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Abstract 

An exact analytical solution for a vibrating beam-column element on an elastic Winkler 

foundation is derived. The solution covers all cases comprised of constant compressive and 

tensile axial force with restrictions of 02  mks  and 02  mks . Closed form solutions of 

dynamic shape functions are explicitly derived for each case and they are used to obtain 

frequency-dependent dynamic stiffness terms. Governing dynamic equilibrium equations are not 

only enforced at element ends, but also at any point along the element. To this end, derived 

stiffness terms are exact and they include distributed mass effects and geometric nonlinear 

effects such as axial-bending coupling. For this reason, the proposed solution eliminates the need 

of further element discretization to obtain more accurate results. In absence of elastic foundation 

(i.e., 0sk ), exact dynamic stiffness terms for beam-columns are also derived and presented in 

this study. Derived stiffness terms are implemented in a software program and several examples 

are provided to demonstrate the potential of the present study. 
  

 

1. Introduction 

Analysis of beams supported by elastic or visco-elastic media is very common in engineering 

practice. Beams on elastic foundation can be subjected to transverse loads as well as axial loads. 

This is commonly encountered in many diverse problems such as end bearing piles, buried 

pipelines, reinforcing filaments in composite materials, frames resting on or buried in soil. 

  

Application of the Winkler foundation model dates back to 1867. Due to its simplicity, the 

Winkler model is well suited for many applications and it has been a very popular area of interest 

for many researchers (Kerr 1964, Scott 1981, Eisenberger and Yankelevsky 1985, Yankelevsky 

and Eisenberger 1986, Williams and Kennedy 1987). Pasternak (1954) and Kerr (1964) 

accounted for interaction between foundation springs, enabling a wealth of further applications 

(Zhaohua and Cook 1983, Williams and Kennedy 1987, Razaqpur and Shah 1991).  

 

In early finite element applications, formulations based on cubic Hermitian functions were used 

to derive stiffness terms for beams on elastic foundation. These solutions are approximate 
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because the assumed shape functions only resemble the displacement field and hence, it is 

necessary to use several elements per member to achieve an acceptable accuracy in analysis 

results (Cook et al. 2001). Exact (static) stiffness matrices were derived in other studies (e.g., 

Eisenberger, Yankelevsky 1985, 1986, Williams and Kennedy 1987 and Alemdar, Gülkan 1997). 

In these studies, governing equilibrium equations are expressed in differential equation forms 

and they are solved to obtain exact shape functions that are also used to derive exact stiffness 

terms. As a sequel, Gülkan and Alemdar (1999) derived exact shape functions and stiffness 

matrices for beams on two-parameter elastic foundation. 

 

Vibration, stability and dynamic response of axially loaded beams on elastic foundation were 

further studied by several researches (Kim 2004, 2005, Spyrakos and Beskos 1982, and 

Arboleda-Monsalve, et. al. 2008). The interaction between structural components and the 

adjacent bonded media is of fundamental importance not only for foundation design but also as a 

classical problem for applied mechanics, so it has attracted the interest of researchers and 

engineers. Wang et al. (2005) reviewed the state-of-the-art in this field, highlighting the key 

areas of development, including the modeling of the soil media and various analytical as well as 

numerical approaches in analyzing the interaction between the foundation and soil. Shufrin and 

Eisenberger (2006a and 2006b) investigated effect of stability and vibration of shear -deformable 

plates. Peiris et al. researched the soil-pile interaction of a pile embedded in a deep multi-layered 

soil under seismic excitation considering both kinematic and inertial interaction effects. 

 

This study presents a finite element solution for vibrating beam-column on elastic foundation, 

subjected to a constant axial load. Exact dynamic shape functions are derived in order to obtain 

frequency-dependent dynamic stiffness terms. The solution domain includes four different cases, 

depending on constant compressive or tensile axial force within the ranges of 02  mks  and 

02  mks . Transition is ensured for the case when 02  mks . Each case is studied 

separately. Geometric nonlinear effects (i.e., axial-bending coupling) and distributed mass effects 

are directly included within the derived stiffness terms. In Sections 2 and 3, the governing 

dynamic equilibrium equation is expressed in a differential equation form and the equilibrium 

equation is solved to obtain shape functions after enforcing essential boundary conditions. These 

shape functions form the basis for obtaining dynamic stiffness terms, which is demonstrated in 

Section 4.  These results are used to derive solutions of other engineering problems, such as 

dynamic/static stability analysis of beams without elastic foundation. This is further elaborated in 

Section 5. Numerical examples are provided in the following section to demonstrate the merits of 

the proposed solution. It should be noted that derived frequency dependent shape functions and 

dynamic stiffness terms are exact and distributed mass and geometric nonlinear effects (axial-

bending coupling) are directly included in these terms. This ensures that the proposed solution 

strictly satisfies equilibrium equations, not only at the element ends but also within the element. 

