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Abstract 

The stiffness reduction that results from yielding of the cross-section due to minor axis bending 

and axial compression is studied in detail for compact W-Shapes with a European Convention for 

Constructional Steelwork (ECCS) residual stress distribution pattern. For a given minor axis 

moment m (M /Mp), compressive load p (P /Py), and residual stress ratio cr (r /y), the distribution 

of stresses throughout the cross-section and associated reduced stiffness (EIep / EI) are evaluated 

using a fiber element model with 2,046 elements. A three-dimensional m-p- surface plot of a 

W8x31 with cr = 0.3 is used to discuss the stress states and reduced stiffness for the m and p 

conditions around the perimeter of the surface. For these conditions, equations that predict the 

extent of yielding and the distribution of stresses in the flanges and web are provided for any given 

W-Shape and cr condition. The ability to determine the stresses with analytical expressions leads 

to reduced stiffness equations that are no longer dependent upon empirical relationships. Seven 

elasto-plastic stress states have been identified for the m and p conditions on the interior of the 

surface. Discussion is provided on the development of similar analytical expressions for these 

conditions. Numerous figures are provided on the progression through the various stress states as 

m is increased from the initial yield condition up to the fully plastic state for p = 0.2, 0.5 and 0.75. 

The data from the m-p- surface plot for the W8x31 with minor axis bending are used to develop 

two nonlinear regression equations for use as tangent modulus expressions in MASTAN2. The El-

Zanaty portal frame is modeled with p = 0.4 and 0.6. The maximum lateral load and deflection 

values compared very closely with published results of the same frame under similar conditions. 

 

 

1. Introduction 

The in-plane behavior of steel frames with compact doubly-symmetric members that are subjected 

to minor axis bending have been shown to exhibit significant differences in their response based 

on plastic hinge and plastic zone analyses (Ziemian et al. 2002). Frames of this type with little to 

no redundancy can be very sensitive to the refinement of the inelastic analysis procedure employed 

(El-Zanaty et al. 1980; White et al. 1991; Ziemian et al. 1997). Recent research has focused on 

developing improved empirical relationships to account for the reduction in stiffness that occurs 

due to yielding of the cross-section from minor axis axial bending and axial compression (Zubydan 

2011; Kucukler et al. 2014). The objective of this paper is to present the findings from a detailed 
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fiber element model investigation of the stresses and stiffness reduction that develop as a result of 

yielding in the flanges and web over the full range of moment and axial load combinations from 

initial yield to the fully plastic condition. Analytical expressions are presented to determine the 

extent of yielding and stiffness reduction for key stress state conditions, and discussion is provided 

on how the methodology can be used to consider the seven elasto-plastic stress states identified in 

the study. Finally, the paper presents an approximation of the stiffness reduction using two 

nonlinear regression equations, and discusses how it can be used effectively in a nonlinear analysis 

program such as MASTAN2 to obtain results that are comparable with those from a more detailed 

distributed plasticity approach.   

 

2. Fiber Element Model 

The stiffness reduction that results from yielding of the cross-section due to minor axis bending 

up to the plastic moment Mp and axial compression up to the yield load Py is studied in detail for 

W-Shapes with an ECCS residual stress pattern (1984) as depicted in Fig. 1. For a given 

normalized minor axis moment m (M /Mp), compressive load p (P /Py), and residual stress ratio cr 

(r /y), the stiffness reduction and distribution of normal stress throughout the cross-section were 

carefully assessed using a detailed fiber element model of a W8x31 with cr = 0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Residual stress pattern used in the study  

 

A computer program was developed to accommodate a specified number of rows and columns of 

fiber elements in each flange and the web. The angle and location of linear strain distribution were 

varied in specified increments from zero to specified maximums in order to capture the m and p 

conditions at 0.01 increments to at least three significant digits of accuracy. The final model used 

