
 

Proceedings of the 

Annual Stability Conference 

Structural Stability Research Council 

Orlando, Florida, April 12-15, 2016 

 

 

 

 

Improved Stability Design of Longitudinally Stiffened Plate Girders 
 

Lakshmi Subramanian1, Donald W. White2 

 

 

Abstract 

Longitudinal stiffeners are welded to the webs of slender-web I-girders to restrict the web lateral 

deformations at service and construction load levels. The AASHTO 2015 equations recognize an 

increase in the bend-buckling resistance of girder webs reinforced by longitudinal stiffeners. 

However, in girders where web bend-buckling occurs prior to reaching the girder ultimate 

flexural resistance, a portion of the web becomes ineffective and flexural stresses are re-

distributed largely to the compression flange. The current Specification equations impose a 

penalty on the strength of the compression flange by a load shedding factor, Rb.  However, this 

load shedding factor neglects the contribution of the longitudinal stiffener to the web post-

buckling resistance. The authors have previously developed a cross-section model that can be 

used to estimate the flexural capacity of I-girders for both homogenous and hybrid girders at the 

yield limit state. In this paper, an improved handling of combined web buckling and lateral 

torsional buckling of longitudinally stiffened plate girders is proposed based on finite element 

test simulations. In addition, the Rb calculated from the proposed model, used in conjunction 

with the current Specification flange local buckling equations is shown to provide a better 

characterization of the flange local buckling capacity of longitudinally stiffened I-girders. 

 

 

1. Introduction 

Plate girders used in longer-span bridges typically have slender webs combined with longitudinal 

stiffening to prevent theoretical web bend-buckling during construction and under service loads. 

The current American Association of State Highway and Transportation Officials Load and 

Resistance Factor Design Specifications (AASHTO LRFD) (AASHTO 2015) require the use of 

longitudinal stiffeners on plate girders when the web slenderness D/tw is greater than 150. In 

addition to the above considerations, this requirement is largely to alleviate web distortion 

induced fatigue concerns. The bend-buckling resistance of a longitudinally stiffened plate girder 

web is higher than that of an unstiffened web. However, for cases where the longitudinally-

stiffened web bend-buckling resistance (i.e., the web local buckling resistance under flexural 

compression) is exceeded by the strength loading combinations, AASHTO LRFD currently 
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neglects the beneficial influence of the longitudinal stiffeners in determining the contribution of 

the postbuckled web to the girder flexural resistance. This is due to the fact that the AASHTO 

provisions for proportioning of the longitudinal stiffeners do not consider the strength behavior 

of stiffened web panels in the postbuckled condition. The longitudinal stiffener design rules 

consider only the restraining effects of the longitudinal stiffeners on the theoretical bend-

buckling resistance of the web panels.  

Once a girder’s web bend buckles, the portion of the web in compression becomes less effective 

in carrying additional load and the corresponding flexural stresses are shed largely to the girder’s 

compression flange. The stress variation through the depth of the web becomes highly nonlinear 

at postbuckling load levels. The term Rb in AASHTO (2015) is a reduction factor on the flexural 

resistance of the compressive flange that accounts for this load shedding from the web. The 

tension flange stresses are not significantly impacted by load shedding from the web (Basler and 

Thurliman 1961), and the AASHTO provisions do not consider any strength reduction in the 

flexural checks of the tension flange. The current AASHTO LRFD Specification requirements 

for Rb neglect the contribution of the longitudinal stiffeners toward the development of the girder 

post-web buckling flexural resistance. This can have a significant impact in regions of negative 

flexure. Rb is given by AASHTO equation 6.10.1.10.2-3, 
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which was suggested originally by Basler and Thurliman for non-longitudinally stiffened 

doubly-symmetric girders, but used in the same form for singly-symmetric girders as well. In the 

equation, awc is the ratio of two times the web area in compression to the area of the compression 

flange, Dc is the web depth in compression, tw is the thickness of the web, and λrw is the 

noncompact web slenderness limit. 