For this reason, one element per member suffice to obtain exact solutions whereas such accuracy 

can be only achieved with using more than one element if cubic Hermitian type beam elements 

are employed.  

 

2. Derivation of Governing Differential Equilibrium Equation 

The beam element consists of three degrees of freedom at each end: one horizontal, one vertical 

and one rotational. The element formulation adopts an Euler-Bernoulli type beam element 

formulation. Forces on an infinitesimal segment on the element are shown in Fig. 1.  
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Figure 1: Dynamic Equilibrium Forces Shown on Infinitesimal Euler-Bernoulli Type Beam Element 

 

Referring to Fig. 1, the governing equilibrium equation is obtained as 
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in which EI  is flexural rigidity of the element, P  is the constant (compressive) axial load, sk  is 

the Winkler foundation parameter, m  is mass per unit length,  txQ ,  is transverse distributed 

load and  txw ,  is the transverse displacement along the element. In the following development, 

the load  txQ ,  is not considered. In addition, it is assumed that rotational inertia effects are 

negligible (i.e., 0/ 22  tI p  ) on account of slenderness. 

 

The partial differential equation given in Eq. (1) can be solved by separation of variables 

method. The displacement  txw ,
 
is now expressed as 

 

      tgxytxw ,  (2) 

Then,  
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A nontrivial solution is possible when Eq. (3) equals a constant, 
2  :  
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The term 
 
is the circular frequency of the governing equation. Note that Eq. (1) is expressed in 

the time-domain whereas Eq. (4) is presented in the frequency-domain. Finally, Eq. (4) is further 

expressed in the following form: 

 

 
   

  0
2

2

4

4

 xyB
xd

xyd
A

xd

xyd
 (6) 

where 
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The solution for Eq. (5) is  

      tCosgtSingtg  21   (8) 

 

where 
1g  and 

2g
 
are constants that can be found from the initial prescribed displacement and 

velocity patterns. In the following sections, the element formulation is focused only on Eq. (6). 

 

3. Solution of Governing Equilibrium Equations 

Based on having tensile or compressive axial load in the beam as well as having negative or 

positive values of  skm 2 , other possible cases can be derived from Eq. (6). Therefore, a 

total of four different cases is identified. They are studied separately in this section. It is noted 

that many possible combinations of 2  and sk  can yield the same value for  skm 2  so the 

solution space implied by the indicated ranges is very wide. Due to limited space, only a partial 

set of results is given in the present paper. In all cases presented in this section, exact forms of 

shape (interpolation) functions are obtained. Then, these shape functions are used to get exact 

dynamic stability stiffness terms, which are covered in the next section. 

 

2.1 Case 1: Beam-column subjected to a constant compressive axial force and 02  skm  
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The roots of the characteristic equation of Eq. (9) are 

   4321 DDiDiD  (11) 

where 1i  and
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provided that 042  BA . Then, the complementary solution for Eq. (9) is 

 

          xSinhcxSincxCoshcxCoscxy  4321   (13) 
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The constants 
41 cc   can be obtained after substituting the following essential boundary 

conditions: 
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The matrix  H  is constructed by substituting the boundary conditions into Eq. (13). Finally, Eq. 

(15) is solved for  
41 cc   and then, this result is substituted into Eq. (13) to obtain the following: 
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The functions 
41 NN   are referred to as exact shape functions because they are directly derived 

from the solution of Eq. (9). It is verified that 
41 NN   converge to the cubic Hermitian 

polynomials at the limit of  0sk , 0P   and  0 . Closed form solution of the shape 

functions for Case 1 is given in the Appendix A. 

