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Abstract 
This paper presents and discusses the available results of an ongoing investigation concerning the use of 
Generalized Beam Theory (GBT) to analyze the local, distortional and global buckling behavior of 
thin-walled steel frames with semi-rigid joints. Initially, an overview of the concepts and procedures 
involved in performing a GBT frame buckling analysis is provided, paying particular attention to the 
aspects related to ensuring displacement compatibility at the frame joints (between the end cross-sections 
of non-aligned members). Next, in a first attempt to simulate a frame joint semi-rigidity, linear spring 
elements, characterized by their stiffness values and relating the appropriate generalized displacements of 
the converging member end cross-sections, are incorporated into the buckling analysis. Finally, in order to 
illustrate the application and assess the merits of the above approach to modeling semi-rigid joints, 
numerical results concerning the buckling behavior of simple L-shaped and portal plane frames are 
presented and discussed. The frames analyzed (i) are formed by plain and lipped I-section members, (ii) 
are acted by loadings causing axial compression and in-plane (major-axis) bending, and (iii) exhibit 
rotational springs at the joints, involving exclusively in-plane bending. The influence of the spring 
stiffness, which alters the member bending moment diagrams, on the frame buckling behavior (critical 
buckling load and mode nature) is investigated. For validation purposes, some GBT buckling results are 
compared with values obtained from ANSYS shell finite element analyses. 
 
1. Introduction 
The extensive application of thin-walled steel frames (e.g., cold-formed ones) in the construction 
industry stems mostly from their high structural efficiency (large strength-to-weight ratio), remarkable 
fabrication versatility and very easy/speedy erection. Such frames are often formed by members (columns, 
beams or beam-columns) with very slender open cross-sections, invariably exhibiting very low 
torsional stiffness and strong susceptibility to local, distortional and global deformations, which makes 
the grasp and assessment of all the aspects involved in their structural response a formidable task. It 
requires a combination of (i) carefully planned and executed experimental investigations, such as those 
reported by Dubina (2008) or Zhang & Rasmussen (2014), and (ii) rigorous numerical analyses, 
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performed by means of sophisticated shell and/or solid finite element models that often require using very 
elaborated computational resources (e.g., contact formulations intended to simulate realistically joints 
or complex support and bracing conditions). Naturally, financial costs severely restrict the performance of 
frame tests, mainly used to provide benchmarks for the validation and calibration of numerical models. 
On the other hand, the routine use of rigorous numerical analyses is still prohibitive for routine design 
applications, essentially because it consists of a highly time-consuming and computer-intensive approach 
(including data pre-processing and result post-processing) that also requires a strong command of 
nonlinear structural analysis concepts. This explains why virtually all the existing specifications for cold-
formed steel structures (e.g., AISI 2012) promote a “traditional” design approach. It combines (i) a frame 
global analysis, to obtain internal force and moment diagrams (possibly including frame second-order 
effects), with (ii) joint and member safety checks, where the latter include provisions associated with all 
possible cross-section (local/distortional) and member (global) instability phenomena.  
 
In view of what was mentioned in the previous paragraph, it is just natural for the technical-scientific 
community working with cold-formed steel structures to be longing for a computational tool that (i) is 
based on beam models and (ii) is able to analyze thin-walled frames. Naturally, such beam models must 
necessarily be “advanced”, in the sense that are required to capture phenomena associated with the 
occurrence of fairly arbitrary cross-section in-plan and out-of-plane deformations. Although beam models 
with those characteristics are available, the major difficulty concerning its use to analyze thin-walled 
frames resides in the appropriate treatment of joints  this is why the application of those models is 
practically always restricted to isolated members. Even in the context of frame global buckling analysis, 
which only requires handling the joint transmission of the torsion warping (e.g., Trahair 1993, Basaglia et 
al. 2008, 2012 , Shayan & Rasmussen, 2014), the treatment of joints is far from easy and has only been 
achieved for a few joint configurations and connected member cross-section shapes. When local 
and distortional deformation are also taken into account, the problem becomes even more complex, since 
compatibility between the warping and transverse (membrane and flexural) displacements the connected 
member end cross-sections must be ensured (Basaglia et al. 2009, Camotim et al. 2010). 
 
A very promising approach enabling the use of advanced beam finite elements to analyze the buckling 
and post-buckling behavior of thin-walled frames is Generalized Beam Theory (GBT), a beam theory 
incorporating genuine folded-plate concepts originally proposed by Schardt (1989), in the context of the 
buckling analysis of isolated members. GBT was recently applied to analyze the buckling and post-
buckling behavior of structural systems, namely frames (mostly) and trusses  concerning the buckling 
analysis, the works of Camotim et al. (2010), Basaglia et al. (2010), and Basaglia & Camotim (2015) 
should be mentioned. Of course, the above applications involved structural systems built from members 
with only a few cross-section shapes and exhibiting specific joint configurations  those for which 
kinematic models are available. The establishment of a methodology for the development of such models 
in the context of (more or less) arbitrary cross-section shapes and joint configurations is an indispensable 
step before the GBT approach to analyze the buckling behavior of thin-walled structural systems 
can become a viable alternative for the wide and routine use by cold-formed steel designers. 
 
It is still worth mentioning that an alternative approach to analyze thin-walled frames (buckling and post-
buckling behavior) is been pursued at the University of Sydney by Rasmussen and his co-workers (Zhang 
et al. 2015a,b, Rasmussen et al. 2016). In essence, it consists of performing global frame analyses that 
take into account, indirectly, the local and/or distortional buckling effects through the “weakening” of the 
member material behavior. Obviously, the difficulties associated with the appropriate treatment of joints 
are the same faced by the researchers using GBT. 
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Up to now, GBT beam finite elements have already been shown to provide accurate and structurally 
illumination buckling solutions for plane and space thin-walled steel frames exhibiting a few combinations 
of joint configuration and connected member cross-section shape, and fairly general loading and support 
conditions (Camotim et al. 2010, Basaglia & Camotim 2010, 2015). However, all the structural systems 
analyzed had either rigid (frames) or pinned (trusses) joints. In the first case, it is assumes that the joints 
possess enough stiffness to allow for frame pre-buckling and buckling analyses based on full continuity 
(transmission) of internal forces and moments, namely the bending moments (Mj), as illustrated in Fig. 
1(a). In the case of pinned joints, on the other hand, the performance of GBT buckling analyses seems to 
be straightforward, as shown by Basaglia & Camotim (2011, 2015) for steel trusses. The pinned member 
behaves as simply supported (joint with null bending stiffness), i.e., independently from the remaining 
connected member(s), as illustrated in Fig. 1(c), showing a pinned joint connecting a beam to a continuous 
column. However, it is well known that the vast majority of steel structural system joints exhibit a finite 
(intermediate) stiffness, associated with the so-called semi-rigid joint behavior, depicted in Fig. 1(b). To 
the authors’ best knowledge, GBT has never been employed to analyze the buckling behavior of frames 
with semi-rigid joints and, therefore, the objective of this work is to provide a first contribution towards 
its extension to handle this type of frames. At this stage, only simple plane frames are considered and the 
joint semi-rigid behavior, modeled by means of elastic springs, is restricted to in-plane bending. 
 

 
 (a) (b) (c) 

Figure 1: Behavior and (linear elastic) modeling of (a) rigid, (b) semi-rigid, and (c) pinned beam-to-column joints. 
 
The paper presents and discusses the available results of an ongoing investigation aimed at applying 
GBT to assess the local, distortional and global buckling behavior of thin-walled steel frames with semi-
rigid joints. These results concern simple L-shaped and portal plane frames formed by members with 
plain or lipped I cross-sections. As mentioned above, the joint semi-rigidity involves exclusively in-plane 
bending  major-axis bending in this case. In order to illustrate the capabilities of the GBT-based 
analyses, the frame geometries and loadings are selected to ensure the occurrence of critical local, 
distortional and global buckling. For validation purposes, most GBT buckling results are compared with 
values obtained from rigorous ANSYS (SAS 2009) shell finite element analyses. 
 
