this work. Indeed, it provides excessively 

unsafe estimates for the non-stocky beams, thus, confirming and extending the recent findings of 

Landesmann & Camotim (2016), in the context of lipped channel beams under major-axis bending. 

(v) Several DSM distortional design curves were proposed and shown to perform much better than the 

current one for SCA and SCB simply supported beams. Such curves cover beams under (v1) major-

axis bending (lipped channels and hat-sections), (v2) skew bending (zed-sections) and (v3) minor-
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axis bending (hat-sections). Although the DSM cannot capture the dependence of the failure moment 

on beam cross-section dimension ratios and buckling mode half-wave number, without including 

those parameters explicitly in the strength curve expressions, it was found that it is still possible to 

predict them on the sole basis of the distortional slenderness  obviously, the “price” to pay is the 

fact that some beam failure moments are severely underestimated by the proposed design curves.  

(vi) The two proposed design curves provide fairly accurate (and practically always safe) estimates of the 

beam failure moments used to develop and calibrate the current distortional strength curve, and 

also those later reported by Yu & Schafer (2006). However, since the above failure moments 

involve only non-slender beams (D  1.5) and the open questions concern essentially the moderate-

to-high slenderness range, there is a clear need for a test campaign focusing on slender beams. 
 
Finally, one last word to mention that the authors are currently working on extending the study reported in 

this paper to simply supported beams under non-uniform bending, thus extending the work of Bebiano 

et al. (2007), in order to investigate the DSM-based prediction of their distortional failure moments. 
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ANNEX A – DATA CONCERNING THE SELECTED BEAMS  
 
Table A.1: Selected lipped channel beams failing in “pure” distortional modes under major-axis bending: geometry, 

buckling moments and their relevant moment ratios (dimensions in mm and moments in kNcm) 
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C1 120 75 10 3.00 1.60 7.5 320 1788 2.7 39 500 2580 2.0 25 