 

2.2 Case 2: Beam-column subjected to a constant tensile axial force and 02  skm  
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in which the terms A  and B  are defined in Eq. (10). Note that 042  BA . One can employ 

the following characteristics roots: 
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Then, the complementary solution for Eq. (17) takes the same form as given in Eq. (13). 

 

2.3 Case 3: Beam-column subjected to a constant compressive axial force and 02  skm  

 0
2

2

4

4

 yB
xd

yd
A

xd

yd
 (20) 



 6 

in which the terms A  and B  are defined in Eq. (10). There are three possible sets of solutions: 

the cases for BA 2 , BA 2  and BA 2 . In the following, each sub-case is studied 

separately. In each case, the complementary solution of the corresponding equation is given 

explicitly to derive shape functions similar to the method explained for Case 1. 

 

BA 2 : The roots of the characteristic equation given in Eq. (20) are 

   4321 DDDD  (21) 

 

where 
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Then, the complementary solution for Eq. (20) becomes 
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in which 

   22  (24) 

And 
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BA 2 : The roots of the characteristic equation given in Eq. (20) are 

 iDiDiDiD   4321  (26) 

And 

 
2

A
   (27) 

Then the corresponding complementary solution takes the following form: 

          xSinxcxSincxCosxcxCoscxy  4321   (28) 

BA 2 : The roots of the characteristic equation given in Eq. (20) are 

 iDiDiDiD   4321  (29) 

 

where 
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Then the corresponding complementary solution takes the following form: 
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2.4 Case 4: Beam-column subjected to a constant tensile axial force and 02  skm  
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where the terms A  and B  are defined in Eq. (10). There are three possible sets of solutions: the 

cases for BA 2 , BA 2  and BA 2 . In the following, each sub-case is studied 

separately.  

 

BA 2 : The roots of the characteristic equation given in Eq. (32) are 

   4321 DDDD  (33) 

where 
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The corresponding complementary solution takes the following form: 
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in which the terms  ,  ,   and   are defined in Eq.(24) and Eq. (25). 

 

BA 2 : The roots of the characteristic equation given in Eq. (20) are 

   4321 DDDD  (36) 

in which the terms   and   are defined in Eq.(27). Then the corresponding complementary 

solution takes the following form: 
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BA 2 : The roots of the characteristic equation given in Eq. (20) are 
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Then the corresponding complementary solution takes the following form: 
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4. Dynamic Stiffness Terms 

Dynamic stiffness terms for Case 1 are obtained from the following equation: 
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in which the first integral gives material stiffness terms, the second integral is for the element 

geometric stiffness terms and the third integral is for the stiffness terms attributed to Winkler 

foundation and dynamic effects. The term iN  represents thi  shape function, which is obtained in 

the previous section separately for each case. All of the integrals run over the element length L . 

It should be noted from Eq. (41) that the second and the third integrals have a destabilizing 

effect. Dynamic stiffness terms for other cases can be similarly expressed as follows:  

Case 2: 
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Case 3: 
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Case 4: 
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5. Selected Engineering Problem Types  

Sections 3 and 4 covers all possible cases for beams supported by an elastic foundation and 

subjected to a compressive or tensile axial load. The stiffness terms derived are expressed in 

terms of P (axial load),   (circular frequency), m (mass per unit length), sk (elastic foundation 

parameter), EI (flexural rigidity) and L  (element length).  It is also possible to generate 

solutions for other types of engineering problems from these results. For instance, the derived 

dynamic stiffness terms reduces to static response of a beam element in the absence of elastic 

foundation and vibration frequency (i.e., 0sk  and 0 ). This can be achieved either by 

substituting very small values for sk and   or by taking a limit of stiffness terms while sk  and 

  approaching zero.  

 

Table 1 summarizes problem types that are selected in this study. Closed forms of stiffness terms 

for these problems are explicitly derived and given in the Appendices.    

 
Table 1: List of Engineering Problems Selected 

 

Problem Definition K Case Appendix 

Dynamic Stability of Beams on Elastic Foundation P , , m , sk   1, 3 B,C 

Dynamic Stability of Beams P , , m   1  B1 ( 0sk ) 

Static Stability of Beams on Elastic Foundation P , sk   1 B2 ( 0 ) 

Static Stability of Beams P   1 D 

Dynamic of Beams  , m   - E 

1. Use results given in Appendix B with 0sk  

2. Use results given in Appendix B with 0  
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6. Numerical Examples 

The stiffness terms derived in this study are added to a finite element library implemented in 

Mathematica (Wolfram 2015). Standard finite element procedures are followed for the examples 

provided in this section. This means that element stiffness matrices are first calculated and then, 

they are assembled into global stiffness matrix. The following static-like system of equations are 

repeatedly solved for a sequence of values of : 

 

       FK   (45) 

 

where the vector  F  is assembled load vector expressed in frequency domain. It is 

demonstrated in this section that the proposed solution can be used in a typical finite element 

analysis framework such that more complex models can be addressed without any difficulty. 