2,046 fiber elements over the cross-section (400 fiber elements in each flange and 1,246 fiber 

elements in the web). This level of discretization was found to be necessary to develop the smooth 

m-p-  surface plot in Fig. 2. Using the m and p results with increments of 0.01, a total of 7,590 

data points were used to produce the 3D surface plot (m and p combinations of   = 0 outside the 

boundary were excluded). A triangular shaped plateau of   = 1 is observed, and the loss of stiffness 

to   = 0 varies dramatically depending upon the magnitudes of both m and p. For the lower values 

of p between 0 and approximately 0.2, the loss of stiffness is more gradual for a given increment 

of m beyond the edge of the plateau. With the same increment of m for p between 0.2 and 0.7, the 
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loss of stiffness is more rapid immediately adjacent the ridge of the plateau.  For the higher values 

of p between 0.7 and 1, the surface plot takes on a very different shape with a smooth, distinct fold 

at values of m between 0 and approximately 0.1. For m = 0 and p > 0.7 the shape of the curve is 

convex, and for a given increment of p there is a rapid decrease in stiffness to   = 0.  

Figure 2: m-p- surface plot for minor axis bending of a W8x31 with cr = 0.3 

 

3. Stress State Conditions Around the Perimeter of the Surface Plot 
As depicted in Fig. 3, there are four unique conditions around the perimeter of the surface plot. 

The next section will discuss the stress states for each of the four conditions, and equations will be 

given to determine the extent of yielding of the cross-section and the corresponding stiffness 

reduction. 

Figure 3: Four unique conditions around the perimeter of the m-p- surface plot 
 

3.1 Yellow line in Fig. 3 (m and p conditions at the limit of  = 1) 

The equation to determine the extent of  = 1 is found in the literature (Zubydan 2011) and is 

straight-forward to visualize as depicted in Fig. 4. The dashed blue lines represent the residual 
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stress distribution, and the shaded regions represent the compressive stresses (left) and tensile 

stresses (right) due to the minor axis bending moment and axial compression load. The left side of 

the diagram depicts the accumulation of three stresses: the bending moment compressive stress 

m, the axial compressive stress p, and the residual compressive stress r. The extent of   = 1 is 

determined when the conditions of m and p cause all three compressive stresses to sum to y. Zy is 

the minor axis plastic section modulus and Sy is the minor axis elastic section modulus. 

 
𝑍𝑦

𝑆𝑦
𝑚 + 𝑝 + 𝑐𝑟 = 1                                                             (1) 

 

Fig. 4 provides the stress states for two axial loads at which the extent of   = 1 is reached. For the 

conditions of p = 0.2 and 0.5, the compression yield is reached on the left side when m = 0.329 

and 0.132, respectively. For p = 0.5, compressive stresses occur over the full flange width bf. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Stress states in the flanges at the extent of  = 1 for p = 0.2 and 0.5     

 

3.2 Blue line in Fig. 3 (p = 0 and m conditions for 0 <  < 1) 

For a given of elasto-plastic moment Mep, the cross-section has a specific value of reduced flexural 

stiffness EIep. Recognizing that plane sections remain plane after bending, even after a portion of 

the cross-section has yielded, the curvature equation is given as  
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𝜙 =
𝑀𝑒𝑝

𝐸𝐼𝑒𝑝
=

𝑀𝑒𝑝

𝜏𝐸𝐼𝑦
                                                                  (2) 

 

The bending moment M1 is defined to be the moment that would exist if the section had not yielded 

and maintained its full stiffness EIy. With this condition of moment, the curvature is defined to be 

the same as the actual condition of moment Mep with reduced stiffness EIep. 

 

𝜙 =
𝑀1

𝐸𝐼𝑦
=

𝑀𝑒𝑝

𝐸𝐼𝑒𝑝
                                                                    (3) 

 

From Eqs. 2 and 3, the relationship for  in terms of the moments Mep and M1 is given as  

 

𝜏 =
𝑀𝑒𝑝

𝑀1
                                                                             (4) 

 

In Fig. 5, the dashed red line represents the stress distribution due to the moment M1, and its slope 

is given as 

 

𝑠1 =
𝜎𝑜

ℎ𝑜
=

𝑀1

𝐼𝑦
                                                                      (5) 

 

The moment M1 is evaluated using the stresses le and re in Fig. 5. The slopes of the two lines of 

the shaded regions are related to s1 by the residual stresses on the left and right sides of the 

centerline, and are given as 

𝑠𝐿 =
𝜎𝑜

ℎ𝑜
+

4𝜎𝑟

𝑏𝑓
                                                                     (6) 