The authors have conducted extensive parametric studies using finite element (FE) test 

simulations in ABAQUS (Simulia 2013) on longitudinally stiffened girders with different cross-

sectional properties (principally, web depth-to-thickness ratio, web depth-to-compression flange 

width ratio, web depth in compression, transverse stiffener spacing, thickness of flange-to-

thickness of web ratio, longitudinal stiffener lateral rigidity, longitudinal stiffener width-to-

thickness ratio, position of the longitudinal stiffener relative to the web depth, and area of 

longitudinal stiffener-to-area of web) and proposed a cross-section model (Rb model) that can be 

used to estimate the ultimate flexural capacity of longitudinally stiffened girders (Subramanian 

and White 2016). The cross-section model, which is reviewed in the following section is derived 

based on longitudinally stiffened members subjected to uniform moment and failing at the yield 

limit state, i.e. lateral torsional buckling (LTB) and flange local buckling (FLB) are prevented by 

the selection of the flange width-to-thickness ratio and sufficient spacing of lateral braces.  

This paper assesses the applicability of the proposed Rb model to the LTB and FLB flexural limit 

states. This is done via uniform moment studies on homogenous girders. An improved handling 

of combined web flexural buckling and LTB is proposed here, with the aid of the proposed Rb 

model. In addition, this paper also shows that using the Rb computed from the proposed model in 

conjunction with the AASHTO 2015 Specification equations provides a much improved 

estimation of FLB resistance of longitudinally stiffened girders. 
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2. Rb for Longitudinally Stiffened Girders 

This section summarizes the results from extensive studies on longitudinal stiffened girders of 

different cross-section parameters (Subramanian and White 2016). The model shown in Fig. 1 is 

proposed for calculating the flexural capacity of longitudinally stiffened members at the yield 

limit state. The model is applicable for both homogenous girders (equal yield strength web, 

flange and longitudinal stiffener plates), and hybrid girders (higher yield strength flange plates, 

equal yield strength web and longitudinal stiffener plates). Figure 1 indicates the portion of the 

web in the two sub-panels that is effective at the yield limit state. Figure 2 shows the variation of 

normal stresses through the depth of the web (averaged through the web thickness) for different 

depths of the web in compression for girders with web depth-to-thickness ratio, D/tw = 240 and 

do/D = 1, where do is the transverse stiffener spacing. This is representative of the general trend 

in all the girders that were studied. It may be surmised from this figure that the nominal elastic 

depth of the web in compression, Dc* (calculated based on the equilibrium and strain 

compatibility, using the compressive stress distribution shown), is a reasonable estimate of the 

location of the neutral axis in the physical girder. 

Fyw

Fyt

ft

Dc
*

0.03Dc*+15tw

0.036Dc*+15tw

30tw

Neutral Axis

Fyc

 

Figure 1: Cross-section model to calculate Rb of longitudinally stiffened girder 
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Figure 2: Major axis bending stresses in the web, averaged through the web thickness, for homogenous girders with 

D/tw = 240; y is the distance from the bottom of the web, D is the total web depth 
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Figure1 provides an approximation of the stress distributions obtained in Fig.2, and can be used 

to determine the yield limit state flexural resistance of the girder using basic strength of materials 

concepts. The compressive stresses to be used in the flexural capacity calculations are as shown 

in Fig.1. The depth of the web in compression, Dc*, is calculated via an iterative process that 

satisfies equilibrium and strain compatibility. It is found that the moment of the area of the 

longitudinal stiffener about the calculated neutral axis should be included in the calculation of 

the cross-sectional flexural resistance. One can determine the internal moment produced by the 

assumed stress distribution based on either one of the following assumptions that satisfies 

equilibrium (sum of longitudinal forces equal to zero):  

1. The entire section is elastic on the tension side of the neutral axis. In this case, the elastic 

stress distribution below the neutral axis is scaled such that the total longitudinal force in the 

cross-section is equal to zero.  

