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Abstract 
A modeling protocol for shell finite element modeling of cold-formed steel Zee-sections is 
proposed via a parametric study on specimens previously tested in an experimental study on 
cold-formed steel Zee-section beam-columns under bi-axial moments and axial force. The 
experimental dataset consists of twenty-two short Zee-section beam-columns with nominal 178 
mm [7 in.] deep webs, 57 mm [2.25 in.] wide flanges 19.5 mm [0.766 in.] long lips at 48 deg. 
and a short member length of 305 mm [12 in.]. The numerical models include geometric and 
material nonlinear shell finite element collapse analyses in ABAQUS. The parameters include 
residual stresses and strains from roll-forming, geometrical dimensions, and geometric 
imperfection pattern and magnitude. The numerical results verify the experimentally observed 
high sensitivity of the Zee-sections to lip (local and/or distortional) buckling. The strength 
surface of the Zee-section beam-columns, generated numerically, exhibits regions where 
significantly more strength in cold-formed steel beam-columns is expected when compared to a 
linear interaction surface as adopted in the current design methods. The potential for further 
improvement of the current approach for predicting the strength of cold-formed steel beam-
columns is discussed. 
 
 
1. Introduction 
Beam-columns require greater attention and calculation in analysis and design due to the 
interaction of the applied axial load and the bending moments. Current cold-formed steel design 
codes such as the North American Specification of the American Iron and Steel Institute (AISI-
S100 2012), and the Australian/New Zealand Standard (AZ/NZS) for cold-formed steel 
structures (AS/NZS 2005) have adopted a linear interaction equation for combining the axial 
load and bending moments applied to beam-columns. In cold-formed steel design, the 
complexity in beam-columns is even more pronounced due to sensitivity of thin cross-section 
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elements (i.e. webs, flanges, and lips) to the stresses developed over the cross-section elements 
under the combined actions. Particularly, local and distortional buckling of the cross-sections is 
directly tied to the stress distribution on the cross-section. Current cold-formed steel beam-
column design does not determine stability under the actual combined actions, and ignores any 
nonlinear interaction in the strength between axial load and bending. 
 
This paper numerically investigates the structural strength and stability of cold-formed steel Zee-
section beam-columns under bi-axial moments and axial load. The modeling protocols required 
to predicted the strength of the Zee-section beam-columns are validated via a parametric study 
on the modeling parameters and comparison of the results against previously conducted 
experimental results. The modeling protocol can be used to complement the limited combination 
of experimentally investigated axial force and bi-axial bending moments and extend the test 
results to a complete strength surface to provide a more precise understanding of the structural 
behavior under combined actions. Moreover, the modeling protocol is the key to performing 
wider parametric analyses on different dimensions of Zee-sections under combined actions. The 
numerical results show the potential for improvements in the current specification approach, 
which utilizes a simple interaction equation for beam-column strength prediction.  
 
The presented results are a part of an ongoing comprehensive study developing a new explicit 
DSM prediction for cold-formed steel beam-columns (Torabian et al. 2013). This larger effort 
includes tests on 600S137-54 lipped channel sections at a length of 610 mm [24 in.] and 1219 
mm [48 in.] (Torabian et al. 2015) and also tests on cold-formed steel Zee sections (700Z225-60) 
at a length of 305 mm [12 in.] and 1219 mm [48 in.] (Torabian et al. 2016). In addition, 
complementary numerical analyses are also underway. The short length, 305mm [12 in.] 
specimens, considered here largely mobilize local modes of failures and thus this mode under 
combined actions is the primary focus of this paper. 
 
2. Experimental results 
The experimental dataset used to validate the numerical models includes twenty-two Zee-section 
beam-columns with nominal 178 mm [7 in.] deep web, 57 mm [2.25 in.] wide flanges 19.5 mm 
[0.766 in.] long lips at 48 deg. and 1.52 mm [60 mil.] plate thickness. Inspired by the AISI 
designation for lipped channels, the Zee-section was given the nomenclature “700Z225-60” and 
tested at lengths of 305 mm [12 in.] and 1219 mm [48 in.] (see Torabian et al. 2016 for complete 
details). The cross-section was tested to explore beam-column performance under axial 
compressive load and any combination of major- and minor-axis bending. However, the number 
of points in the strength surface was limited to twenty. It was found that the cross-sectional 
applied stress distribution is the most important parameter in modulating the failure mechanisms, 
namely local or distortional buckling. In addition, the member ductility is strongly correlated to 
the degree of eccentricity in the applied axial load on the member (Torabian et al. 2016).  
 
