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Abstract 

System buckling of interconnected narrow I-girder systems is an instability mode that has been 

recognized over the past decade. The buckling mode is relatively insensitive to the spacing 

between cross frames and often controls 2- and 3-girder systems that are relatively narrow 

compared to their lengths. Past studies have primarily focused on the critical buckling loads for 

simply supported systems. This paper presents parametric finite element analyses in the study of 

narrow doubly-symmetric I-girder systems and includes the impact of girder continuity as well 

as nonlinear geometrical effects. Eigenvalue buckling analyses of both simply-supported and 

two-span continuous I-girder systems were first conducted and the results were compared with 

predictions using a buckling solution developed in an earlier study. The impact of moment 

gradient on the buckling capacity is studied and factors reflecting the impact of girder continuity 

are developed.  In addition, nonlinear buckling analyses were carried out to investigate the effect 

of the shape of imperfection on the susceptibility of I-girder systems to the 2
nd

-order 

amplification of lateral-torsional displacements. 

 

 

1. Introduction 

Lateral torsional buckling (LTB) of a steel girder under transverse loading is a limit state that 

often controls in the bridge and building design specifications, involving both the twist and 

lateral movement of the girder sections. Intermediate bracing such as cross frames are typically 

used along the girder at discrete points to reduce the unbraced length of the girder thereby 

improving the buckling resistance by providing torsional restraint. 

 

While the cross frames are often viewed as a brace point for lateral torsional buckling of the 

individual girders, system buckling of the girder system as a structural unit is also a viable 

stability limit state.  The mode shape of the system consists of a half-sine curve buckled shape 

along the span length and often controls on girder systems that are relatively narrow compared to 

the length. Historically, this mode shape was not covered by design specifications until the 

failure of the Marcy Pedestrian Bridge during concrete deck placement that led to a study of 

behavior of narrow structural systems (Yura and Widianto 2005). Although the Marcy Pedestrian 
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Bridge was a trapezoidal box girder system, no top lateral truss was supplied so the girder 

behaved in a similar manner to a twin I-girder system since the box had several internal cross 

frames along its length. Following the Marcy Bridge failure, a number of problematic 2- and 3-

girder systems were encountered which were dangerously close to failure. A study of narrow 

twin girder systems with simple supports were reported in Yura et al. (2008) leading to the 

following expression for the elastic system buckling resistance of a twin I-girder systems 

interconnected with cross frames under non-composite loading conditions: 

 

  (1) 

 

where E is the modulus of elasticity; Ix is the moment of inertia about the strong axis of a single 

girder; Ieff is the moment of inertia about the weak axis of a single girder; L is the span length; 

and s is the spacing between girders. For three girder systems, the girder spacing s is replaced 

with the distance between the two exterior girders. Mgs given by (1) is the total moment 

resistance of the girder system and would be compared with the sum of the maximum moments 

in the individual girders. The AASHTO specification (2015) includes equation (1); however the 

sum of the moments are limited to 50% of the critical buckling load to avoid moment 

amplification due to second order effects; however very limited study has been carried out to 

investigate the potential for second order amplification.   

 

Equation (1) is applicable to simply-supported twin I-girder systems subjected to uniform 

moment. Many steel girder systems are continuous over multiple supports and the validity of this 

equation to such systems is unclear. The objective of his paper is to 1) extend the previous study 

of the elastic system buckling from the simply-supported systems to continuous systems using 

parametric FE study; 2) perform preliminary nonlinear buckling analyses (load-deflection 

analysis) on I-girder systems to investigate the susceptibility of I-girder systems to 2
nd

–order 

amplification of the lateral-torsional displacement and the impact of the cross-sectional shape the 

imperfection. 

 

2. Linear Eigenvalue Analyses on I-girder Systems 

Three-dimensional parametric FE eigenvalue buckling analyses were first conducted to 

investigate the elastic system buckling resistance of both the simply-supported and two-span 

continuous I-girder systems. This section presents the details of the FEA model and the results 

from the parametric eigenvalue buckling analyses. 

 

2.1 Finite Element Model 

The general-purpose FE program ANSYS (2015) was used for this study. This software program 

features the ANSYS Parametric Design Language (APDL) allowing the user to vary the 

geometric parameters for the FE model with ease to facilitate the parametric study. Fig. 1 depicts 

the three-dimensional isometric view of the FE model for a two-span continuous twin I-girder 

system considered in this study. 