2. Generalized Beam Theory (GBT)  Overview and Joint Semi-Rigidity 
The main distinctive feature of GBT is the fact that the cross-section displacement field is expressed as 
a linear combination of structurally meaningful deformation modes (involving the whole cross-section). 
This feature makes it possible (i) to reduce considerably the number of degrees of freedom (DOFs) 
required to analyze a given structural system, (ii) to write the corresponding differential equilibrium 
equation system in a very convenient form (the coupling between the equations is minimized), and (iii) to 
obtain modal solutions providing in-depth insight on the mechanics of the problem under consideration. 
The performance of a GBT buckling analysis involves two main tasks: (i) a cross-section analysis, to 
identify the deformation modes and evaluate the associated modal mechanical properties, and (ii) a 
buckling analysis, consisting of the solution of a (modal) eigenvalue problem to obtain the buckling load 
parameters and associated mode shapes. Each of these two tasks will be addressed briefly next. 
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2.1 Cross-Section Analysis 
Consider a prismatic thin-walled member a supposedly arbitrary branched (n-walled) open cross-section, 
as depicted in Fig. 2, which displays also the adopted global (X-Y-Z) and local/wall (x-s-z) coordinate 
systems (X and x are parallel to the member axis)  the wall displacements (u-v-w) are also indicated. In 
order to obtain a displacement field representation compatible with the classical beam theories, the 
components u(x,s), v(x,s) and w(x,s) are expressed as 
 
,ݔሺݑ  ሻݏ ൌ ݇ݑ ሺݏሻ߶݇ ,ݔሺݒ            ሻݔሺݔ, ሻݏ ൌ ݇ݒ ሺݏሻ߶݇ ሺݔሻ          ݓሺݔ, ሻݏ ൌ ݇ݓ ሺݏሻ߶݇ ሺݔሻ (1) 
 
where (i) dxdx  ,)( , (ii) the summation convention applies to subscript k, (iii) functions uk(s), vk(s) 
and wk(s) are the cross-section deformation mode components, satisfying Vlasov’s null membrane shear 
strain and transverse extension hypotheses ),0(  M

ss
M
xs  and (iv) )()( Xx kk   are functions providing 

the deformation mode amplitude longitudinal variation (Silvestre & Camotim 2002, Dinis et al. 2006). 
 
In this work, the cross-section analyses are performed following the procedure originally developed by 
Dinis et al. (2006) for arbitrarily branched open cross-sections. Figs. 3(a)-(b) show the cross-section 
geometries considered in this work (lipped and plain I-sections sharing the same web and flanges) and 
the corresponding GBT discretizations adopted, which involve either (i) two intermediate nodes in the 
web and one intermediate node per flange and lip (lipped I-section) or (ii) three intermediate nodes 
in the web and one intermediate node per flange (plain I-section). These discretizations lead to 22 and 19 
deformation modes, respectively for the lipped and plain I-sections: 4 global, 4 distortional and either 14 
or 11 local modes. Figs. 3(c)-(d) modes. 
 

 
Figure 2: Arbitrary prismatic open-section thin-walled member and adopted coordinate axes and displacements 

 

 

 
Figure 3: Lipped and plain I-section (a) dimensions, (b) GBT discretizations and (c)-(d) 2-10 deformation mode shapes. 
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2.2 Member Analysis – Finite Element Formulation 
Once the deformation modes are known, the GBT differential equilibrium equation system defining the 
buckling eigenvalue problem to be solved can be established (Bebiano et al. 2007, Camotim et al. 2010), 
 

 
݇݅ܥ ݔݔݔݔ,݇߶ െ ݇݅ܦ ݔݔ,݇߶ ൅ ݇݅ܤ ߶݇ െ ߣ ቂ݆ܺ݅݇

ߪ ൫ܹ݆0߶݇ ݔ,൯ݔ,
െ ݆ܺ݇݅

߬ ൫ܹ݆ ݔ,
0 ߶݇ ൯,ݔ

൅ ܹ݆ ݔ,
0 ݆ܺ݅݇

߬ ݔ,݇߶ ቃ ൌ 0 
 (2) 

 ܹ݆0 ൌ ܥ݆ ݆ ߶݆ ݔݔ,
0

  
where (i) λ is the load parameter, (ii) Cik, Dik and Bik are cross-section modal mechanical properties 
obtained from the cross-section analysis (while Cik and Dik concern the warping displacements and 
torsional rotations, Bik stems from local deformations), (iii)

 


jikX  and 

jikX
 
are geometric stiffness 

matrices, whose are determined using the pre-buckling longitudinal normal stress resultants 0
jW (axial 

force and/or bending moments) and shear stresses due to the normal stress gradients caused by non-
uniform bending. The components of these matrices/tensors are given by 
 

 
݇݅ܤ ൌ

ܧ

12ሺ1 െ 2ሻݒ
න ݅ݓ3ݐ ݇ݓݏݏ, ݏ݀ݏݏ,
ݏ  (3) 

 
݇݅ܥ ൌ නܧ ൅ݏ݀݇ݑ݅ݑ	ݐ

ܧ

12ሺ1 െ 2ሻݒ
න ݏ݀݇ݓ݅ݓ3ݐ
ݏݏ  (4) 

 
݇݅ܦ ൌ

ܩ 3ݐ

3
න ݅ݓ ݇ݓݏ, ݏ݀ݏ,
ݏ

െ
ݒ ܧ 3ݐ

12ሺ1 െ 2ሻݒ
න ൫݅ݓ ݇ݓ ݏݏ, ൅ ݇ݓ ݅ݓ ݏ൯݀ݏݏ,
ݏ

 
 (5) 

 
݆ܺ ݅݇
ߪ ൌ

ݐ	ܧ

ܥ݆ ݆
න ݆ݑ 	ሺ݅ݒ ݇ݒ	 ൅ ݅ݓ ݇ݓ ሻ݀ݏ
ݏ         

݆ܺ݅݇
߬ ൌ

ܧ

ܥ݆ ݆
න ܨ݆ ሺݏሻ ݅ݓ ݏ, ݏ݀݇ݓ
ݏ

 
 (6) 

 
where (i) E, G and v are the material Young’s modulus, shear modulus and Poisson’s ratio, (ii) Fj (s) 
is either the cross-section first moment of (ii1) the area with respect to its major/minor axis (j=2 or 3) or 
(ii2) the sectorial area with respect to the shear centre (j=4). 
 
The solution of the buckling eigenvalue problem defined by for Eq. (2) is obtained by means of the GBT-
based beam finite element formulation first proposed by Silvestre & Camotim (2003), in the context of 
FRP pultruded composite columns, and later enhanced by Bebiano et al. (2007) to account for the 
influence of the shear stresses caused by non-uniform bending. The 2-node finite element has 2n DOFs, 
where n is the number of GBT deformation modes included in the analysis, and Hermite cubic 
polynomials yi (x) are employed to approximate the mode amplitude functions fk(x), 
 
 ߶݇ ሺݔሻ ൌ ߰1ሺݔሻ ݇ܳ1 ൅ ߰2ሺݔሻ ݇ܳ2 ൅ ߰3ሺݔሻ ݇ܳ3 ൅ ߰4ሺݔሻ ݇ܳ4  (7) 
 
where Qk1=fk,x(0), Qk2=fk(0), Qk3=fk,x(Le), Qk4=fk(Le), where Le is the finite element length. Making 
x=x/Le, the above polynomials read 
 
 ߰1ሺߦሻ ൌ ݁ܮ ሺߦ

3 െ 2ߦ2 ൅ ߦ ሻ (8) 