C2 150 120 10 3.50 1.25 12.0 420 1905 2.8 106 550 2857 3.0 93 

C3 160 100 10 2.20 1.60 10.0 460 842 2.2 86 700 1236 1.6 57 

C4 200 100 10 2.50 2.00 10.0 450 1393 2.5 82 700 2013 1.9 53 

C5 210 70 9 2.50 3.00 7.8 340 1954 2.2 44 550 2750 2.3 27 

C6 210 110 10 2.50 1.91 11.0 500 1314 2.5 95 800 1883 1.8 0 

C7 150 95 10 2.50 1.58 9.5 400 1126 2.3 79 700 1620 1.8 40 

C8 150 100 10 2.50 1.50 10.0 450 1062 2.4 75 750 1528 1.7 42 

C9 150 75 10 2.50 2.00 7.5 400 1468 2.4 34 600 2090 1.8 24 

C10 150 80 10 2.50 1.88 8.0 400 1359 2.5 43 600 1960 1.8 30 

C11 130 80 10 3.00 1.63 8.0 350 1803 2.6 42 500 2619 2.0 32 

C12 130 80 10 3.00 1.63 8.0 400 1848 2.5 32 550 2583 2.0 27 

C13 140 90 10 2.50 1.56 9.0 350 1145 2.3 81 650 1617 1.8 38 

C14 145 90 10 2.45 1.61 9.0 450 1115 2.4 52 675 1594 1.7 36 

C15 150 100 10 2.50 1.50 10.0 450 1062 2.4 75 725 1531 1.8 45 

C16 120 80 10 2.50 1.50 8.0 350 1101 2.4 71 600 1593 1.7 28 

C17 130 80 10 2.50 1.63 8.0 400 1193 2.4 41 600 1716 1.8 28 

C18 130 80 10 2.50 1.63 8.0 500 1331 2.2 23 550 1735 1.7 33 

C19 135 75 10 2.70 1.80 7.5 300 1602 2.4 52 550 2262 1.9 25 

C20 135 85 10 2.80 1.59 8.5 350 1493 2.6 58 600 2143 1.9 31 

C21 135 90 10 2.80 1.50 9.0 450 1453 2.3 41 650 2013 1.9 35 

C22 125 80 10 2.90 1.56 8.0 300 1639 2.4 58 500 2345 2.0 33 

C23 125 80 10 2.90 1.56 8.0 400 1655 2.4 32 550 2309 1.9 28 

C24 160 90 10 2.50 1.78 9.0 400 1267 2.5 66 700 1824 1.8 34 

C25 165 85 10 2.40 1.94 8.5 400 1261 2.5 58 675 1821 1.8 32 

C26 250 100 12 2.80 2.50 8.3 500 2591 2.4 56 850 3713 1.8 31 

C27 275 110 13 3.00 2.50 8.5 550 3204 2.4 58 600 5502 2.2 65 

C28 265 105 13 3.00 2.52 8.1 550 3253 2.4 49 650 5144 2.4 50 

C29 215 80 10 2.80 2.69 8.0 400 2477 2.5 42 625 3489 2.0 27 

C30 225 90 12 2.90 2.50 7.5 450 2845 2.5 44 775 4079 1.8 23 
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Table A.2: Selected hat-section beams failing in “pure” distortional modes under major-axis bending: geometry, 
buckling moments and their relevant moment ratios (dimensions in mm and moments in kNcm) 
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H1 120 75 10 3.00 1.60 7.5 320 1672 3.6 38 450 2441 2.5 29 