 

The steel was assumed to be linear elastic material in the model, with the Young’s Modulus E = 

29,000 ksi and Poisson's ratio ν = 0.3. 
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The girder cross section was modelled using the SHELL281 element, which is a 3D 8-node shell 

element with three translational and three rotational degrees of freedom at each node. The 

element has quadratic displacement shape functions, which are well suited to model either 

straight or curved girder geometries. At the cross section of all girders, the web was meshed with 

four elements along the depth whereas two elements were used for each flange. Transverse 

stiffeners attached to the steel girders at each bracing location were also modelled with the 

SHELL281 element.  All cross frames on the girders were modelled using the 3D space truss 

element LINK180. This element is a two-node uniaxial tension-compression element with three 

translational degrees of freedom at each node. The shell elements for the steel girders and the 

truss elements for the cross frame diagonals shared the coincident nodes at the interfaces. This 

simplified model proved effective and accurate in previous steel girder buckling research studies 

(Helwig 1994; Quadrato 2010; Battistini et al. 2016). 

 

 

 
Figure 1: FE model for a two-span continuous twin I-girder system 

 

2.2 Geometric Parameters 

For both the simply-supported and two-span continuous girders evaluated in the parametric FE 

study, a cross section with a flange-to-depth ratio of 1/4 was selected for all analyses, which is 

representative to common bridge design practices (Stith 2010). As shown in Fig. 2, the cross 

section consisted of two 14’’×1.5’’ flanges and a 56’’×0.625’’ web plate. Although most 

continuous girders would have different sized flanges in the negative moment region, the 

decision was made to maintain a prismatic section in this trial study; however, the behavior of 

non-prismatic sections is also being considered in a subsequent study.   
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Figure 2: Cross Section Used in Parametric FE Study 

 

Although most cross frame types have two diagonals (e.g. K-type cross frame and X-type cross 

frame), the single diagonal “tension-only” Z-type cross frame was used for the FE model as 

shown illustrated at upper right corner of Fig. 1. It conservatively disregards the compression 

diagonal due to the potentially low buckling resistance of the slender steel angle. Because the 

diagonals were truss elements with nodes at the ends, these members are not buckling elements 

and therefore the stiffness of the diagonal will be the same whether in tension or compression.  

Steel angles sized 4’’×4’’×1/2’’ with a sectional area of 3.75 in
2
 were applied for all cross frame 

diagonals in compliance with common TxDOT practices. Recent work (Battistini et al. 2016) has 

shown that cross frames comprised of single angles can have significant reductions in stiffness 

due to eccentric connections. Although the cross frames in this study were single angles, because 

a “tension-only” cross frame was represented with the single diagonal, no reduction in stiffness 

was necessary.   

 

To the ensure that the I-girder systems is adequately braced, trial eigenvalue analyses were 

conducted with increasing sectional area of cross frame diagonals from the designated value. The 

results were compared in terms of buckling strength between individual analyses. The cross 

frames were regarded to have provided adequate stiffness as no notable differences were 

observed between them. 

 

2.3 Bridge Layout 

 

 
 

Figure 3: Bridge Layout for Both the Simply-Supported and Continuous I-Girder Systems 
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Fig. 3 illustrates the schematic diagram of the structural layout for both the simply-supported and 

the continuous twin I-girder systems. The girder was modelled as perfectly straight without end 

skew or imperfection. The cross frames were placed between the two girders with varying 

number for different structural layouts but at the same interval of Lb = 20 ft. 

 

The continuous twin I-girder systems consisted of two equal spans with four selected span length 

values of L  = 120 ft, 140 ft, 160 ft, and 180 ft, resulting in the span-to-depth ratios of 25.7, 30, 

34.3, and 38.6 and the cross frame numbers of 13, 15, 17, and 19 from end to end. Meanwhile, 

four girder spacing values were selected with s = 5’, 7’, 9’ and 11’. Consequently, a total number 

of 16 analyses were conducted for the study of continuous I-girder systems. These selected 

values are representative of those commonly encountered in design practice. The girder systems 

were pinned at the center pier with restraints of vertical, lateral, and longitudinal translations 

whereas roller type supports were provided at the two end supports preventing the vertical and 

lateral translations also as illustrated in Fig. 1 and Fig. 3. 

 

For the parallel of parametric study, four span length values of L  = 100 ft, 120 ft, 140 ft, and 160 

ft were selected for the simply-supported twin I-girder system, corresponding to the span-to-

depth ratios of 21.4, 25.7, 30, and 34.3 and the cross frame numbers of 6, 7, 8, and 9. Meanwhile, 

only one value s = 7’ was selected for the girder spacing, giving a total number of 4 analyses in 

this case. Pin type support was provided for the girder system at one end and roller type support 

on the other end. 