 ߰2ሺߦሻ ൌ 3ߦ2 െ 2ߦ3 ൅ 1  (9) 

 ߰3 ሺߦሻ ൌ ߦሺ݁ܮ
3 െ 2ߦ2 ሻ (10) 

 ߰4ሺߦሻ ൌ 2ߦ3 െ  (11) 3ߦ2
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Assuming that the longitudinal stress resultants concerning deformation modes 2 and 3 can be written as  
 
 ܹ݆0 ൌ 0ܹ݆

0 ൅ 1ܹ݆
0 ߦ ൅ 2ܹ݆

0 2ߦ ൅ 3ܹ݆
0 3ߦ  (12) 

 
which corresponds to an arbitrary cubic bending moment diagram (see Fig. 4), the finite element linear 
stiffness ([Ke]) and geometric stiffness ([Ge]) are of the form 
 

 
Figure 4: Cubic bending moment diagram decomposition (Bebiano et al. 2007) 
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where the superscripts indicate 4x4 sub-matrices associated with pairs of the deformation modes included 
in the analysis  such components read  
 
  

Le rpikLe xrxpikLe xxrxxpik
ik
pr dBdDdCK  ,,,,  (14) 

  
jki

l
prjik

l
rplj

l
prikjij

ik
pr XSXSWTXWG  00  (15) 

 
with 
 
  Le xrxp

ll
pr dT  ,,        )0( l  (16) 

  
Le rxp

l

e

l
pr d

L

l
S  ,

1        )1( l  (17) 

 
where the summation convention applies to subscript l (l=0, 1, 2, 3), indicating the order of the Wlj term. 
The expressions providing the l

prT and l
prS  components, which incorporate the longitudinal normal stress 

gradient and shear stress effects, are given explicitly by Bebiano et al. (2007). Finally, it is still 
worth mentioning that, unlike in isolated/individual member GBT buckling analysis, it is indispensable to 
include deformation mode 1 (axial extension) in GBT frame buckling analyses, in order to ensure joint 
displacement compatibility  this issue is addressed in next section. 
 
2.3 Member Analysis – Rigid and Semi-Rigid Frames 
Before addressing the methodology employed to ensure the displacement compatibility at the frame joints 
(between non-aligned members), it should be mentioned that the GBT (modal) DOFs are the nodal values 
and derivatives of the deformation mode amplitude functions, as illustrated in Fig. 5. Moreover, it is 
also worth noting the designations and meanings of the above DOFs: 
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(i) Axial extension mode (1) displacement and its primitive (no physical meaning): ua(d11) and Ûua(d12), 
for x=0, and ub(d13) and Ûub(d14), for x=Le. 

(ii) Major/minor-axis bending modes (2, 3) transverse displacements and rotations: va(d22+d32) and 
qa(d21+d31), for x=0, and vb(d24+d34) and qb(d23+d33), for x=Le. 

(iii) Torsion mode (4) rotation and its derivative (warping): ja(d42) and j′a(d41), for x=0, and jb(d44) and 
j′b(d43), for x=Le. 

(iv) Distortional mode (k=5, …, 5+nd –1) amplitudes and their derivatives: ma (dk2) and m′a (dk1), for x=0, 
and mb(dk4) and m′b(dk3), for x=Le – nd is the number of distortional modes included in the analysis. 

(v) Local mode (k=5+nd, …, n) amplitudes and their derivatives: ba(dk2) and b′a(dk1), for x=0, and bb(dk4) 
and b′b(dk3), for x=Le – n is the total number of deformation modes included in the analysis. 
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Figure 5: Modal DOF: nodal values and derivatives of the deformation mode amplitude functions 
 
When analyzing frames, a key feature of the methodology employed resides in the fact that member 
internal nodes and end nodes (joints) must dealt with separately  Figs. 6(a)-(c) illustrate this feature, for 
the particular case of a portal frame. While in the member internal nodes GBT modal DOFs are always 
considered (like in isolated members), in the joint nodes (nodes br and ar+1 in Fig. 6(b)) these same modal 
DOFs are “transformed” into generalized displacement of the point where the joint is deemed materialized, 
i.e., “conventional” nodal DOFs. This approach, which makes it much easier (straightforward) to ensure 
joint displacement compatibility, which was first proposed by Basaglia et al. (2008) and amounts to 
introducing a “joint element concept” – see Fig. 6(c). Essentially, this concept is based on the use of a 
transformation matrix [T], relating the GBT and nodal DOFs by means of the expressions 
 

 

൛̅ߦൟ ൌ ሾܶሿሼ݀ሽ ⇔ ቐ
ܩ̅ߦ
ܦ̅ߦ
ܮ̅ߦ

ቑൌ ቈ
ሾܴܻ൅ܼሿሾܴܺሿሾܮሿ66ݔ

ሾܫሿݍݔݍ
቉ ቐ
ሼ݀ܩሽ
ሼ݀ܦሽ
ሼ݀ܮሽ

ቑ 

 (18) 

 ൛ܩ̅ߦൟ ൌ ሼܷ തܺ ܷ തܻ ܷ തܼ Θ തܺ Θ തܻ Θ തܼ Θܺ
′ ሽܶ  (19) 

 ሼ݀ܩሽ ൌ ሼݑ ܻݒ ܼݒ ߮ܺ ܻߠ ܼߠ ߮′ሽܶ (20) 

 ൛ܦ̅ߦൟ ൌ ൛ߤ′ഥ݇ൌ5 ൌ5݇ߤ̅ … ഥ݇ൌ5൅݊݀െ1′ߤ ൌ5൅݊݀െ1ൟ݇ߤ̅
ܶ

 (21) 

 ሼ݀ܦሽ ൌ ሼ݇ߤൌ5
′ ൌ5݇ߤ … ൌ5൅݊݀െ1݇′ߤ ൌ5൅݊݀െ1ሽ݇ߤ

ܶ
 (22) 

 ൛ܮ̅ߦൟ ൌ ൛ߚ′ഥ ݇ൌ5൅݊݀ ൌ݊݇ߚ̅ … ഥ′ߚ ݇ൌ݊ ൌ݊ൟ݇ߚ̅
ܶ

 (23) 

 ሼ݀ܮሽ ൌ ൛݇ߚൌ5൅݊݀
′ ൌ݊݇ߚ … ൌ݊݇ߚ

′ ൌ݊ൟ݇ߚ
ܶ

 (24) 
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Figure 6: (a) Portal frame discretization into GBT-based beam finite elements, (b) zoomed view of the discretization 

adopted in a joint vicinity and (c) “joint element” concept 
 
where (i) G  is the sub-vector concerning the global mode nodal generalized displacements (referred 
to the axes X –Y – Z defined in Fig. 7(a)), (ii)  L  and  D

 
 are sub-vectors concerning the local and 

distortional generalized displacements, and (iii) {dG}, {dD} and {dL} contain the GBT degrees of 
freedom, (iv) matrices [RY+Z] and [RX], given by 
 

 
ሾܴ തܻ൅ തܼሿ ൌ ൤

ሾܴ തܻ൅ തܼሿ′
ሾܴ തܻ൅ തܼሿ′

൨
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  (29) 
 
describe the rotations associated with the global modes, and (v) [I] is the identity matrix with maximum 
dimension q=2m+1, where m is the number of local and distortional deformation modes included in the 
analysis. Moreover, [L] is a translation matrix relating the connected element generalized displacements 
(originally referred to the centroidal or shear centre longitudinal axes, i.e., passing through G and S  see 
Fig. 7(b)) to parallel reference axes passing through the point/node where the joint is deemed materialized 
(point O  in Fig. 7(b). At this point, it is worth mentioning that, since three-dimensional rotation matrices 
are generally not commutative, it is indispensable to keep the sequence of the operations in order to 
obtain correct results. According to the coordinate system adopted (see Fig. 7(a)), the transformations are 
performed in the following sequence: first about the member axis X (QX – see Fig. 7(b)), then about the 
global axis Z  ( Z  – see Fig. 7(a)) and, lastly, about the global axis Y