 

𝑠𝑅 =
𝜎𝑜

ℎ𝑜
−

4𝜎𝑟

𝑏𝑓
                                                                     (7) 

 

Ignoring for the moment the effect of the web, the condition of pure bending (p = 0) is achieved 

when the areas of the two shaded regions are equal. The resulting bending moment is determined 

by considering both flanges and summing the moments of the two shaded regions acting over the 

flange thickness tf. When this calculated moment is equal to the actual Mep moment, the correct 

stress state has been determined and the stiffness reduction  can be evaluated.  

 

One would normally need to use an iterative procedure with o and ho to find the correct shaded 

areas that satisfy the conditions above; however, when excluding the effect of the web, the 

stiffness reduction can be determined directly using Eq. 8 for a given m and cr condition. 

 

𝜏 =
𝑚

4
3 [

8(1 + 𝑐𝑟)3

(6 + 2𝑐𝑟 − 3𝑚)2 − 𝑐𝑟]
                                                 (8) 
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Figure 5: Stresses in the flanges for p = 0 and m producing only compression yield  

 

The extent of yielding along the width of each flange hly can also be evaluated directly using 

 

ℎ𝑙𝑦 = 𝑏𝑓 [
3𝑚 + 2𝑐𝑟 − 2

4(1 + 𝑐𝑟)
]                                                       (9) 

 

The expression for  can be determined for the condition in which the web effect is included; 

however, it is no longer in closed form as in Eq. 8. An iterative approach is first needed to 

determine the value of o such that the Mep calculated in Eq. 10 is equal to the actual elasto-plastic 

moment to within a given tolerance. 

 

𝑀𝑒𝑝 =
𝑀𝑦

𝐵0
[2 + 𝐵0 + 𝑐𝑟(2 − 𝐵0) +

𝜎𝑜

𝜎𝑦

(2𝐵1 − 𝐵0𝐵2)]                      (10) 

 

Using the ratios  = Aw /Af  and o = tw /bf   

 

𝐵0 = 1 +
√

𝜆 + 2𝜎𝑦 (
1 + 𝑐𝑟

𝜎𝑜
)

𝜆 + 2
                                                   (11) 

 

𝐵1 =
𝜆(1 − 𝜆𝑜

2)

2 + 𝜆𝜆𝑜
2

                                                                 (12) 

 

𝐵2 =
−𝜆(1 + 2𝜆𝜆𝑜

2 + 3𝜆𝑜
2)

2 + 𝜆𝜆𝑜
2

                                                      (13) 
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The stiffness reduction is determined using the final value of o from the iterative procedure 

described above. 

  

𝜏 =
𝑚

𝑆𝑦

𝑍𝑦
[
𝐵0

2𝜎𝑜

2𝜎𝑦
(𝜆 + 2) − 2𝑐𝑟]

                                                  (14) 

 

The extent of yielding along the width of each flange hly is evaluated using 

 

ℎ𝑙𝑦 =
𝑏𝑓

𝐵0
                                                                       (15) 

 

As the bending moment increases, the tensile stresses on the right side exceed the yield stress as 

illustrated in Fig. 6.  Additional equations are needed to determine the stiffness reduction and the 

widths over which yielding occurs on the left and right sides of each flange (hly and hry). As before, 

the solution is first considered excluding the effect of the web. For this particular condition, the 

stiffness reduction can be determined directly using 

 

𝜏 =
𝑚

2
3√

1
3(1 − 𝑚) + 9𝑐𝑟

2(1 − 𝑚)2 + 4𝑐𝑟
2

                                  (16) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Stresses in the flanges for p = 0 and m producing compression and tension yield  
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The extent of yielding along the width of each flange hly and hry can be evaluated directly using  

 

ℎ𝑙𝑦 =
𝑏𝑓

2

[
 
 
 
 
 

1 −

1 +
1

√
1

3𝑐𝑟
2(1 − 𝑚)

+ 1

1.5𝑚
𝜏 + 2𝑐𝑟

]
 
 
 
 
 

                                            (17)  

 

ℎ𝑟𝑦 =
𝑏𝑓

2

[
 
 
 
 
 

1 −

1 −
1

√
1

3𝑐𝑟
2(1 − 𝑚)

+ 1

1.5𝑚
𝜏 − 2𝑐𝑟

]
 
 
 
 
 

                                            (18)  

 

The stiffness reduction can be evaluated for the condition in which the web effect is included; 

however, as before it is no longer in closed form and an iterative approach is needed to determine 

the correct o value for a given Mep condition.  