Table 1 summarizes the loading conditions and the peak load obtained in the experimental 
program. In this study, all tested specimens have been modeled and the names of the numerical 
models are consistent with the sequential number (first column in Table 1) of the specimens in 
the experiments. The loading conditions in Table 1 are in the normalized P-M1-M2 coordinate. 
M1 and M2 are bending moments in the principal axes that are being normalized to the 
corresponding yield moments M1y and M2y and denoted as x and y, respectively. The axial load is 
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also normalized to the yield load, Py, and denoted as z. Each loading point in this non-
dimensionalized cylindrical coordinate system is expressed using coordinates θMM and φPM, and 
β. θMM is an azimuth angle defined by tan-1(y/x), φPM is an elevation angle cos-1(z/β), and β is a 
radial length of   x2 + y2 + z2  (see Torabian et al 2015 for more explanations on the P-M1-M2 
coordinate). 

 
Table 1: Short beam-columns in the experimental program: L=305mm [12 in.]. (see Torabian et al. 2016) 

 
 Loading condition          

No.  

 

θMM  
Target angle  

Test 
specimen 
Z700-12- 

φPM  
Target angles 

 θMM-m            φPM-m 

Measured angles 
Pu 

Peak load 

(deg.)  (deg.) 

 

 (deg.) (deg.) kN 

1 

 

 
 

Axial load and 
Minor axis 
beding 

 1 25.0   277.1 24.0 109.8 

2  2 50.0   277.3 49.3 92.8 

3  3 81.0   277.0 81.3 37 

4  22 81.0   277.0 81.0 32.3 

5  21a 83   89.9 83.0 31.5 

6  4a 60   81.9 61.8 79.7 

7  5a 77   80.9 77.5 49.7 

8  6a 85   81.4 85.8 21.3 

9 

 

Axial load and 
Major axis/ 
Geometric 
Major axis 
bending 

 7 30.0   352.2 30.2 93.1 

10  8 55.0   1.3 55.1 68.2 

11  9 75.0   0.8 75.0 34.7 

12  19b 55.0   5.1 54.7 72.1 

13  20b 75.0   9.7 75.1 39.4 

14 

    

 

Axial load and 
Bi-axial bending 

 10 40.0   25.4 38.0 93.8 

15  11 75.0   30.9 75.1 42.8 

16  12 40.0   60.1 39.0 109.8 

17  13 75.0   59.8 74.9 55.0 

18  14 40.0   301.7 39.0 88.8 

19  15 75.0   300.5 74.7 43.1 

20  16 40.0   327.0 41.0 83.9 

21  17 75.0   330.4 75.0 34.3 

22  Column  18 0.0   77.8 3.4 131.8 
a Due to the loading rig limitations, these specimens were tested upside-down. 
b Geometric Major axis (θMM=8 deg.) 

 
3. Numerical modeling  
As shown in Table 1, the experimental program applies to only a limited number of P-M1-M2 
coordinate points on the strength interaction surface. To predict the entire strength interaction 
surface and also to understand the structural behavior of the beam-column more extensively, 
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geometric and material nonlinear shell finite element collapse analyses were performed in 
ABAQUS (Simulia, 2013). The models were validated using available experimental data to 
provide a viable modeling protocol. The modeling protocol includes material behavior, residual 
stresses and strains from cold-forming, geometric imperfections, cross-section dimensions, and 
boundary conditions. As described in the following sections, the imperfection pattern and 
magnitude are found to be the most important factors affecting the performance of the numerical 
models. To quantify these imperfection effects, a set of parametric analyses including different 
patterns and magnitudes of geometric imperfections were performed and the results were used to 
find the geometric imperfections to simulate short cold-formed steel Zee-section beam-columns 
most consistent with observations from testing. 