 
( Y  – see Fig. 7(b)). 
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Figure 7: (a) Joint element and member (global) coordinate axes, and (b) cross-section (local) coordinate axes and 

relative positions of points G, S and O  
 
After using the transformation matrix defined in Eq. (18), one is led to, in the most general case, 
7 global DOFs and q-1 DOFs associated with local and distortional modes, which must satisfy 
 

 
൛ܩ̅ߦൟܾݎ

ൌ ൤
ሾܹሿ77ݔ

ߎ
൨ ൛ܩ̅ߦൟܽݎ൅1  (30) 

 
where (i) subscripts b and a identify the connected member end cross-sections r and r+1 (see Fig. 6(b)), 
(ii) P are constraint conditions ensuring compatibility between wall warping and flexural displacements 
(iii) sub-matrix [W], defined by 
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 ൅1  (31)ݎܽ
 
is a diagonal matrix whose components (Wii) relate the generalized global displacements and rotations 
of each end cross-section. In particular, W77 (G ) is a constant relating the torsional rotation derivatives, 
i.e, quantifying the torsion warping transmission at the joint under consideration – its determination 
constitutes a non-trivial task, which is briefly in the next sub-section. Furthermore, it is worth noting that 
the constraint conditions P must be established for each particular combination of end cross-section 
shape and joint configuration (no generality is possible). For a joint connecting members with cross-
section discretizations involving i natural and j intermediate nodes, such conditions are cast in the form 
 
݆,݅ߎ  ൌ ሼΔሽܶሼ߶݇ሽ ൌ 0   (32) 
 
where the vector {D} components are either warping (uk (s)) or wall flexural (wk (s)) functions. Only the 
particular constraint conditions valid for joints connecting two orthogonal lipped I-section members 
are addressed in this work. For the joints connecting plain I-section members, the constraint conditions 
developed by Basaglia (2008) are employed in this work without any modifications. 
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Once all frame support and joint compatibility conditions are enforced, it becomes possible to obtain 
the frame linear ([ K̂]) and geometric ([Ĝ]) stiffness matrices, the last step required to establish the 
sought buckling eigenvalue problem  the “hat” identifies the stiffness matrices already incorporating the 
joint compatibility conditions. Both the above matrices are associated with “mixed” degrees of freedom: 
GBT modal and conventional nodal ones. Thus, since the compatibility matrix [Ω] satisfies the relation 
 
 ൛ߜመൟ ൌ ሾΩሿܶሼߜሽ  (33) 
 
where {ߜመ } is a “mixed” vector, combining generalized displacements and GBT degrees of freedom, the 
buckling eigenvalue problem to be solved can be readily obtained as 
 

 ൫ൣ K̂ ൧ ൅ ൣߣ Ĝ ൧൯ ൌ ሾΩሿܶሺሾܭሿ ൅  ሿሻሾΩሿ  (34)ܩሾߣ
 
Naturally, after solving the buckling eigenvalue problem, the nodal degrees of freedom are “transformed 
back” into GBT ones, thus obtaining a fully modal solution. 
 
2.3.1 Joint compatibility conditions – global modes and torsion warping transmission 
The compatibility between the connected member end cross-section generalized global displacements 
and rotations is enforced by means of a particular set of relations specifically established for a given joint 
configuration, i.e., the matrix diagonal components Wii appearing in Eq. (31). Their values depend on the 
characteristics of the joint, such as the presence of localized supports, stiffening plates, bolts or weld fillets. 
Particular attention must be devoted to the determination of the component W77 (constant Γ), which 
deals with the warping transmission associated with torsion. 
 
Although the quantification of the torsion warping transmission at arbitrary joints constitutes a major 
obstacle to the assessment of the global spatial behavior of thin-walled frames by means of beam finite 
elements, recent investigations have shed new light on this matter. In particular, Basaglia et al. (2008) 
proposed kinematical models to quantify the torsion warping transmission (i) in three joint configurations 
(diagonal-stiffened, box-stiffened and diagonal/box-stiffened) connecting two or more non-aligned plain 
channel and I-section members with web continuity and (ii) in unstiffened joints connecting two members 
whose flanges lie in the same plane (flange continuity). A bit later, the same authors (Basaglia et al. 2009) 
proposed similar models for lipped channel and I-section members  the latter is used in this work. An 
alternative approach was very recently followed by Shayan & Rasmussen (2014), who developed a joint 
model, intended to be used together with beam finite elements, that combines a sub-structuring technique 
with the inclusion of linear springs. Because this model incorporates 3D shell finite element modeling 
of some joint components, it provides a more accurate and general simulation of the joint behavior. 
 
Since this work deals exclusively with GBT buckling analysis, the approach adopted to handle the torsion 
warping transmission is the use of the kinematic models developed by Basaglia et al. (2009), which were 
numerically validated by means of shell finite element simulations. In particular, it was shown by these 
authors that the joints exhibiting flange continuity (see Fig. 8(a)) are associated with a complete and direct 
torsion warping transmission, which corresponds to inserting Γ=1 in Eq. (31). However, in unstiffened 
joints with web continuity (see Fig. 8(b)), it is commonly accepted (Sharman 1985, Morrell et al. 1996, 
Basaglia et al. 2009) that the torsion warping transmission is incomplete, because there is strain energy 
absorption through joint local/web deformation (wall transverse bending)  therefore, the value of Γ to be 
included in Eq. (31) is in the range 0≤<1. Indeed, in such joints full compatibility between the warping 
and in-plane displacements of the connected end cross-sections must be enforced, which precludes the a 
priori torsion warping transmission quantification  such quantification requires a compatibility analysis. 
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Figure 8: Joints connecting lipped I-section members with (a) web and (b) flange continuity  

 
In web continuity joints connecting two orthogonal members (see Fig. 6(a)), (i) the warping displacements 
of one end cross-section must be fully compatible with the in-plane (flexural) displacements of the other 
(i.e., there is a null torsion warping transmission) and (ii) the torsional rotation of one member causes a 
combination of local deformation, bending and torsion of the other member. This means that assessing 
the relation between the torsional rotation of one member end cross-section and the bending rotation of 
the other (e.g., the rotations 

AY  and 
BY  of members A and B, in Fig. 8(b)) is only possible by resorting 

to shell finite element analysis  Basaglia et al. (2009) proposed a set of constraint equations that can 
be used to obtain a fairly good quantification of this relation (they are addressed in Section 2.3.2). 
 
Following the approach of Basaglia et al. (2008), a direct complete relation between the generalized 
rotations and displacements caused by axial extension and bending is adopted in this work. However, 
particular attention is paid to the end cross-section DOFs concerning major-axis flexural rotation Z  (see 
Fig. 8(c)), i.e., those associated with the joint semi-rigidity considered. Indeed, in order to characterize the 
joint semi-rigidity adequately, by means of springs, the equation relating the major-axis flexural rotations 
has to be removed from Eq. (31), which amounts to treating them independent – this issue is addressed 
in Section 2.3.3. Thus, the end cross-section global displacements and rotations satisfy the conditions 
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൅1ݎܽ   (35) 
 
where it should be noted that (i) the torsion warping transmission is always null (web continuity joints 
connecting two orthogonal members) and (ii) components W44 and W55 are obtained from the specific 
constraint equations addressed in Section 2.3.2. 
 