 

𝑀𝑒𝑝 = [𝑠1𝐵3 + 𝐵4(1.5𝜎𝑦 − 𝐵5 − 𝐵6)] 𝐼𝑦                                        (19) 

 

𝐵3 =
𝜆𝜆𝑜

2

2 + 𝜆𝜆𝑜
2
                                                                 (20) 

 

𝐵4 =
4

𝑏𝑓(2 + 𝜆𝜆𝑜
2)

                                                                 (21) 

 

𝐵5 =

𝜎𝑦 (1 − 𝑐𝑟 +
𝜎𝑜

𝜎𝑦
)
3

(
𝑠1𝑏𝑓

𝜎𝑦
− 4𝑐𝑟)

2                                                           (22) 

 

𝐵6 =

𝜎𝑦 (1 + 𝑐𝑟 −
𝜎𝑜

𝜎𝑦
)
3

(
𝑠1𝑏𝑓

𝜎𝑦
+ 4𝑐𝑟)

2                                                            (23) 

 

𝑠1 =

2𝜎𝑦
2 (𝑐𝑟 −

𝜎𝑜

𝜎𝑦
)

𝜎𝑜𝑏𝑓𝜆
± √4 [

𝜎𝑦
2 (𝑐𝑟 −

𝜎𝑜

𝜎𝑦
)

𝜎𝑜𝑏𝑓𝜆
]

2

− 𝐵7                                  (24) 
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𝐵7 =
8𝜎𝑦𝑐𝑟

𝜎𝑜𝑏𝑓
2𝜆

[𝜎𝑦
2 (1 + 𝑐𝑟

2 +
𝜎𝑜

2

𝜎𝑦
2
) − 2𝜎𝑜𝜎𝑦𝑐𝑟(1 + 𝜆)]                              (25) 

 

Once o is determined to within a given tolerance, the s1 value from Eq. 24 is used to determine  
in the following equation. 

 

𝜏 =
𝑀𝑒𝑝

𝑠1𝐼𝑦
                                                                     (26) 

 

The yield widths in each flange hly and hry are determined using the following relationships. 

 

ℎ𝑙𝑦 =
𝑏𝑓

2
−

1 + 𝑐𝑟 −
𝜎𝑜

𝜎𝑦

𝑠1

𝜎𝑦
+

4𝑐𝑟

𝑏𝑓

                                                        (27)  

 

ℎ𝑟𝑦 =
𝑏𝑓

2
−

1 − 𝑐𝑟 +
𝜎𝑜

𝜎𝑦

𝑠1

𝜎𝑦
−

4𝑐𝑟

𝑏𝑓

                                                          (28) 

 

Considering a W8x31 with cr = 0.3, the   results obtained from Eqns. 8 and 16 (web excluded) 

are compared with those from Eqns. 14 and 26 (web included). As indicated in Fig. 7, the  results 

are very similar across the full range of minor axis bending moments from the initial yield 

condition up to the plastic moment condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Comparison of m- results for Eqns. 8 & 16 (web excluded) and Eqns. 14 & 26 (web included) for p = 0 
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The results obtained from Eqns. 14 and 26 match the fiber element model results to at least three 

significant digits of accuracy; thus the blue line in Fig. 3 is essentially the same curve as the solid 

blue line in Fig. 7. 

 

3.3 Purple line in Fig. 3 (m = 0 and p conditions for 0 <  < 1) 

The equation to determine the stiffness reduction when m = 0 is found by considering the stress 

state depicted in Fig. 8. The compressive stress p' that satisfies the equilibrium condition for a 

given p and cr condition provides the necessary information to determine the extent of yielding 

over the length hy at the ends of the flanges and over the length 2hy at the center of the web. The 

length hy is determined using Eq. 29 where d = bf for yielding in the flanges and d = dw for yielding 

in the web. 