 

While cross frames were placed at the ends of the girders, the warping deformation of the cross 

section of each individual girder was not restrained. Distributed loads were applied along the 

girder length at the mid-height in the FE Model despite the fact that concrete dead loads and 

construction loads are naturally applied on the top flange. The adverse impact of this liberal 

assumption is mitigated by a number of factors that are conservatively neglected such as warping 

restraint at supports and “tipping restraint” (Helwig et al. 1997) and (Yura et al. 2008).  Although 

results are not shown in this paper due to length constraints, the impact of top flange loading was 

considered and was found to be relatively small. 

 

2.3 Results 

Fig. 4 and Fig. 5 depict the buckled shapes for both the simply-supported and two-span 

continuous twin I-girder systems obtained from the eigenvalue buckling analyses. The buckling 

of the simply-supported I-girder system occurs in a manner similar to the LTB of an individual 

girder. The whole bridge unit underwent both the twist and lateral movement leading to a 

buckled shape akin to a sinusoidal wave of a half-wave length whereas the buckled shape of the 

two-span continuous I-girder system can be likewise roughly characterized by a sinusoidal wave 

of a full-wave length with inflection points at center pier and end supports formed by twist and 

lateral movement also. 
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Figure 4: Buckling Shape for Simply-Supported I-girder systems 

 

 
 

Figure 5: Buckling Shape for Two-Span Continuous I-girder systems 

 

Table 1 and Table 2 tabulate the results from the parametric FE study for both the simply-

supported and two-span continuous I-girder systems in comparison with the predictions by Eq. 1 

given the corresponding parameters. Analogous to the moment gradient for the classic solution 

for LTB of an individual girder, A Cbs factor was defined by a fraction of Mcr, the maximum 

girder moment at buckling calculated by FEA, to Mgs, the capacity predicted by Eq. 1, as given 

by the following equation: 
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  (2) 
 

Table 1: Comparison of FEA Results and Predictions for Continuous I-girder Systems  

 

L (ft) 120 140 160 180 

  L/D 25.7 30 34.3 38.6 

s=5' Mcr (k-ft) 8,618 6,471 5,050 4,063 

 
Mgs (k-ft) 3,708 2,724 2,086 1,648 

  Cbs 2.32 2.38 2.42 2.47 

s=7' Mcr (k-ft) 11,690 8,697 6,812 5,453 

 
Mgs (k-ft) 5,191 3,814 2,920 2,307 

  Cbs 2.25 2.30 2.33 2.36 

s=9' Mcr (k-ft) 14,669 11,054 8,594 6,867 

 
Mgs (k-ft) 6,674 4,903 3,754 2,966 

  Cbs 2.20 2.25 2.29 2.32 

s=11' Mcr (k-ft) 17,487 13,283 10,356 8,281 

 
Mgs (k-ft) 8,157 5,993 4,588 3,625 

  Cbs 2.14 2.22 2.26 2.28 

 

 
Table 2: Comparison of FEA Results and Predictions for Simply-Supported I-girder Systems  

 

L (ft) 100 120 140 160 

  L/D 21.4 25.7 30 34.3 

s=7' 

Mcr (k-ft) 8,157 5,830 4,360 3,383 

Mgs (k-ft) 7,475 5,191 3,814 2,920 

Cbs 1.09 1.12 1.14 1.16 

 

As viewed in Table 2, the Cbs values for the simply-supported I-girder system range from 1.09 to 

1.16, indicating the value Cb = 1.12 for uniformly distributed load for the LTB of an individual 

girder is also applicable to the simply-supported twin girder system. The results also illustrate 

that the impacts of the span-to-depth ratio and girder spacing on the Cbs value are limited for I-

girder systems for the I-girder system, the maximum and minimum Cbs values for continuous I-

girder systems being 2.47 and 2.14. Therefore, constant Cbs values of 1.1 and 2.0 might be 

utilized for estimating the critical system buckling loads for simply-supported and continuous I-

girder systems, respectively. 

 

3. Large Displacement Analysis and Nonlinear Behavior   

The elastic critical buckling load, which is mathematically described by the bifurcation of a 

continuous system (e.g., differential equations), only serves as a theoretical upper limit to the 

system buckling resistance of the girder system. The bridge structural unit might undergo 

excessive 2
nd

–order amplification of the torsional-lateral displacement before the elastic critical 

buckling load is actually approached. It is therefore necessary to perform a large-displacement 

load-deflection FEA study to capture the nonlinear behavior of the bridge unit with the non-

composite dead load gradually applied to a target value under the elastic critical buckling load, 

which is nevertheless an important indicator of the structural susceptibility to the 2
nd

–order 
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amplification effect (Sanchez and White 2012). The nonlinear behavior of the I-girder system is 

associated with many factors such as the shape of imperfection, skew, horizontal curvature, load 

pattern. This section presents a preliminary study of the effect of the shape of the imperfection 

on 2
nd

–order amplification. As noted earlier in this paper, the AASHTO (2015) specification 

limits the critical load to 50% of the value predicted by Eq. (1) due to concerns of second order 

amplification; however very little work has been carried out to study this impact.   