H2 150 120 10 3.50 1.25 12.0 420 1828 3.9 104 550 2708 2.7 91 

H3 160 100 10 2.20 1.60 10.0 460 808 2.8 85 650 1202 1.9 64 

H4 200 100 10 2.50 2.00 10.0 450 1354 3.2 81 550 2120 2.0 77 

H5 210 70 9 2.50 3.00 7.8 340 1929 2.6 43 550 2682 1.9 26 

H6 210 110 10 2.50 1.91 11.0 500 1278 3.2 94 600 1979 2.1 94 

H7 150 95 10 2.50 1.58 9.5 400 1078 3.1 77 550 1627 2.0 60 

H8 150 100 10 2.50 1.50 10.0 450 1014 3.1 74 600 1504 2.1 62 

H9 150 75 10 2.50 2.00 7.5 400 1392 3.2 33 450 2149 2.0 37 

H10 150 80 10 2.50 1.88 8.0 400 1291 3.1 42 500 1942 2.1 39 

H11 130 80 10 3.00 1.63 8.0 350 1696 3.6 41 450 2528 2.4 37 

H12 130 80 10 3.00 1.63 8.0 400 1740 3.5 40 550 2395 2.5 26 

H13 140 90 10 2.50 1.56 9.0 350 1096 3.0 79 550 1581 2.1 49 

H14 145 90 10 2.45 1.61 9.0 450 1056 3.0 51 550 1574 2.0 51 

H15 150 100 10 2.50 1.50 10.0 450 1014 3.1 74 600 1504 2.1 62 

H16 120 80 10 2.50 1.50 8.0 350 1033 3.1 50 500 1539 2.1 37 

H17 130 80 10 2.50 1.63 8.0 400 1119 3.1 40 500 1672 2.1 38 

H18 130 80 10 2.50 1.63 8.0 500 1232 2.8 36 600 1598 2.2 28 

H19 135 75 10 2.70 1.80 7.5 300 1526 3.3 50 450 2234 2.2 34 

H20 135 85 10 2.80 1.59 8.5 350 1417 3.4 56 450 2199 2.2 48 

H21 135 90 10 2.80 1.50 9.0 450 1364 3.3 41 500 1995 2.2 50 

H22 125 80 10 2.90 1.56 8.0 300 1554 3.4 56 450 2265 2.3 38 

H23 125 80 10 2.90 1.56 8.0 400 1539 3.4 57 550 2137 2.5 27 

H24 160 90 10 2.50 1.78 9.0 400 1215 3.1 65 550 1816 2.1 51 

H25 165 85 10 2.40 1.94 8.5 400 1212 3.0 57 550 1808 2.1 45 

H26 200 100 10 3.00 2.00 10.0 420 2075 3.7 73 500 3225 2.4 73 

H27 200 95 10 3.00 2.11 9.5 410 2196 3.7 63 450 3586 2.2 71 

H28 200 90 10 3.00 2.22 9.0 400 2330 3.6 55 450 3706 2.3 60 

H29 210 90 10 3.00 2.33 9.0 400 2449 3.6 56 450 3908 2.3 61 

H30 210 80 10 3.00 2.63 8.0 370 2781 3.3 43 550 3903 2.4 31 
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Table A.3: Selected zed-section beams failing in “pure” distortional modes under skew bending: geometry, 
buckling moments and their relevant moment ratios (dimensions in mm and moments in kNcm) 
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Z1 120 75 10 3.00 1.60 7.5 500 2216 2.4 11 525 2951 2.0 17 

Z2 150 120 10 3.50 1.25 12.0 500 2445 2.8 45 700 3323 2.0 39 

Z3 160 100 10 2.50 1.60 10.0 450 1286 2.4 57 725 1854 1.8 35 

Z4 200 100 10 2.50 2.00 10.0 450 1509 2.5 69 750 2166 1.8 39 

Z5 210 70 9 2.50 3.00 7.8 400 2082 2.5 29 575 2830 1.9 23 

Z6 210 110 10 2.50 1.91 11.0 500 1435 2.5 79 825 2053 1.8 43 

Z7 150 95 10 2.50 1.58 9.5 400 1290 2.4 58 700 1857 1.8 30 

Z8 150 100 10 2.50 1.50 10.0 450 1235 2.4 54 725 1779 1.8 33 

Z9 150 75 10 2.50 2.00 7.5 400 1600 2.4 28 600 2276 1.8 20 

Z10 150 80 10 2.50 1.88 8.0 400 1498 2.5 35 525 2217 1.7 26 

Z11 130 80 10 3.00 1.63 8.0 600 2092 2.5 11 500 2986 2.0 24 

Z12 130 80 10 3.00 1.63 8.0 400 2140 2.4 23 550 2949 2.0 20 

Z13 140 90 10 2.50 1.56 9.0 400 1286 2.4 47 650 1863 1.8 28 

Z14 145 90 10 2.45 1.61 9.0 400 1257 2.4 50 675 1819 1.7 27 

Z15 150 100 10 2.50 1.50 10.0 450 1235 2.4 54 700 1782 1.8 35 

Z16 120 80 10 2.50 1.50 8.0 400 1292 2.4 28 600 1864 1.7 20 

Z17 130 80 10 2.50 1.63 8.0 400 1365 2.4 30 600 1959 1.8 21 

Z18 290 150 14 2.90 1.93 10.7 750 2589 2.3 80 1100 3787 1.6 36 

Z19 135 75 10 2.70 1.80 7.5 400 1806 2.4 23 550 2546 1.9 19 

Z20 135 85 10 2.80 1.59 8.5 400 1731 2.5 32 600 2459 1.9 23 

Z21 135 90 10 2.80 1.50 9.0 400 1639 2.5 39 625 2346 1.9 25 

Z22 125 80 10 2.90 1.56 8.0 600 1891 2.4 11 550 2666 1.9 20 

Z23 300 135 14 2.90 2.22 9.6 700 2929 2.3 67 1100 4247 1.7 33 

Z24 160 90 10 2.50 1.78 9.0 400 1409 2.5 53 675 2034 1.8 29 

Z25 165 85 10 2.40 1.94 8.5 400 1377 2.5 48 650 1995 1.8 28 

Z26 250 100 12 2.50 2.50 8.3 550 2097 2.2 48 900 3023 1.6 28 

Z27 275 110 13 2.90 2.50 8.5 550 3112 2.4 55 950 4464 1.7 29 

Z28 265 105 13 2.90 2.52 8.1 550 3152 2.3 46 900 4539 1.7 27 

Z29 215 80 10 2.60 2.69 8.0 400 2159 2.5 42 650 3066 2.1 25 

Z30 225 90 12 2.80 2.50 7.5 450 2760 2.4 41 775 3967 1.8 22 
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Table A.4: Selected hat-section beams failing in “pure” distortional modes under minor-axis bending: geometry, 