 
Figure 1: Finite element model: Geometric and boundary condition assumptions 

 
3.1 Modeling assumptions 
3.1.1 Model geometry and boundary conditions 
Fig. 1 provides the general modeling assumptions including geometry and boundary conditions 
of the numerical model. Test specimens consisted of Zee-sections welded to 0.75 in. thick end 
plates. The endplates connected to the testing rig provided warping fixed restraints for the 
specimens. The end nodes of the specimen are constrained via an MPC-Beam constraint to the 
reference points placed at the location of swivel joints in the testing. The MPC-Beam constrains 
translations and rotational degrees of freedom (dofs) of all connected nodes to the reference 
node. The top reference node was restrained for all translations and torsional (rotations about 
longitudinal axis) dofs and the node is free to rotate about the other axes of rotation to mimic the 
pin boundary condition in the tests. The bottom reference node was also restrained against 
translational movements, other than the longitudinal direction. The reference points were placed 
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at the desired eccentricity consistent with the eccentricities measured in the experimental 
program after placing the specimen. The length of the rigid link between the reference point and 
the end of the specimen was 159 mm [6.25 inches] in the longitudinal direction. Axial force or 
displacement (based on the solver but typically force in this study) was applied at the bottom 
reference point in the longitudinal direction. 
 
Both nominal and measured geometric dimensions have been considered for numerical analyses 
herein. The nominal dimensions of the Zee-section specimens are industry tabled values 
(BlueScope Buildings, 2010), as explained in Section 2. The realized cross-section dimensions of 
the test specimens such as depth (H), flange width (B), lip length (d) and the corner angles and 
radii were measured manually before testing. Three equally spaced longitudinal measurements 
were made for each specimen and the average dimensions of all specimens were implemented in 
the numerical models (see Torabian et al. (2016) for more details).  
 
The ABAQUS shell element, S9R5, was utilized in the numerical models. This element has been 
shown to be more economical than other alternatives: S4, S4R and S8R5 (Schafer et. al. 2010). 
Based on a mesh density study shown in Table 2, an efficient mesh density including 10 
elements in the web, 2 elements in the flange and the lip, 4 elements in the corner and 20 
elements along the length were selected for the shell model (see Fig. 1). 
 

Table 2: Mesh density studies on 12-inch long specimens subjected to axial compression 

Mesh 
Number of elements  CPU Time 

(sec.) 
P!"#
P!

 
Web Flange Lip Corner Longitudinal 

Fine 30 8 5 16 120 1671 0.32388 
Medium 1 10 2 2 4 40 132 0.32468 
Medium 2 10 2 2 4 20 68 0.32456 

Coarse 2 1 1 2 20 44 0.33308 
 

 
Figure 2: Engineering and true stess-strain curves for 12 coupons taken from Zee-section specimens  

 
3.1.2 Material properties and residual stress and strain 
The material properties are primarily based on the tensile testing results of 12 coupons taken 
from Zee-section specimens in the experimetal program and converted to true stress-true strain. 
The plastic part of true stress-true strain curve shown in Fig. 2 was used to define material 
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properties in ABAQUS.  The elastic Young’s modulus, the yield stress and the Poisson’s ratio 
were 2.03×105 MPa [29500 ksi], 550 MPa [80 ksi], and 0.3, respectively. The von Mises yield 
criteria, associated flow, and isotropic hardening were assumed for handling plasticity in the 
models. The distribution of the residual stresses and strains resulted from roll-forming were 
determined according to Moen et al. (2008), although more accurate distribution models could be 
adopted (see Amouzegar et al. (2015)). Only the residual stresses and effective plastic strains in 
the corner regions were considered and assigned to thirty-one through-thickness integration 
points in the finite element model.  
 
3.1.3 Geometric imperfections 
In geometric and material nonlinear shell finite element collapse analyses, geometric 
imperfections are key to producing realistic strength predictions (see Foroughi et al. (2014) and 
Amouzegar et al. (2015)). Signs, combinations, and magnitudes of the geometric imperfection 
patterns are all important and finding the best ensemble requires measurements and sensitivity 
analyses. Fig. 3 summarizes different potential uniform imperfection patterns resulting from 
buckling modes consistent with axial compression. As shown, for the local and distortional 
buckling modes, the sign of the imperfection may imply inward or outward flange or web 
deformations. Also, different signs of global imperfections can impose different local demands 
of the cross-section elements. As shown in Table 3, a parametric study considering a full 
combination of imperfection modes and signs (totally 8 cases) was performed to find the “best” 
imperfection pattern for modeling the Zee-sections. The imperfection cases are combined with 
two other conditions: with and without residual stresses and strains. Table 3 provides all studied 
combinations of the imperfection modes and signs along with the two roll-forming effect 
conditions. 