2.3.2 Constraint conditions – web continuity 
Consider the portal frame depicted in Fig. 6(a), built from identical orthogonal lipped I-section members 
connected with web continuity (see Fig. 8(b)). The displacement/rotation compatibility conditions at the 
flanges, web and lips of the connected member end cross-sections correspond to the satisfaction of the 
constraint equations Π, generally defined in Eq. (32) and whose inclusion in the frame buckling analysis 
is addressed below:1 

                                                 
1 A more detailed account of the establishment of these constraint conditions can be found in the work of Basaglia et al. (2009). 
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(i) Flange compatibility. As shown in Fig. 9(a), point J identifies the assumed connection location 
(intersection of the two member centroidal/shear centre axes). Since the angle between the member 
centroidal axes () is non-null, it is necessary to consider additional axes (Q-Q), located at the 
intersection of the flanges (distance f from the end cross-sections  see Fig. 9(a)). The compatibility 
of the flange displacements/rotations is associated with imposing the equality between (i1) the 
transverse bending displacements of one member end cross-section and the warping displacements 
(due to torsion and/or distortion) of the other, and (i2) the transverse bending rotations of the two 
members. Therefore, it is necessary to impose twelve constraint equations ΠQ, concerning the points 
corresponding to the inner ( ܣܳ݅

′
 vs. ܳ݅ܤ

′
 and ݅ܳܣ

′ ′
 vs. ܳ݅ܤ

′′
) and outer (ܳ݁ܣ

′
 vs. ܳ݁ ܤ

′
 and ܳ݁ܣ

′′   vs. ܳ݁ܤ
′′ ) 

flange-lip intersections  note that only the former correspond to points of the GBT model (the latter 
are absent from this model). They read 

 

 

ܣ݌ܳߎ
ܫ ൌ sin ߙ ቎4ݑ൫ܳܣ݌൯߶4,ݔ ቀܣ݌ܳݔ ቁ ൅ ෍ ൯ܤ݌൫ܳ݇ݑ

5൅݊݀െ1

݇ൌ5

ݔ,݇߶ ቀܤ݌ܳݔ ቁ቏ െ෍݇ݓ൫ܳܤ݌൯

݊

݇ൌ5

߶݇ ቀܤ݌ܳݔ ቁ ൌ 0

  (36) 

 
ܤ݌ܳߎ
ܫܫ ൌ sin ߙ ቎4ݑ൫ܳܤ݌൯߶4,ݔ ቀܤ݌ܳݔቁ ൅ ෍ ൯ܤ݌൫ܳ݇ݑ

5൅݊݀െ1

݇ൌ5

ݔ,݇߶ ቀܤ݌ܳݔ ቁ቏ െ෍݇ݓ൫ܳܣ݌൯

݊

݇ൌ5

߶݇ ቀܣ݌ܳݔ ቁ ൌ 0

  (37) 

 
݌ܳߎ
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݊

݇ൌ5

൯݅ܳݔ൫ݔ,݇߶ െ෍݇ݓሺܳ݅ሻ
݊

݇ൌ5

൯݅ܳݔ൫ݔ,݇߶ ൌ 0
  (38) 

 
where (i1) subscript p is either i or e, (i2) Q stands for Q′ or Q′′ and, according to Fig. 9(b), (i3) 
f=h/2 tan(α/2) and Qix =L–f. 

(ii) Web compatibility. Concerns the equality between the transverse bending displacements and rotations 
at the web points depicted in Fig. 9(c), R to R    the number of such points considered (three in 
this case), depends on the level of approximation required. For each web point, two constraint 
equations ΠR must be imposed, namely 
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  (39) 
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ܣܴݔ൫ݔ,݇߶ ൯ െ෍݇ݓ൫ܴܤ ൯

݊

݇ൌ5

ܤܴݔ൫ݔ,݇߶ ൯ ൌ 0
  (40) 

 
(iii) Lip compatibility. Similarly to the web, it concerns the equality between the transverse bending 

displacements and rotations at points corresponding to the intersections of the lip free ends  points 

eAT vs. eBT  and iAT  vs. iBT  in Fig. 9(d). Four constraint equations ΠT must be imposed, namely  
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  (42) 

 
where (iii1) subscript p is either i or e, and (iii2) T stands for T ′ or T ′′. 
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Figure 9: Unstiffened joint connecting two orthogonal lipped I-section members with web continuity: (a) overall 

configuration and (b) flange, (c) web and (d) lip nodes to be constrained 
 
Furthermore, the joint compatibility of the global rotations stemming from lateral (global) bending and/or 
torsion, addressed in Section 2.3.1, must also be ensured by means of constraint equations  they 
are not covered by Eq. (27). For the case of orthogonal plain channel and I-section members connected 
with web continuity, Basaglia et al. (2009) proposed the consideration of two additional sets of constraint 
equations, ΨT and ΨΘ. The first one (ΨT) concerns the equality between the transverse displacement 
stemming from lateral bending and/or torsional rotation at the intersection of the connected member inner 
flange-web longitudinal edges (point QmA|QmB in Fig. 9(a)). Similarly, the second set (ΨΘ) corresponds to 
constraint conditions involving the lateral bending rotations at points F, J and M (see Fig. 9(a)). 
It is assumed in this work that the above constraint equations remain valid for lipped I-section members 
connected with web continuity  they read 
 

 
Ψܶ
ܫ ൌ෍݇ݓሺܳ݉ܣሻ
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ൌ

1
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where (i) QmA and QmB stand for the intersection point of the connected inner flange-web longitudinal 
edges, (ii) MA belongs to member A and (iii) FB belongs to member B, as illustrated in Fig. 9(a). 
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2.3.3 Semi-rigid joints – spring finite element and compatibility conditions 
Linear springs were first included in the GBT adjacent equilibrium equation system by Camotim et al. 
(2008), with the objective of simulating elastic supports or partial bracing arrangements in the context of 
the buckling analysis of isolated members  naturally, such linear springs connected member points to 
locations external to the member. A similar approach is employed in this work to simulate the joint semi-
rigidity  the difference resides in the fact that, now, the linear springs connect two member points. The 
most convenient implementation consists of considering zero-length finite elements, such as that depicted 
in Fig. 10, connecting members r and r+1 through the respective end nodes br and ar+1. This finite 
element consists of two linear springs, associated with translational (kjd) and rotational (kjθ) DOFs, and 
involves each of the j GBT deformation modes included in the analysis and exhibiting non-null values 
of those translation and rotation. The equilibrium of the spring element, located at a given cross-section 
and associated with an arbitrary deformation mode j, corresponds to the equation system 
 

 ሾ݇ሿ݆ ൛Δjൟ
ܶ
൛߶݆ ൟ ൌ ൛݆ܨ ൟ   (45) 

 
where [k]j is the spring element stiffness matrix, relating the generalized force (Fj) and displacement 
(Dj) vectors associated with the linear spring action on the deformation mode under consideration. In 
matrix form, Eq. (45) can be rewritten as 
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  (46) 
 
where (i) kjd and kj are the translational and rotational spring stiffness values, (ii) Dj and Dj,x are the values 
and derivatives of the generalized displacements associated with deformation mode j (uj(s), vj(s), wj(s) 
and/or their derivatives with respect to s) occurring before (br) and after (ar+1) the cross section (global 
modes) or cross-section point (distortional or local modes) where the spring is located, (ii) fj and fj,x are 
the value and derivative of the amplitude of deformation mode j before and after that cross-section and 
(iii) Fj and Fj,x are the generalized forces before and after the cross section under consideration. It is worth 
noting that the springs considered in this work involve exclusively flexural rotations associated with 
major-axis bending (j=2). 
 
Finally, including the spring elements into the GBT frame (discretized) adjacent equilibrium equation 
system is straightforward: since the DOFs of these element stiffness matrices, which are of dimension 4 n 
(n is the number of deformation modes involved) coincide with the GBT ones, the assembly with the 
member element stiffness matrices can be routinely performed by means of standard techniques, to obtain 
the adjacent equilibrium equation (Eq. (34)), which defines the frame buckling eigenvalue problem. 
 