 

 
Figure 6: Schematic Diagram of the Cross-sectional Shapes of Imperfection at mid-span 

 

A simply-supported twin I-girder system was considered. It had a span length of 140 ft and a 

girder spacing of 7 ft, with the exact geometric parameters and boundary conditions used in 

section 2. Identical imperfections were imposed to both girders with a single wave distribution 

along the length and maximum value Δ0 = L/1000 = 1.68’’ at mid-span. As illustrated in Fig.6, 

three different types of cross-sectional shapes of imperfections were examined. Section A has a 

“pure sweep” type of shape of imperfection which consists of lateral sweep at both the top and 

bottom flanges with same magnitudes of Δ0. Section B consists of a top flange sweep of Δ0 and a 

bottom flange sweep of Δ0/2. In Section C, the bottom flange remains straight while the top 

flange displaces. Uniformly distributed load was applied to the bridge unit gradually up to 75% 

of the elastic critical buckling load of 1.78 kip/ft for analyses. The imperfect shape shown in 

Section C is consistent with past studies that have shown this shape is critical for the design of 

cross frames and diaphragms (Wang and Helwig, 2005). 

 

   

  Section A Section B Section C 
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Figure 7: Normalized Load vs Lateral Displacement Curves  at Mid-Span 

 

As depicted in Fig. 7, the three analyses with different shapes of imperfection were compared in 

terms of maximum lateral displacement at mid-span under the normalized load. The “twist-

dominant” Section C was found to be the most critical shape of the imperfection. However, 

during the erection of the girder system, the shape of imperfection of the girders would be altered 

by the installation process of the cross frames. The ability of a rectangular cross frame to resist 

distortion is significantly greater than the torsional rigidity of a girder. Therefore, the girder will 

be forced to rotate once a cross frame is fitted up. The final cross sectional shape of imperfection 

of the girder will become “sweep-dominant” afterwards, significantly mitigating the 2
nd

–order 

amplification of the torsional-lateral displacement.  Significant study of the impact of the likely 

shape of the imperfect girder with cross frame installed was carried out as part of this study and 

the computer simulations confirmed that the likely shape is more consistent with a pure sweep.  

Due to length restrictions, this data are not shown in this paper but will be presented in a 

subsequent publication.  Therefore, the results showed that the load deformation curve on girder 

with cross frames installed will be similar to the curve shown for “Section A” in Fig. 7.  In-as-

such, the AASHTO (2015) restriction to 50% of the critical load is likely overly-conservative 

and the permissible load can be increased.   

 

4. Conclusions 

This paper presents results of a parametric FE study including both elastic eigenvalue buckling 

and nonlinear buckling analyses on the system buckling of I-girder system to address the absence 

of such provision in current design specifications. It has been shown that the system buckling 

critical load given by Eq. 1 is capable of providing reasonable estimate of the I-girder system 

with moment gradient values for the system mode denoted Cbs. Constant value of 1.10 is 

recommended for simply supported systems and 2.0 for continuous girder systems.  These values 

are applicable for uniformly distributed loads, which are the most common load for which the 

system mode would be critical. Although results were not shown in this paper, the impact of load 

position on the cross section was insignificant on the system buckling mode. The preliminary 
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load-deflection analysis on the system buckling of the I-girder system reveals that the shape of 

the imperfection has profound effect on the 2
nd

–order amplification of the torsional-lateral 

displacement of the structure. Imperfections with a “pure sweep” have much smaller 

amplification compared to shapes consisting of a straight bottom flange and swept top flange. 

However, because the cross frames are generally fabricated with geometries close to square (the 

exception being geometrical “drops” based upon skewed/curved/camber requirements), the 

resulting imperfection on girders systems is very close to a pure sweep.  As a result, the current 

limitation of 50% of the critical load that is in AASHTO (2015) is over-conservative and can be 

increased. The results presented in this paper provide insight into future studies of other 

important factors that affecting the susceptibility of I-girder system to the 2
nd

–order amplification 

effect such as imperfection distribution, curvature, etc. all of which will be documented in a 

future publication.  
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