 
Figure 3: Typical buckling modes of Zee-sections in pure compression 
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Table 3: Combination of the imperfection patterns 

Case 
No. Designation 

Imperfection mode  Residual stress 
and strain Global, G1-G2-G3  Distortional, D  Local, L  

(+) (–)  (+) (–)  (+) (–)  With Without 
1 PGNDNL_Na ✕    ✕   ✕   ✕ 
2 PGNDPL_N ✕    ✕  ✕    ✕ 
3 PGPDNL_N ✕   ✕    ✕   ✕ 
4 PGPDPL_N ✕   ✕   ✕    ✕ 
5 NGNDNL_N  ✕   ✕   ✕   ✕ 
6 NGNDPL_N  ✕   ✕  ✕    ✕ 
7 NGPDNL_N  ✕  ✕    ✕   ✕ 
8 NGPDPL_N  ✕  ✕   ✕    ✕ 
9 PGNDNL_Ra ✕    ✕   ✕  ✕  

10 PGNDPL_R ✕    ✕  ✕   ✕  
11 PGPDNL_R ✕   ✕    ✕  ✕  
12 PGPDPL_R ✕   ✕   ✕   ✕  
13 NGNDNL_R  ✕   ✕   ✕  ✕  
14 NGNDPL_R  ✕   ✕  ✕   ✕  
15 NGPDNL_R  ✕  ✕    ✕  ✕  
16 NGPDPL_R  ✕  ✕   ✕   ✕  

a P: Positive; N: Negative; _N: without residual stress and strains; _R: with residual stress and strain. 
 

Table 4: Imperfection magnitude of different imperfection  

Data set Imperfection 
magnitude  

Type I 
(Local) 

L 
  

Type II 
(Distortional) 

D a 
 Bow 

G1 
Camber 

G2 
Twist 

G3 

   δ1   δ2L δ2R  δG1 δG2 θG3 
   (mm)   (mm) (mm)  (mm) (mm) (deg) 

Zee-Sectionc Zhao et al. 
(2015) 

25%ileb 0.826   2.228 3.226  0.19 0.57 1.6 
50%ile 0.909   2.794 4.242  0.25 0.65 1.8 
75%ile 1.034   3.124 5.182  0.32 0.90 1.9 
95%ile 1.88   3.429 9.703  0.69 1.64 2.2 
99%ile 1.918   4.318 14.021  0.73 1.74 2.2 
Mean 1.046   2.725 5.123  0.30 0.82 1.7 

St. dev. 0.358   0.762 2.72  0.15 0.35 0.3 

Lipped channeld 
Zeinoddini 
and Schafer 

(2012) 

25%ile 0.259   0.655 0.655  0.14 0.09 0.11 
50%ile 0.472   1.143 1.143  0.10 0.05 0.07 
75%ile 0.823   1.737 1.737  0.06 0.05 0.06 
95%ile 1.554   4.663 4.663  0.10 0.08 0.09 
99%ile 5.898   6.797 6.797  0.18 0.11 0.15 

Mean 0.716   1.570 1.570  0.36 0.21 0.26 
St. dev. 0.945   1.478 1.478  0.40 0.25 0.29 

a Maximum of δ2L and δ2R has been used in the numerical analyses. 
b Probability of exceedance (CDF values) 
c This dataset only includes measurements on the Zee-sections studied in the experiments. 
d Lipped channel dataset is across a large and broad set of Cee-sections 
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The magnitude of imperfections is a cross-section dependent quantity and actual measurements 
are required to determine its statistics. Zeinoddini and Schafer (2012) have studied the 
imperfection of lipped channel cross-section; and Zhao et al. (2015) have recently measured the 
imperfection of Zee-sections. Table 4 tabulates simple imperfection magnitudes corresponding to 
different probability of exceedance (CDF values) for simplified approximations of typical 
buckling shapes. These imperfection magnitudes were used in this study to validate the finite 
element model protocol (see Tables 5, and 6 for more details).  
 
Table 5: Test-to-predicted ratios (Ptest/PFEM) for different imperfection patterns and measured geometric dimensions 

of the short specimens (L= 305mm [12 in.]) 
Imperfection magnitude from Zhao et al (2015) for 50%ile 

No. 
 