 

6.1. Vibration and Buckling Analysis of a Simply Supported Beam on Elastic Foundation 

 

A simply supported beam resting on an elastic foundation is subjected to an axial compressive 

load. In order to find vibration frequencies of the beam, the determinate of stiffness matrix is first 

derived and then, the beam frequency ( ) is calculated in such a way that it is the frequency that 

makes the determinate vanishes. The determinate for this problem is given as follows: 
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
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in which   and   are defined in Eq. (12). Note that the above equation is derived from the 

stiffness terms obtained for Case 1. It is not possible to solve Eq. (46) for   directly. Instead, a 

numerical solution is needed to find roots of Eq. (46).  

 

In this example, axial compressive load level and foundation stiffness are varied and effect of 

these changes on the beam’s fundamental frequency (
1 ) are investigated. The following 

numerical values are used: beam length L = 4.0 m. (157.5 in.); rectangular cross-section with 

width b = 40 mm (1.575 in) and depth d = 80 mm (3.1496 in); mass density ρ = 7850 kg/m3; 

modulus of elasticity E = 2.1 x 1011 N/m2 (30458 ksi). The elastic foundation parameter sk  is 

varied in such a way that ,5.0,05.0,0/ EIks  and 0.2 .  

 

The relationship between axial compressive load and beam fundamental (first-vibration) 

frequency (
1 ) under different foundation stiffness is shown in Figure 2. These results are 

obtained by repeatedly solving Eq. (46) for different values of axial load and foundation 

stiffness. The curves represent ePP / as abscissa and normalized foundation frequency o11 / as 

ordinate, in which 69.731 o  rad/s obtained for a vibrating beam in absence of both 

compressive load and foundation, and 
22 / LEIPe  .  It is observed that the effect of foundation 

stiffness is negligible for 05.0/ EIks . For the values larger than this limit, the fundamental 

frequency increases as the foundation becomes stiffer. Similarly, the buckling load increases 
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with increase of foundation stiffness. Table 2 tabulates numerical values for fundamental 

frequency of the beam at 0/ PeP . 
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Figure 2:  Variation of fundamental frequency of simply supported beam under different compressive axial load and 

foundation stiffness 

 

Table 2: Fundamental Frequency of Simply Supported Beam at  0/ PeP  

EIks /  o11 /  

0 1 

0.05 1.06 

0.5 1.52 

2 2.50 

 

Buckling load of the beam is obtained by making the determinate of the stiffness matrix vanishes 

as   approaches to zero. The following equation is derived under this condition and note that 

the buckling load is the axial load P  that makes 02 g : 
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in which 

 CAFCADBAC
EI

k
B

EI

P
A s  ,,4,, 2

 (48) 
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A numerical solution is again needed to find buckling load from Eq. (47). This is exercised for 

the values EIks / selected and the results are given in Table 3. 

 
Table 3: Buckling Load of Simply Supported Beam under Different Foundation Stiffness  

EIks /  PeP /  

0 1 

0.05 1.13 

0.5 2.31 

2 5.31 

 

6.2. Moment Frame on Elastic Foundation 

A steel moment frame supported by concrete columns and a concrete beam is studied in this 

example. The problem details are given in Fig. 3 (Arboleda-Monsalve et al., 2008). Both 

concrete columns and the concrete beam are underlain by an elastic foundation with sk = 2.0684 

N/mm2 (0.3 kip/in2). Steel members BC, CF and EF have sections of W14x26 with the following 

properties: Es= 206,842.72 MPa (30,000 ksi), A= 4961 mm2 (7.69 in2), I=101.98 x 106 mm4 (245 

in4) and ms = 38.86 kg/m (56.32 x 10-7 kip-s2/in2). The concrete column members (AB and DE) 

have a diameter of 1000 mm (39.37 in) and mcol = 1886.88 kg/m (2734.34 x 10-7 kip-s2/in2).  The 

concrete beam (BE) has a square section of 500mm x 500mm (19.68in x 19.68in) with mbeam = 