 
Figure 10: Schematic representation of a GBT zero-length spring element relating connected node translations and rotations 
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3. Validation and Illustrative Examples 
In order to validate the formulation and numerical implementation developed, and also to illustrate its 
capabilities and potential, this section presents and discusses results concerning the buckling 
behavior of two simple plane portal and L-shaped frames with semi-rigid joints associated with (in-plane) 
major-axis flexural rotations. The geometries of the frames analyzed were selected in order to ensure that 
critical buckling may occur in modes exhibiting different natures, namely global, distortional and local 
critical buckling modes. All the frame joints are unstiffened, exhibit web continuity and are fully braced 
against out-of-plane flexural displacements  torsional rotations are possible. Several GBT buckling 
results are compared with values obtained from beam or shell finite element analyses performed in the 
code ANSYS (SAS 2009)  in the latter case, it is necessary to resort to a kind of “artificial modeling”. 
 
The kinematic relations presented in Sections 2.3.1 and 2.3.2, for unstiffened joints with web continuity 
(see Fig. 8(b)), are adopted to model the torsion warping transmission and in-plane flexural displacement 
compatibility at the frame joints. The stiffness of the spring simulating the joint major-axis flexural 
semi-rigidity influences the frame buckling behavior in two different ways: (i) by changing the bending 
moment (mostly) and axial force diagrams acting on the frame members and/or (ii) by altering the frame 
susceptibility to in-plane global/flexural buckling. At this stage, it is worth noting that relating the stiffness 
values adopted to more or less realistic frame joint configurations is beyond the scope of this work. 
However, this is a very important issue that will be addressed in the next step of this investigation2. 
 
3.1 Portal Frames Formed by Lipped I-Section Members 
Consider the portal frames depicted in Figs. 11(a)-(b), whose columns and beam are made of steel 
(Young’s modulus E=210 GPa and Poisson’s ratio v=0.3), exhibit the lipped I-section displayed in Fig. 
3(a) and have lengths Lc=410 cm and Lb=510 cm, respectively. The two frames differ only in the loading: 
vertical forces P applied at joints B and C (columns under compression) or lateral forces applied at the left 
column (P) and beam (0.8 P) mid-span cross-section shear centers (columns and beams under axial force 
and major-axis bending). The frames have fixed column bases and semi-rigid joints with equal rotational 
stiffness k (recall that both joints are fully restrained against out-of-plane flexural displacements). 
 
The first set of analyses, aimed at obtaining an initial (trivial) validation of the formulation, concerns the 
frame of Fig. 11(a) and includes only modes 1 and 2: axial extension and major-axis (in-plane) flexure. 
Fig. 12(a) shows the variation of the semi-rigid frame critical buckling load Pcr.k, normalized with respect 
 

 
Figure 11: Portal frames with semi-rigid joints under (a) two vertical loads applied at the joints, and (b) transverse 

loads applied at the left column and beam mid-span cross-sections 

                                                 
2 It is well known that the mechanical characteristics of each component of a particular joint, connecting frame members, 

contribute differently to its overall flexural stiffness. The determination of such stiffness constitutes a rather complex task 
that may be done, for instance, using the so-called “Component Method” prescribed in Eurocode 3 – Part 1-8 (CEN 2005). 
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Figure 12: Portal frame: (a) variation of Pcr.k /Pcr. with rk and (b) critical buckling shapes for rk=1 and rk=0 

 

to the rigid frame value (Pcr.=p2EI/1.423Lc
2, where I is the column and beam in-plane moment of inertia 

 see, for instance, Chajes 1974), against a fixity factor rk=1/(1+3EI/kLb), dependent on the joint stiffness 
k and introduced by Monforton & Wu (1963)  note that a rigid and pinned connection correspond to 
rk=1 and rk=0, respectively, and semi-rigid connections have rk values comprised between 0 and 13. 
After observing the results displayed in Fig 12(a), the following remarks are appropriate: 
(i) As expected, the critical buckling loads and mode shapes provided by the GBT and ANSYS (beam 

finite elements with linear rotational springs) analyses virtually coincide. Fig. 12(b) shows the critical 
buckling modes shapes of the frames with rigid (rk=1) and pinned (rk=0) joints  those concerning 
frames with semi-rigid joints fall in between these two. 

(ii) There is an almost linear relationship between Pcr.k and rk. Moreover, for this particular case, the 
frame critical buckling load increases by about 185% as rk varies between 0 and 1. 

(iii) Despite the inherent simplicity of this illustrative example, it just confirms that the linear springs 
are correctly incorporated in the GBT buckling analysis (with only two deformation modes included). 

 
The second set of analyses involve the frame of Fig. 11(b), whose members experience combinations of 
axial compression and major-axis bending. In this case, a key aspect concerning the influence of the joint 
semi-rigidity, which will be addressed next, is the variation of the member bending moment diagrams, 
illustrated in Fig. 13(a), showing those diagrams for the frames with rigid (rk=1) and pinned (rk=0) joints, 
respectively  naturally, the diagrams corresponding to other rk values lie in between these two. 
 
The GBT buckling analyses of these frames included the first 10 deformation modes depicted in Fig. 
3(c) and involved column and beam longitudinal discretizations into 11 and 12 beam finite elements, 
respectively. On the other hand, the ANSYS shell finite element analyses of the semi-rigid frames were 
performed in an “artificial” manner: because the frame instability is triggered far from the joint regions, it  

                                                 
3 For the frame with pinned joints, one has Pcr.0=p2EI /4Lc

2, since the frame behaves like two independent pinned-fixed columns 
with sway displacements allowed. 
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Figure 13: (i) Bending moment diagrams (kN.cm) of frames with for rk=1 and rk=0, and (b) variation of Pcr.k /Pcr. with rk 
 
is assumed that its columns and beam may be analyzed separately/individually, (i) subjected to the axial 
force and bending moment diagrams obtained from the semi-rigid frame pre-buckling analysis and (ii) 
with simple end supports (allowing for torsional rotations)4. 
 
Table 1 shows the critical buckling loads obtained from the GBT (Pcr.k.GBT) and ANSYS (Pcr.k.ANSYS) analyses for 
various rk values as well as the ratio between them (cr.k=Pcr.k.GBT /Pcr.k.ANSYS) and the nature of the associated 
buckling modes. In addition, the values of the normalized joint stiffness, kLb/EI, are also given. 
Furthermore, Fig. 13(b) plots the variation of the semi-rigid frame critical buckling load Pcr.k, normalized 
with respect to Pcr..ANSYS, with the fixity factor rk, and Figs. 14(a)-(d) to 16(a)-(d) show the ANSYS and GBT 
critical buckling mode shapes of the frames with pinned (rk=0), rigid (rk=1) and semi-rigid (rk=0.39) 
joints, respectively. Each figure shows (i) overall views of the frame critical buckling mode provided by 
 

Table 1: Buckling results concerning the frame of Fig. 11(b) (loads in kN) 

rk krLb /EI Pcr.k.GBT Pcr.k.ANSYS Mode nature cr.k (%) 
1.00 520 178.5 173.4 D (left column) 1.03 
0.99 260 178.2 - D (left column) - 
0.90 26 174.5 - D (left column) - 
0.63 5.0 163.3 160.8 D (left column) 1.02 
0.46 2.5 154.4 - D (left column) - 
0.39 1.9 149.6 - D (left column) - 
0.15 0.5 127.4 125.2 F-T-D (beam) 1.02 
0.08 0.3 120.5 - F-T-D (beam) - 
0.02 0.1 113.8 - F-T-D (beam) - 
0.00 0.0 112.1 110.9 F-T-D (beam) 1.01 