Without residual stress and strain  With residual stress and strain  
 

1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 
1 

 

0.75 0.83 0.79 0.88 1.03 0.97 0.94 0.89  0.76 0.84 0.79 0.88 1.03 0.97 0.94 0.90 
2 

 

0.87 0.91 0.92 0.98 1.04 1.01 0.99 0.98  0.87 0.92 0.93 0.98 1.03 1.00 0.99 0.98 
3 

 

1.08 0.93 1.04 1.03 1.00 1.01 1.06 1.06  0.93 0.92 1.02 1.03 1.00 1.00 1.06 1.06 
4 

 

0.75 0.75 0.85 0.84 0.82 0.82 0.87 0.87  0.75 0.75 0.84 0.84 0.82 0.82 0.87 0.87 
5 

 

0.93 0.94 1.07 1.05 1.00 1.00 1.11 1.08  0.92 0.93 1.06 1.04 0.99 1.00 1.09 1.07 
6 

 

0.89 0.89 0.96 0.93 1.03 1.01 1.05 0.97  0.88 0.89 0.94 1.00 1.02 1.00 1.04 0.97 
7 

 

0.92 0.92 1.00 1.00 1.01 1.00 1.01 0.99  0.92 0.92 1.00 1.00 1.00 0.99 1.00 0.99 
8 

 

0.97 0.94 1.05 1.03 0.97 0.97 1.01 0.99  0.98 0.95 1.05 1.03 0.96 0.96 1.01 1.00 
9 

 

0.81 0.86 0.81 0.82 0.91 0.82 0.84 0.78  0.81 0.84 0.81 0.81 0.91 0.83 0.84 0.79 
10 

 

0.91 0.89 0.86 1.02 1.11 0.99 0.97 0.98  0.93 0.89 0.87 1.02 1.11 0.99 0.97 0.98 
11 

 

0.73 0.71 0.75 0.86 0.88 0.82 0.76 0.73  0.73 0.72 0.75 0.86 0.87 0.81 0.76 0.73 
12 

 

0.86 0.90 0.89 0.86 0.89 0.82 0.84 0.81  0.89 0.90 0.89 0.88 0.89 0.82 0.85 0.81 
13 

 

0.84 0.86 0.85 0.89 0.93 0.82 0.86 0.81  0.84 0.86 0.85 0.89 0.93 0.83 0.86 0.81 
14 

 

0.94 1.02 0.95 0.96 0.91 0.89 0.89 0.86  0.93 1.01 0.94 0.96 0.91 0.88 0.88 0.86 
15 

 

0.94 1.01 0.94 0.95 0.91 0.93 0.90 0.89  0.93 0.99 0.93 0.94 0.90 0.92 0.90 0.89 
16 

 

1.09 1.21 1.10 1.16 1.01 1.04 0.98 0.99  1.08 1.19 1.10 1.14 1.00 1.03 0.97 0.99 
17 

 

1.12 1.21 1.07 1.11 1.05 1.13 1.01 1.05  1.10 1.19 1.06 1.09 1.04 1.11 1.00 1.09 
18 

 

0.83 0.83 0.84 0.92 1.02 0.95 0.90 0.93  0.83 0.83 0.83 0.92 1.04 0.95 0.91 0.93 
19 

 

0.96 0.92 0.92 0.96 1.08 1.05 0.98 1.01  0.95 0.92 0.92 0.96 1.08 1.04 0.97 1.01 
20 

 

0.89 0.86 0.84 0.98 1.09 0.98 0.94 0.95  0.89 0.87 0.85 0.98 1.10 0.99 0.94 0.96 
21 

 

0.77 0.73 0.76 0.80 0.89 0.83 0.82 0.76  0.77 0.73 0.76 0.80 0.88 0.82 0.82 0.76 
22 

 

0.96 1.04 0.98 1.08 1.04 0.91 0.97 0.88  0.96 1.04 0.98 1.07 1.04 0.91 0.95 0.88 
Avg. 0.90 0.92 0.92 0.96 0.98 0.94 0.94 0.92  0.89 0.91 0.92 0.96 0.98 0.94 0.94 0.92 

St. dev. 0.11 0.13 0.11 0.10 0.08 0.09 0.09 0.10  0.10 0.12 0.10 0.09 0.08 0.09 0.08 0.10 
Max. 1.12 1.21 1.10 1.16 1.11 1.13 1.11 1.08  1.10 1.19 1.10 1.14 1.11 1.11 1.09 1.09 
Min. 0.73 0.71 0.75 0.80 0.82 0.82 0.76 0.73  0.73 0.72 0.75 0.80 0.82 0.81 0.76 0.73 
 