 

ℎ𝑦 =
𝑑

2
(1 − √

1 − 𝑝

𝑐𝑟
)                                                             (29) 

 

To determine the stiffness reduction for a given p and cr condition, the minor axis moment of 

inertia of the remaining cross-section that has not yielded is divided by the original minor axis 

moment of inertia Iy. 

  

𝜏 =
2 (

1 − 𝑝
𝑐𝑟

)
3/2

+ 𝜆𝜆𝑜
2 (

1 − 𝑝
𝑐𝑟

)
1/2

2 + 𝜆𝜆𝑜
2

                                                  (30) 

 

For W-Shapes in which o
2 is very small compared to 2, excluding the effect of the web provides 

a very close approximation (e.g, W8x31 o
2 = 7.4 x 10-4).  

 

𝜏 = (
1 − 𝑝

𝑐𝑟
)
3 2⁄

                                                                   (31) 

 

 

 

 

 

 

 

 

 

Figure 8: Stress state in the flanges for p = 0.75 and m = 0  
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Zubydan (2011) provides an empirical relationship of 4.88p2 – 11.84p + 6.9 that is within a 3% 

relative error of Eq. 30 for 0.7 < p < 0.93 and cr = 0.3. 

 

3.4 Red line in Fig. 3 (m and p conditions for  = 0) 

Two equations are needed to determine the m and p conditions when   = 0. One equation is needed 

when the plastic neutral axis is inside the web thickness, and the other is needed when it is outside 

the web thickness. The two closed-form equations are given in the book by Chen and Sohal (1995). 

When using the ratios  = Aw /Af , o = tw /bf  and 1 = dw /tf , the same results are obtained with 

slightly fewer computations. 

  

         
𝑝2(2 + 𝜆)2

(2 + 𝜆𝜆𝑜)(2 + 𝜆1)
+ 𝑚 = 1                                                   (32) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥
2𝜆𝑜 + 𝜆

2 + 𝜆
              

[𝑝(2 + 𝜆) − 𝜆]2

4
+

(2 + 𝜆𝜆𝑜)𝑚

2
 = 1                                       (33) 

 

4. Elasto-Plastic Stress State Conditions 

As indicated in Table 1, there are seven elasto-plastic stress states between the initial yield 

condition and the fully plastic condition. The discussion of Figs. 5 and 6 explored stress states 1 

and 2 for the special case of p = 0. As the axial compression load is increased from zero, stress 

states 1 and 2 continue to exist until yielding occurs at the center of the web to produce stress states 

3 and 4. When the axial compression load is increased even further, the entire web yields in 

compression to produce stress states 5 and 6. The discussion of Fig. 8 explored stress state 7 for 

the special case of m = 0. For a range of small moments, stress state 7 remains in effect and is 

observed to occur in the folded region of the surface plot adjacent to the purple line in Fig. 3. 
 

Table 1: Stress states with corresponding yield conditions in the flanges and web 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  C = Compression yield     T = Tension yield 

 

For axial load conditions of p = 0.2, 0.5 and 0.75, Fig. 9 illustrates the progression through the 

various stress states as m is increased from the initial yield condition up to the fully plastic 

condition. There is a particular order of progression through the stress states for each axial load 

condition, and whereas the progressions for p = 0.2 and 0.5 are similar, the stress state progressions 

for p = 0.75 are quite different.  
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Figure 9:  m- curves and stress state illustrations at points A through F for p = 0.2, 0.5 and 0.75 



13 

 

Fig. 9 is helpful with understanding how the stiffness reduction occurs as the minor axis moments 

are increased for a given axial load condition. For a given increment of m from the initial yield 

condition, the loss of stiffness occurs more rapidly as p is increased (points A through D). The loss 

of stiffness occurs most rapidly for all conditions of p when the flanges yield in both compression 

and tension (points D through F).   