600.0 kg/m (870.0 x 10-7 kip-s2/in2). Modulus of elasticity for concrete members is Ec = 

25,998.75 MPa (3770.8 ksi). All members are assumed to be rigidly connected and the frame is 

fixed at points A and D. Axial deformations in all members are ignored. 
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Figure 3: Moment Frame on Elastic Foundation 
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The present study predicts the buckling load ( crP ) as 3969.4 kN (892.35 kips). Arboleda-

Monsalve et al. (2008) report the buckling load as 3762.6 kN (845.87 kips) in which shear 

deformations in the members and in the foundation are accounted for whereas such effects are 

ignored in this study. In the absence of axial load on columns, the current study also predicts the 

first fundamental vibration frequency (
1 ) as 42.33 rad/sec (6.74 Hz).  

 

Figure 4 shows the plot of first-vibration frequencies calculated for different level of 

compressive axial loads. They are normalized by 
1  and crP . It is noted that the solution for 

concrete columns supported on the elastic foundation switches from Case 1 (i.e., Eq. (9)) to Case 

3 (i.e., Eq. (20) and BA 2 ) when 56.0/ crPP  (i.e., 2224P kN (500 kips)) whereas the 

solution for the concrete beam is Case 1 for all values of the axial load.  

 

A similar (comparison) model is constructed with (Hermitian) beam finite elements (STAAD(X), 

2015). In this case, each beam and column is modeled with 8 equal-length elements. The elastic 

foundation is represented with lumped springs placed at nodes. Member mass is uniformly 

distributed and lumped at element joints. With this model, buckling load is predicted as 3910.9 

kN (879.2 kips) and the first fundamental frequency (in the absence of axial load) is found as 

44.53 rad/sec (7.09 Hz). Figure 4 also includes results obtained from the comparison model. As 

observed from the figure, the comparison model unconservatively predicts the buckling loads 

even if a fine mesh of 8 elements per member used. This is attributed to insufficient handling of 

distributed mass effects and nonlinear geometric effects and hence, more elements per member 

needed for better comparisons. 
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Figure 4 Buckling Load-Frequency Interaction Curve for Moment Frame 

 

 

6.2. Dynamic Analysis of Two-Bay Moment Frame 

Dynamic response of a two-bay moment frame subjected to vertical and lateral loads are studied 

in this example. The problem definition is given in Fig. 5 . The moment frame is braced with 

viscous dampers but they are only considered for damping lateral deflections otherwise they do 

not provide any lateral stiffness. It is also assumed that the dampers are massless. Sections 

W10x33 and W10x60 are selected for columns and beams, respectively (i.e.,  colII 7.12 x 
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107 mm4 (171 in4) and beamI 1.42 x 108 mm4 (341 in4)). In addition, the following numerical 

values are selected for this example: L = 3048mm (10ft), Po = 44.48 kN (10 kips) and 

E=200,000 MPa (29,000 ksi). On the assumption that the axial deformations are neglected, an 

inertia term of “ 22 beambeam Lm ” needs to be added to assembled stiffness matrix for horizontal 

degree of freedom. 

 

c

(a)

2I, 3L

c

2I, 3L

I,
 L

P P P

P(t)

t (sec)0.1 0.2 0.3

Po

-Po

P(t)

(b)  
 

Figure 5 Problem Definition of a Two-Bay Moment Frame 

 

Buckling load of the frame (i.e., 2/ LEIPcr  ) is calculated in a similar way explained in 

Example 1. Table 4 compares the present solution result with other solutions.  

 
Table 4: Buckling Load Factor of Two-bay Moment Frame 

 

   

Present Solution 1.690 

Reference (Galambos, et. al., 2008) 1.686 

FE++2015 (2 Elem. per member) 1.692 

 

Dynamic analysis of the frame is carried out in frequency domain. This requires repetitive 

solution of Eq. (45) for values of . In most cases, external dynamic loads are expressed in terms 

of time and they must be transformed to frequency domain. Similarly, calculated results in 

frequency domain (such as   ) can be inverse transformed to the time domain.  An efficient 

numerical solution for transforming between frequency and time domain is essential. Fast 

Fourier Transform (FFT) and its inverse form (iFFT) are used for this purpose (Press et. al., 

1992). Special care must be given to FFT parameters such as cut-of-frequency ( c ) and number 

of sampling points ( N ). The cut-of-frequency determines highest frequency which can be 

represented in the solution. Beyond this value, it is assumed that the solution is negligible. 