 
3.2 Parametric studies and validation 
The parametric study conducted here includes three imperfection magnitudes from Zhao et al. 
(2015) and four imperfection magnitudes from Zeinoddini and Schafer (2012). Each 
imperfection magnitude has been used to predict the strength of the Zee-section beam-columns 
for 8 different imperfection patterns and two different cases for considering roll-forming effects. 
The arc-length method (Riks) was selected to perform the 2464 total nonlinear shell finite 
element collapse analyses in ABAQUS, as summarized in Table 4 for imperfection magnitude of 
the 50%ile from Zhao et al. (2015), and also summarized in Table 5 for all imperfection 
magnitudes for two cases of imperfection patterns 13: NGNDNL_R, and 16: NGPDPL_R (see 
Table 3 for imperfection pattern nomenclature). Moreover, for imperfection patterns 13 and 16 
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and the imperfection magnitude from Zhao et al. (2015) for 50%ile, the test-to-predicted ratios 
have been provided for nominal geometric dimension in Table 6 to study the effect of geometric 
dimensions on the numerical predictions. 
 
Based on the numerical results imperfection pattern 13: NGNDNL_R, which is negative global, 
distortional and local buckling shape (see Fig. 3) with included residual stresses and strains, 
provides the most consistent strength predictions (see Table 5 as an example). Comparing two 
different imperfection magnitudes shows that the Zhao et al. (2015) (50%ile), which are based on 
the studied Zee-sections, results in the closest prediction of strength in the numerical analyses, as 
shown in Table 6.  
 
 
Table 6: A summary of parametric study results (Ptest/PFEM) on the imperfection magnitude and imperfection patterns 

of Zee-section test specimens 
Data Set 

 
Geometric 
dimensions 

Imperfection 
pattern 

Imperfection 
Magnitude 

 Test-to-predicted ratio (Ptest/PFEM) 
 Mean St. dev. Max. Min 

Zee-section 
Length=305
mm [12 in.] 

 

Measured 
 

13 
NGNDNL_R 

 

Zeinoddini and 
Schafer (2012) 

99%ile 1.09 0.10 1.29 0.88 
95%ile 0.96 0.08 1.09 0.81 
75%ile 0.93 0.08 1.05 0.79 
50%ile 0.92 0.08 1.03 0.77 

Zhao et al. (2015) 
95%ile 1.08 0.10 1.27 0.89 
75%ile 1.00 0.08 1.15 0.84 
50%ile 0.98 0.08 1.11 0.82 

Nominal 13 Zhao et al. (2015) 50%ile 1.11 0.07 1.26 1.01 

Zee-section 
Length=305
mm [12 in.] 

 

Measured 
 

16 
NGPDPL_R 

 

Zeinoddini and 
Schafer (2012) 

99%ile 1.04 0.09 1.19 0.90 
95%ile 0.94 0.09 1.06 0.78 
75%ile 0.92 0.10 1.13 0.72 
50%ile 0.91 0.11 1.14 0.70 

Zhao et al. (2015) 

95%ile 0.91 0.09 1.06 0.75 
75%ile 0.91 0.10 1.07 0.73 

50%ile 0.92 0.10 1.09 0.73 

Nominal 16 Zhao et al. (2015) 50%ile 1.17 0.12 1.45 1.00 

 
 
3.3 Failure modes  
The observed failure modes in the numerical analyses and the recorded deformed shape of the 
tested specimens have been compared in Tables 7 for different loading conditions. As shown in 
the Table, the selected modeling protocol provided consistent simulated buckling shapes in the 
FEM analyses. Notably, the numerical results showed more symmetric buckling shapes, while 
the physical specimens often showed unsymmetrical modes of failure due to the actual 
imperfection patterns and irregularity in the specimens. 
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Table 7: Test results of the short specimens (L=305mm [12 in.]): specimens at maximum strength and the cross-
sectional deformation at mid-height. Numerical results based on the imperfection pattern 13: NGNDNL_R, 

imperfection magnitude from Zhao et al. (2015) for 50%ile, and measured geometric dimensions. 
 Axial force + Minor axis bending  Axial force + Major axis bending  Axial force + Bi-axial bending 

Spec. No.a (2) (6)  (10) (13)  (16) (20) 