In order to develop the analytical expressions for stress states 1 through 7, p' is introduced to 

account for the axial compression load. Fig. 10 illustrates the stresses in the flanges for the general 

stress state 2 condition when p > 0. Comparing the stresses in the flanges in Fig. 5 (with p = 0) 

with those in Fig. 10 for the same slope condition s1, it is noticed that additional compression yield 

occurs on the left side and the tension stresses are reduced on the right side. For a given moment 

and axial load that produces a particular stress state 2 condition, all the variables in Fig. 10 can be 

evaluated using the appropriate equations of equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10: Stresses in the flanges for p > 0 and m producing compression yield 

 

For stress states 3 and 4, compression yield occurs in the middle of the web as illustrated in Fig. 

11. The extent of yielding lyw can be determined for these two stress states using  

 

𝑙𝑦𝑤 =
𝑑𝑤

2
[1 +

𝜎𝑝
′ + 𝜎𝑜

𝑐𝑟𝜎𝑦
−

1

𝑐𝑟
]                                             (34) 

 

Unfortunately due to space limitations, the general analytical equations for stress states 1 through 

7 cannot be provided here because they are of length and form similar to Eqs. 10 through 15 and 

Eqs. 19 through 28. A full-length journal paper containing all the analytical equations is currently 

being finalized. The equations to determine the extent of yielding, and the distribution of stresses 

in the flanges and web, were found to be accurate to at least three significant digits of accuracy 
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when compared with the detailed fiber element model results over the full range of m-p- 

conditions in Fig. 3. The ability to determine these stresses over the cross-section of a W-Shape at 

any given m, p and cr condition leads to reduced stiffness equations that are no longer dependent 

upon numerical models or empirical relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Compression yield stress distribution in the web 

 

5. Comparative Example 

The El-Zanaty et al. portal frame (1980) has been used by several researchers as a comparative 

example because it is one of the most sensitive frames available to test the ability of their method 

to capture the effects of distributed plasticity on a frame that has little capacity to redistribute forces 

once yielding has initiated (King et al 1992; Attalla et al 1994; Ziemian et al 2002).   

 

5.1 Nonlinear regression model of the m-p- surface 

The data that were used to create Fig. 3 were also used to generate nonlinear regression equations 

for  in terms of both m and p. As indicated in Figs. 3 and 9, there is a distinct change in the shape 

of the surface plot when p > 0.7. Thus in order to best approximate the full range of values over 

the m-p- surface, the first regression equation was developed for 0 ≤ p < 0.7 and the second for 

0.7 ≤  p  ≤ 1.0. Since the extent of   = 1 is known with Eq. 1, and the m and p conditions for             

  = 0 are known with Eqs. 32 and 33, only the data for 0 <  < 1 were used to determine the 

regression equations. Based on the results from several trial nonlinear regression models, the one 

provided in Eq. 35 was found to provide the best r2 values. With the coefficients as provided in 

Table 2, r2 = 0.99 (n = 4,832) for 0 ≤ p < 0.7 and r2 = 0.98 (n = 1,042) for 0.7 ≤  p  ≤ 1.0. 

 

𝜏 = 𝑎0 + 𝑎1𝑚 + 𝑎2𝑚
2 + 𝑎3𝑚

4 + 𝑎4𝑚
6 + 𝑎5𝑚

8 + 𝑎6𝑝 + 𝑎7𝑝
2 

+𝑎8𝑝
4 + 𝑎9𝑝

6 + 𝑎10𝑝
8 + 𝑎11𝑚𝑝 + 𝑎12𝑚

2𝑝2 + 𝑎13𝑚
4𝑝4                           (35) 

 

5.2 Stiffness matrix used for modeling the distributed plasticity  

Since the bending moments usually vary along the length of the beam-column, the stiffness 

reduction over the member length must also be accounted for when yielding occurs. An easy and 

effective way of accomplishing this is to assume the tangent modulus varies linearly over the 

length of the element. In practice, the error introduced by this assumption is reduced by using 

multiple elements along the length of the beam-column. The closed-form stiffness matrix  
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Table 2: Nonlinear regression model coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

developed by Ziemian and McGuire (2002) was chosen for this study because the  values from 