                                                 
4 The need to adopt this approach is due to the fact that it was not possible to incorporate the linear springs concerning only 

major-axis flexure (GBT deformation mode 2) in the shell finite element model. In the future, it is intended to model the “real 
joint” in the ANSYS analyses and to compare the results obtained with those provided by GBT with the linear spring stiffness 
values determined, using the “Component Method” (CEN 2005), on the basis of the above “real joint” configuration. 
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Figure 14: Portal frame with pinned joints: (a) ANSYS and (b) GBT views of the critical buckling mode shape, (c) GBT modal 
amplitude functions of the left column, at buckling, and (d) corresponding most deformed cross-section modal decomposition 
 
the ANSYS5 and GBT6 analyses (including blow-ups of the buckled region), (ii) the GBT deformation 
mode amplitude functions, concerning the frame critical buckling mode, of the member triggering the 
frame instability, and (iii) a GBT modal decomposition of the most deformed cross-section of that 
member (identified by a dashed line in the plot providing the amplitude functions). The observation and 
analysis of the buckling results presented in Table 1 and Figures 13 to 16 prompt the following remarks: 
(i) Once again, there is a virtual coincidence between the critical buckling loads provided by the GBT 

(beam finite element) and ANSYS (shell finite element) analyses7  the difference never exceeds 
3% (the Pcr.k.GBT values are always higher). In addition, there is also a remarkable similarity between 
the three pairs of GBT and ANSYS critical buckling mode representations (see Figs. 14(c)-16(c))  but 
the GBT modal amplitude functions provide additional in-depth insight on the buckling mechanics. 

                                                 
5 In view of what was mentioned in the previous footnote, the ANSYS view of the frame with semi-rigid joints includes only the 

member triggering the frame instability  the left column, in this particular case. 
6 Note that the GBT views are three-dimensional representation of buckling results obtained with beam finite elements, i.e., a 

finite elements based on a one-dimensional theory. 
7 Recall that, in the frames with semi-rigid joints, the ANSYS analysis concerns only the member triggering the frame instability  

see Fig. 16(a), dealing with the frame with rk=0.39, which shows the critical buckling mode shape of the left column alone. 
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 (a) (b) 

 
 (c) (d) 
Figure 15: Portal frame with pinned joints: (a) ANSYS and (b) GBT views of the critical buckling mode shape, (c) GBT modal 

amplitude functions of the beam, at buckling, and (d) corresponding most deformed cross-section modal decomposition 
 
(ii) The rigid and pinned frames exhibit critical distortional (D) and flexural/lateral-torsional-distortional 

(F-T-D) buckling modes, respectively  the former triggered by the left column (base region) and the 
latter by the beam (mid-span region). In GBT terms, the buckling of the pinned and rigid frames is 
governed by (i) the distortional deformation modes 5 and 8 and (ii) the minor-axis flexural (3), 
torsional (4) and distortional (5 and 8) modes  see Figs. 3(c), 14(c)-(d) and 15(c)-(d). As for the 
semi-rigid frame whose buckling results are depicted in Fig. 16 (rk=0.39), its critical buckling mode 
combines deformations in the left column and beam  see Figs. 16(b)-(c). 

(iii) The variation of the joint stiffness has a very significant impact on the member bending moment 
diagrams (see Figure 13(a)) and, in particular, changes the member triggering the frame instability  
for instance, while the buckling of the rigid frame is governed by the left column, the instability of 
the pinned frame is triggered by the beam. In the particular case of the semi-rigid frame shown in 
Fig. 16 (rk=0.39), the instability is triggered by the left column base region (like in the rigid frame). 

(iv) Since the critical buckling modes of the pinned and rigid frames are distortional (left column base 
region) and lateral-torsional-distortional (beam mid-span region), it is just logical to expect a change 
in critical buckling mode nature to occur for an intermediate joint stiffness value (i.e., rk value). 
Indeed, this is the case and the value under consideration is identified in Fig. 13(b) by the dashed line 
A-A’: it corresponds to rk=0.39 (note that the semi-rigid frame with rk=0.15 buckles in a F-T-D 
mode triggered by the beam). 

(v) Fig. 13(b) shows that the relationship between Pcr.k and rk is approximately bi-linear  the transition 
between the two linear segments corresponds to the change in buckling mode nature (rk=0.39). The 
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 (a) (b) 

  
 (c) (d) 

Figure 16: Semi-rigid portal frame (rk=0.39): (a) ANSYS and (b) GBT views of the critical buckling mode shape, (c) GBT modal 
amplitude functions of the frame, at buckling, and (d) corresponding most deformed cross-section modal decompositions 

 
 slope of the first segment is moderately higher than that of the second segment, which means that 

the joint stiffness affects the left column buckling behavior the most. 
(vi) For most of the joint semi-rigidity range, the frame critical buckling mode shape exibits deformations 

exclusively in the left column (higher rk values) or the beam (lower rk values). However, for frames 
with rk close to the transition between the two above situations (rk0.39), the critical buckling mode 
involves deformations in both the left column and beam. For instance, the rk=0.39 frame critical 
buckling mode (see Fig. 16(b)) involves dominant in the left column, but also clearly visible ones in 
the beam (the right column remains practically undeformed). 

 
3.2 L-shaped Frames Formed by Plain I-Section Members  
Consider the L-shaped frame depicted in Fig. 17(a), whose column and beam are made of steel (Young’s 
modulus E=210 GPa and Poisson’s ratio v=0.3), exhibit the plain I-section displayed in Fig. 3(a) (with the 
lips removed) and have lengths Lc=370 cm and Lb=310 cm, respectively. The column base is fixed, the 
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Figure 17: (a) L-shaped frame with a semi-rigid joint, (b) bending moment diagrams (kN.cm) of the pinned and 

rigid frames, and (c) variation of Pcr.k /Pcr. with rk 
 
beam has a sliding clamped support and the two are connected by a joint of stiffness k. The loading 
consists of two concentrated forces applied at the column (0.7 P) and beam (0.3 P) mid-span cross-section 
shear centers. Like the portal frames analyzed earlier, (i) the L-shaped frame exhibits in-plane behavior 
associated with major-axis flexure (members subjected to axial compression and major-axis bending) and 
(ii) the variation of rk alters considerably the column and beam bending moment diagrams  Fig. 17(b) 
shows the bending moment diagrams of frames with a pinned and a rigid joint. 
 
Table 2 shows the critical buckling loads obtained from the GBT (Pcr.k.GBT) and ANSYS (Pcr.k.ANSYS) analyses 
for various rk values as well as the ratio between them (cr.k=Pcr.k.GBT /Pcr.k.ANSYS) and the nature of the 
associated buckling modes. Moreover, the values of the normalized joint stiffness, kLb/EI, are also given. 
In addition, Fig. 17(c) plots the variation of the semi-rigid frame critical buckling load Pcr.k, normalized 
with respect to Pcr..ANSYS, with the fixity factor rk=1/(1+4EI/kLb), and Figs. 18(a)-(d) to 20(a)-(d) show the 
ANSYS and GBT critical buckling mode shapes of frames with a rigid (rk=1), pinned (rk=0) and semi-
rigid (rk=0.18) joint, respectively. As before, each figure shows (i) overall views of the frame critical 

 

Table 2: Buckling results concerning the L-shaped frame (loads in kN) 

rk krLb /EI Pcr.k.GBT Pcr.k.NSYS Mode nature cr.k (%) 
1.00 5200 63.78 65.73 L (column) 0.97 
0.99 260 63.66 - L (column) - 
0.87 26 62.77 - L (column) - 
0.58 5.0 60.45 60.28 L (column) 1.00 
0.41 2.6 58.4 - L (column) - 
0.22 1.0 55.19 53.15 L (column) 1.04 
0.18 0.8 54.45 - L (column) - 
0.12 0.5 49.38 47.17 L (beam) 1.05 
0.06 0.3 44.85 - L (beam) - 
0.01 0.1 40.8 - L (beam) - 
0.00 0.0 39.37 38.22 L (beam) 1.03 
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 (c) (d) 