Number of sampling points determines number of time or frequency increments at which 

solution is calculated. Once c is chosen, time increment is simply ct  / . For this problem, 

001.0t  sec and 4096212 N  are selected (i.e., 3142c  rad/s). 
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The force in the damper is expressed as  

  
dt

du
ctF   (49) 

in which the constant term c  is viscous damper coefficient and, u and dtdu / are the axial 

displacement and velocity in the damper, respectively. After applying Fourier transform to Eq. 

(49), the following is obtained: 

     uictF   (50) 

The viscous damper element is treated as a truss-like element and its frequency-dependent 

stiffness matrix becomes 

 













icic

icic
Kd




 (51) 

 

The viscous damping coefficient (c) is selected as 4.025 N-sec/mm (0.023 kip-sec/in) and this is 

approximately equivalent to 5 percent Rayleigh damping. 

 

Figure 6 shows the steps for frequency domain solution. Externally applied loads are calculated 

at each time increment (  itP ) and this data is transformed to frequency domain by the help of 

FFT. After this transformation, the external loads are expressed in terms of frequency intervals 

(  iP  ). Once stiffness matrix is constructed for i , it is solved to obtain displacements in 

frequency domain (  i ). This process is repeated for   ii , Ni ,...,2,1 and note that 

./2 Nc   Finally, displacements in frequency domain are inverse transformed back to time 

domain by iFFT. 

 

P(ti) FFT P(i)

(i)(ti) iFFT

K(i) (i) = F(i)

 
 

Figure 6 Steps for Frequency Domain Solution 

 

For axial loads of 0P  and 
2/2.1 LEIPcr  , lateral displacement of the frame is calculated and 

these results are portrayed graphically in Fig 7. Note that horizontal displacement is normalized 

with a static displacement of su  16.13 mm (0.635 in), which is obtained from an analysis with 

dynamic effects ignored.  

 

The same example is also solved in time domain with Newmark-β (average acceleration) time-

integration method (FE++2015). This solution models beams and columns with 4 elements per 

member. Time increment of 001.0t  sec. is selected and classical Rayleigh damping with 

0.05 for 1st and 3rd eigenmodes is included in the solution.  



 15 

-5

-2.5

0

2.5

5

0 0.5 1 1.5 2 2.5 3

u
d
/u

s

Time (sec.)

P=0

Present Solution

FE++2015

 
 

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5 3

u
d
/u

s

Time (sec.)

P=1.2 EI/L2

Present Solution

FE++2015

 
 

Figure 7 Time History Response of Lateral Displacement of the Moment Frame 

 

7. Conclusions 

Dynamics of a beam-column element resting on an elastic Winkler foundation and subjected to 

axial load is investigated in this study. An exact solution of dynamic equilibrium equations is 

pursued. Exact shape functions are derived and they are used to obtain closed forms of 

frequency-dependent exact stiffness terms. A total of four cases are identified and each case is 

individually studied. Distributed mass effects and geometrically nonlinear effects are directly 

included in the stiffness terms. Dynamic equilibrium equations are not only satisfied at element 

boundary nodes but also they are fulfilled within element. For this reason, only one element per 

member suffices to obtain accurate results as demonstrated by the examples. The proposed 

solution is also extended to other engineering problems for which exact stiffness terms are 

derived and provided in the Appendices. It is demonstrated that the proposed solution can be 

used in a typical finite element analysis framework such that more complex models can be 

addressed without any difficulty.  
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Appendix A: Frequency-dependent Exact Shape Functions for Case 1 
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Appendix B: Dynamic Stiffness Terms for Beam-Column on Elastic Foundation: Case 1 
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Appendix C: Dynamic Stiffness Terms for Beam-Column on Elastic Foundation: Case 3 

BA 2 : 
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Appendix D: Static Stiffness Terms for Beam-Column 
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Appendix E: Dynamic Stiffness Terms for Beam 
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