buckling moments and their relevant moment ratios (dimensions in mm and moments in kNcm) 
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H1 100 70 10 1.50 1.43 7.0 600 173 4.2 9 700 235 3.1 18 

H2 100 60 12 1.50 1.67 5.0 600 207 3.8 5 700 292 2.7 11 

H3 120 60 12 1.50 2.00 5.0 600 199 3.9 12 700 287 2.7 16 

H4 130 55 12 1.50 2.36 4.6 600 206 3.7 8 700 282 2.6 16 

H5 80 55 12 1.50 1.45 4.6 500 202 3.9 4 700 300 2.6 6 

H6 80 55 10 1.30 1.45 5.5 400 118 4.3 10 500 200 2.5 14 

H7 90 80 15 1.70 1.13 5.3 700 321 3.8 4 900 491 2.4 6 

H8 90 70 15 1.70 1.29 4.7 600 315 3.7 4 950 486 2.4 4 

H9 110 70 13 1.70 1.57 5.4 700 299 3.8 5 900 399 2.8 9 

H10 110 60 12.5 1.70 1.83 4.8 600 283 4.0 5 700 389 2.9 11 

H11 120 70 12 1.60 1.71 5.8 700 241 3.8 7 800 321 2.9 16 

H12 125 75 13 1.75 1.67 5.8 750 317 3.8 7 900 416 2.9 13 

H13 130 75 14 1.75 1.73 5.4 800 343 3.6 7 900 451 2.8 13 

H14 80 100 15 1.85 0.80 6.7 650 373 4.2 5 900 606 2.6 6 

H15 90 90 15 1.85 1.00 6.0 750 389 4.0 4 800 621 2.5 8 

H16 95 65 15 1.90 1.46 4.3 600 412 3.8 4 800 608 2.6 5 

H17 105 50 16 2.20 2.10 3.1 500 587 3.2 3 700 846 2.2 4 

H18 120 60 18 2.30 2.00 3.3 650 744 3.1 3 850 1040 2.2 4 

H19 135 80 18 2.30 1.69 4.4 850 775 3.6 4 1000 1039 2.7 7 

H20 140 85 20 2.40 1.65 4.3 950 953 3.3 3 1200 1259 2.5 5 

H21 200 130 25 2.70 1.54 5.2 1500 1495 3.1 4 1700 1934 2.4 9 

H22 200 150 25 2.70 1.33 6.0 1600 1444 3.2 5 2000 1915 2.4 9 

H23 200 170 25 2.70 1.18 6.8 1700 1404 3.3 6 2000 1906 2.4 11 

H24 220 150 30 3.00 1.47 5.0 1700 2112 3.0 4 2200 2885 2.3 7 

H25 300 200 30 3.00 1.50 6.7 2200 2018 3.0 8 2500 2713 2.2 13 

H26 250 200 30 3.00 1.25 6.7 2200 2141 2.9 5 2500 2790 2.2 12 

H27 250 150 25 2.70 1.67 6.0 1700 1429 3.1 7 2000 1848 2.4 15 

H28 175 120 17.5 2.00 1.46 6.9 1200 522 3.4 9 1500 706 2.5 16 

H29 165 100 17.5 2.00 1.65 5.7 1100 554 3.3 6 1250 725 2.5 14 

H30 100 110 17.5 2.20 0.91 6.3 850 632 4.1 4 1000 1000 2.6 7 
 
 