Figure 18: L-shaped frame with a rigid joint: (a) ANSYS and (b) GBT views of the critical buckling mode shape, (c) GBT modal 
amplitude functions of the beam at buckling and (d) corresponding most deformed cross-section modal decomposition 

 
buckling mode provided by the ANSYS and GBT analyses (including blow-ups of the buckled region), 
(ii) the GBT deformation mode amplitude functions of the member triggering the frame instability, 
concerning the frame critical buckling, and (iii) a GBT modal decomposition of the most deformed cross-
section of that same member (identified by a dashed line in the plot providing the modal amplitude 
functions)8. The observation and analysis of the buckling results presented in Table 2 and Figures 17 to 20 
make it possible to draw the following conclusion: 
(i) Once more, there is a virtual coincidence between the critical buckling loads provided by the GBT 

and ANSYS analyses  the maximum difference is now 5% (except for rk=1, the Pcr.k.GBT values are 
always higher). In addition, there is again an enormous similarity between the three pairs of GBT and 
ANSYS critical buckling mode representations (see Figs. 18(c)-20(c)). 

(ii) Both the rigid and pinned frames exhibit critical local (L) buckling modes, triggered by the column 
(mid-span region) and beam (half close to the support), respectively. In GBT terms, the buckling 
of these two frames is governed by the local deformation modes 5, 6 and 9  see Figs. 3(d), 18(c)-(d) 

                                                 
8 The GBT buckling analyses of these frames included the first 10 deformation modes depicted in Fig. 3(d) and involved column and beam 

longitudinal discretizations into 20 beam finite elements,. Note also that the ANSYS shell finite element analyses were performed 
similarly to those of the portal frames analyzed earlier, i.e., adopting the same “artificial” approach for the semi-rigid frame. 
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(a)        (b)  

 
 (c) (d) 

Figure 19: L-shaped frame with a pinned joint: (a) ANSYS and (b) GBT views of the critical buckling mode shape, (c) GBT 
modal amplitude functions of the beam at buckling and (d) corresponding most deformed cross-section modal decomposition 
 
 and 19(c)-(d). As for the semi-rigid frame whose buckling results are depicted in Fig. 20 (rk=0.18), 

its critical buckling mode combines deformations in the column and beam (like in the rk=0.39 portal 
frame analyzed earlier)  see Figs. 20(b)-(c). 

(iii) The variation of the joint stiffness has a very significant impact on the member bending moment 
diagrams (see Figure 17(a)) and, like in the portal frame, changes the member triggering the frame 
instability  for instance, while the buckling of the rigid frame is governed by the column, the pinned 
frame instability is triggered by the beam. In the particular case of the semi-rigid frame shown in 
Fig. 20 (rk=0.18), the instability is triggered by the column mid-span region (like in the rigid frame). 

(iv) Since critical buckling modes of the rigid and pinned frames (both local) are triggered by the column 
and beam, respectively, there is certainly a change in the member triggering the frame instability for 
an intermediate rk value. This value, identified in Fig. 17(c) by the dashed line A-A’, is rk=0.18 
(note that the semi-rigid frame with rk=0.12 buckles in a L mode triggered by the beam). 

(v) Fig. 17(c) shows that, like in the portal frame, the relationship between Pcr.k and rk is approximately 
bi-linear  the transition between the two linear segments corresponds to the change in the member 
triggering the frame instability. The slope of the first segment is significantly higher than that of the 
second segment, which means that the joint stiffness affects the beam buckling behavior the most. 

(vi) As in the case of the portal frames analyzed before, for most of the joint semi-rigidity range, the 
frame critical buckling mode shape exibits deformations only in the column (higher rk values) or the 
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 (a) (b) 

            
 (c) (d) 

Figure 20: Semi-rigid L-shaped frame (rk=0.18): (a) ANSYS and (b) GBT views of the critical buckling mode shape, (c) GBT 
modal amplitude functions of the beam at buckling and (d) corresponding most deformed cross-section modal decomposition 
 
 beam (lower rk values). However, in frames with rk close to the transition (rk0.18), deformations in 

both the column and beam occur at critical buckling. For instance, the rk=0.18 frame buckles in a 
mode involving deformations in the column (dominant) and beam (non-negligible)  see Fig. 20(b). 

 
4. Conclusion 
This paper reported the available results of an ongoing investigation on the use of GBT to analyze the 
local, distortional and global buckling behavior of thin-walled steel frames with semi-rigid joints. After 
presenting an overview about the performance GBT frame buckling analyses, particular attention was 
devoted to the aspects related to ensuring displacement compatibility at the frame joints. Next, as a first 
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attempt to simulate a frame joint semi-rigidity, linear spring elements were incorporated into the buckling 
analysis  such elements relate generalized displacements of the connected member end cross-sections 
and are characterized by their stiffness values. Finally, the paper concluded with the presentation and 
discussion of illustrative numerical results, aimed at providing validation (through the comparison with 
values obtained from available analytical expressions or ANSYS shell finite element analyses) and 
showing the capabilities of the proposed approach. These results dealt with the buckling behavior of 
simple portal and L-shaped plane frames (i) formed by plain and lipped I-section members, respectively, 
(ii) acted by loadings causing axial compression and in-plane (major-axis) bending, and (iii) exhibiting 
rotational springs at the joints (involving exclusively in-plane bending. The influence of the spring 
stiffness (joint semi-rigidity) on the frame buckling behavior (critical buckling load and mode nature) was 
studied. It was shown that such influence is felt in two different ways, namely the frame (i) pre-buckling 
axial compression and bending moment (mostly) diagrams, and (ii) buckling eigenvalue problem. 
 
Although there was an excellent correlation between the GBT and ANSYS buckling results presented in 
the paper (the critical buckling loads never differed by more than 5% and the critical buckling mode 
shapes were virtually identical), it must be acknowledged that “true comparisons” were only made for 
(i) portal frames buckling in global modes (the ANSYS results stemmed from beam finite element models) 
and (ii) portal and L-shaped frames with rigid or pinned joints. In other words, “true comparisons” did not 
cover the frames with semi-rigid joint buckling in modes involving local and/or distortional deformations. 
For such frames, the ANSYS shell finite element analyses were performed “artificially”, due to the fact that 
no way was found to incorporate linear springs involving only major-axis flexure (deformation mode 2) 
in the shell finite element model. Therefore, because it was found that, in all cases, the frame instability is 
triggered far from the joint regions, the columns and beams were analyzed separately/individually, (i) 
acted by the axial force and bending moment diagrams obtained from the semi-rigid frame pre-buckling 
analysis and (ii) with simple end supports (allowing for torsional rotations). Obviously, this procedure is 
unable to capture the influence of the joint semi-rigidity (linear springs) on the buckling eigenvalue 
problem. However, since the GBT buckling analyses (and also the ANSYS ones of the frames with rigid 
and pinned joints) showed that the contribution of the frame joint regions to the critical buckling mode is 
imperceptible, it seems fair to argue that the above procedure leads to reasonably accurate frame critical 
buckling loads, thus making the validation of (comparison with) the GBT values meaningful. 
 
Finally, one last word to mention that the next step of this ongoing research consists of efforts considering 
commonly used (realistic) semi-rigid joints and determining their stiffness values by means of either the 
“Component Method” prescribed in Eurocode 3 – Part 1-8 (CEN 2005) or sophisticated numerical 
models, involving the use of shell/solid finite elements models and contact formulations. Then, the output 
of this procedure (spring stiffness values) will be incorporated in the GBT formulation and it will be 
possible to compare the buckling results obtained with values stemming from a rigorous numerical 
modeling of the whole frame (including the above joints), thus getting around the validation difficulties 
mentioned in the previous paragraph. 
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