Eq. 35 (with coefficients from Table 2) can be used directly for the a and b terms in Eq. 36. The 

tangent modulus is defined to be Etm =  E. Since the normalized modulus is Etm /E, then a =  

using the m and p conditions at the start of the element, and b =   using the m and p conditions at 

the end of the element. 
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5.3 El-Zanaty frame modeled using MASTAN2  

The stiffness matrix given in Eq. 36 is already a part of the nonlinear material capabilities of 

MASTAN2 (2015). The computer program also contains incremental analysis routines for 

modeling the nonlinear geometric behavior. Eq. 35 with the coefficients in Table 2 for the W8x31 

with minor axis bending was used in the nonlinear material subroutine of MASTAN2. Eqs. 32 and 

33 were used as the boundaries for   = 0, and Eq. 1 was used as the limit on the extent of   = 1. 

  

The El-Zanaty portal frame as depicted in Fig. 12 was modeled using four elements for all three 

members. The conditions of p = 0.4 and 0.6 were investigated by first applying the full vertical 

load P, then the lateral load was applied in increments up its maximum value of H. The normalized 

lateral load deflection curves for each condition of p are given in Fig. 12. The maximum lateral 

load and deflection values for p = 0.4 and 0.6 were found to be (0.024,0.34) and (0.007,0.07), 

respectively. This compares very closely with: approximately (0.018,0.31) and (0.009,0.09) using 

the plastic zone method by King et al. (1992); approximately (0.020,0.32) and (0.006,0.05) using 

the proposed model by Attalla et al. (1994); and approximately (0.020,0.39) and (0.008,0.09) using 

the  expression proposed by Ziemian et al. (2002).  
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Figure 12: Load deflection curves for El-Zanaty’s portal frame with p = 0.4 and 0.6 

 

6. Conclusions and Future Research 

This research focused on developing a deeper understanding of the stiffness reduction that occurs 

in W-Shapes with an assumed ECCS residual stress pattern and yielding of the cross-section that 

occurs due to minor axis bending and axial compression. A detailed model of a W8x31with 2,046 

fiber elements and cr = 0.3 was used to develop a three-dimensional m-p- surface plot with 7,590 

data points. For the m and p conditions around the perimeter of the surface, analytical expressions 

for the extent of yielding and stiffness reduction were presented and found to match the fiber 

element model results to at least three significant digits of accuracy. For the condition of p = 0, the 

analytical expressions with the web excluded were found to be in closed-form and produced results 

that were in close agreement with those from equations that included the web but required an 

iterative procedure to obtain the results. For the condition of m = 0, the analytical expressions for 

the extent of yielding and stiffness reduction were found to be in closed-form even with the web 

included; however the simpler expression for  with the web excluded also provided a very close 

approximation. For the conditions of p = 0.2, 0.5 and 0.75, the stress distributions in the flanges 

and web illustrated the progression of seven elasto-plastic stress states as m was increased from 

the initial yield condition to the fully plastic condition. The results indicated that for a given 

increment of m from the initial yield condition, the loss of stiffness occurs more rapidly as p is 

increased, and the loss of stiffness occurs most rapidly for all conditions of p when the flanges 

yield in both compression and tension. The data used to produce the m-p- surface plot were also 

used to develop two nonlinear regression models for  of a W8x31with cr = 0.3. The regression 

equations for   were used as normalized tangent modulus expressions in MASTAN2 and were 

found to provide load deflection results that were in close agreement with published results for the 

El-Zanaty portal frame.  

 

Future research will include studying the effects of simplifying the m-p- surface plot for more 

practical use. Since the closed-form stiffness matrix in MASTAN2 assumes a linear variation in the 
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tangent modulus along the length of the element, developing an appropriate linearization of the 

3D surface would be a consistent approach. The m-p- surface plot clearly indicates two distinct 

regions of stiffness reduction: the first is between stress state 0 (at the extent of   = 1) and stress 

state 8; and the second is between stress state 7 and stress state 8. Based on the conclusions made 

concerning the rapid loss in stiffness at the onset of stress states 2, 4 and 6, the m-p- conditions 

at these points on the surface would potentially provide the best intermediate values for joining 

two linear expressions. If successful at producing reasonably accurate results with this approach, 

the methodology would then be extended to investigate bi-axial bending conditions.  
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