Te
st

 S
pe

ci
m

en
 

at
 th

e 
fa

ilu
re

 lo
ad

 

  

 

  

 

  
Pmax (kN) 92.8 79.7  68.2 39.4  109.8 83.9 

Cross-sectionb 
deformation 

  
 

  
 

  

N
um

er
ic

al
 m

od
el

s 
at

 th
e 

fa
ilu

re
 lo

ad
 

  

 

  

 

  
PFEM (kN) 89.7 78.3  61.3 40.3  109.6 76.4 

a For specimen numbers and more details see Table 1. 
b

 blue: undeformed shape, cyan: 0.25Pmax, green: 0.5Pmax, yellow: 0.75Pmax, red: Pmax, orange: 0.85Pmax-post peak. 
 

 

 
Figure 4: Strength surfaces in P-M1-M2 space: Test results (lines and circles), linear interaction surface per AISI-

S100-12 (red surface), FEM strength surface for the short Zee-section: 700Z225-60 (gray surface). 
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Figure 1:  Strength surfaces in P-M1-M2 space: Test results (lines and circles), linear interaction 
surface per AISI-S100-16 (red surface), FEM strength surface for the stub Zee-section: 700Z 
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3.4 Strength interaction surface 
The modeling protocol developed in the previous sections was implemented to construct a 
strength surface for the short Zee-section beam-column: 700Z225-60, L= 305mm [12 in.] The 
surface is based on the results of 704 collapse analyses with different eccentricities. The 
eccentricities were associated with 10o step in azimuth angle θMM and 5o step in the elevation 
angle φPM.  
 
For comparison purposes, a linear interaction surface constructed based on the Direct Strength 
Method in AISI-S100-12 at the anchor points has been added to the strength interaction surface. 
As shown in the figure, the specification strength surface is completely inside the FEM strength 
surface (and the test results), thus showing that the specification provides conservative results for 
the entire P-M1-M2 space. The specification predictions around the compression load anchor 
point and major axis bending anchor point provided the best results, while the minor axis 
bending predictions where the (θMM =90o, 270o) show the most conservative prediction. 
 
4. Summary and Conclusions 
A series of material and geometric nonlinear collapse finite element analyses has been performed 
on a short Zee-section beam column (700Z225-60, L=305mm [12 in.]) using different 
imperfection patterns, imperfection magnitudes, residual stresses and strains, and geometric 
dimensions. The results are compared against the results of existing experiments on 21 short 
beam-columns to find an appropriate modeling protocol for numerical modeling of Zee-section 
beam-column. The selected modeling protocol consists of the following primary assumptions, 
 

• S9R5 shell elements are used, with transverse discretization of: 10 elements in the web, 2 
elements in the flange and the lip, and 4 elements in the corner. The element aspect ratio 
is kept close to one throughout the mesh.  

• The von Mises yield criteria, associated flow, and isotropic hardening with a σ−ε curve 
based on direct experimental measurement were assumed for modeling plasticity in the 
numerical models. 

• Roll-forming effects (residual stresses and strains) are considered for the corners of the 
cross-section based on the method set forth by Moen et al. (2008), but are not shown to 
have a significant effect on the results. 

• Measured (as opposed to nominal) geometric dimensions are implemented in the 
modeling. 

• An imperfection pattern consisting of sympathetic local and distortional modes along 
with global modes (which were small in this study) was selected. The selected pattern 
causes inward distortional buckling for the flange under compression, which is consistent 
with the test results. 

• The imperfection magnitude was determined based on Zhao et al. (2015) measurements 
(50%ile), which were determined based on direct measurements of the Zee-sections. This 
imperfection magnitude is consistent with the large 95%ile imperfections on lipped 
channels from Zeinoddini and Schafer (2012). 
 

After using the modeling protocol to construct the strength surface of the tested specimen, it was 
found that the current AISI-S100-12 specification predictions for the beam-column strength of 
this section (using DSM method for anchor points and interaction equations) are quite 
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conservative. The most conservative results were found to be under axial load and minor axis 
bending. The reserved capacity between the strength surfaces constructed by the AISI 
specification and the numerical interaction surface show the potential for improving the current 
specification methods for beam-column design. It should be noted that a new Direct Strength 
Method for beam-columns that directly incorporates stability under the actual applied P-M1-M2 
action and inelastic reserve in bending is underway and future improvements are desired. 
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