2. Nominal yielding is reached at some depth on the tension side of the neutral axis. In this 

case, the section is assumed to have a constant tensile stress equal to Fyw below this depth in 

the web, and Fyt or ft in the tension flange (depending on whether or not the tension flange is 

yielded), and a linearly varying elastic stress distribution above this depth up to the neutral 

axis. 

The web bend-buckling factor from the proposed model, RbPr is determined as the ratio of the 

flexural resistance of the effective cross-section shown in Fig.1 to the yield moment capacity of 

the gross cross-section, including the contribution of the longitudinal stiffener (MnPr/My).  

It is further recommended that the contribution of the longitudinal stiffener to the postbuckling 

flexural resistance of the girder be neglected within the panel(s) containing the discontinuity 

when the longitudinal stiffeners are discontinuous across transverse stiffeners. 

The following sections detail how the above Rb model may be applied to the LTB and FLB limit 

states. 

 

3.  FE Modeling Parameters 

3.1 FE Discretization 

In this research, full nonlinear analyses are conducted to simulate physical tests using 

ABAQUS(Simulia 2013). The flanges, web and longitudinal stiffener are modeled using four-

node shell elements degenerated from a 3D solid element (the S4R shell element). Intermediate 

transverse stiffeners are modeled using compatible B31 beam elements. The mesh is dense with 

60 elements through the web depth, and 12 elements across the width of the flanges, and 10 

elements along the width of the longitudinal stiffener. The aspect ratio of the shell elements in 

the web is approximately equal to 1.0. 

3.2 Material Modeling 

In this paper, all members are considered to be homogenous and the yield stress of the steel, Fy, 

is taken as 50 ksi. The modulus of elasticity, E is taken as 29000 ksi. The material is modeled 

with a small tangent stiffness within the yield plateau region of E/1000 up to a strain-hardening 

strain of εsh = 10εy, where εy is the yield strain of the material. Beyond this strain, a constant 

strain-hardening modulus of Esh = E/50 is used. The maximum longitudinal strains reached in 

these studies is seldom in the order of 2 to 3 εy. 
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3.3 Test Setup 

The straight girders in this study are subjected to four-point bending with the test specimen 

subjected to uniform bending and flanked by an end fixture on each side. The test setup is similar 

to that used in Cooper’s experiments (Cooper 1965) and is shown in Fig. 3. The unbraced lengths 

of the test specimens are varied to allow evaluation of the impact of the longitudinal stiffener on 

the flexural capacity of girders subjected to the yield, inelastic LTB, and elastic LTB limit states. 

The test fixtures are assumed to provide torsionally and laterally fixed boundary conditions at 

each end of the specimen, i.e., the value of K in KLb is taken as 0.5 in estimating the LTB 

resistances by various potential nominal strength equations. The flange and web plates of the end 

fixtures are significantly larger than the plate thicknesses of the test specimens; therefore, this is 

an accurate estimate of K. The length Lb is taken as the distance between the connection points to 

the end fixtures (i.e., no lateral bracing is provided within the length of the test specimens, but 

lateral bracing is provided at the ends of the test specimens).  

In the FLB tests, lateral bracing is located within the test specimen such that the unbraced 

lengths are smaller than the plateau length, Lp. 

 

 

Figure 3: Test setup 

3.4 Initial Geometric Imperfections 

Figure 4 shows the initial web out-of-flatness, flange sweep and flange tilt imperfections 

assumed in this work. The flange tilt is not considered in the LTB studies (only compact flange 

cross-sections are considered), and the flange sweep is not considered in the FLB studies (since 

closely-spaced bracing was employed in the FLB studies). AWS (2010) allows a maximum web 

out-of-flatness of 1/67 times the least panel dimension for girders with longitudinal stiffeners and 

a flange tilt equal to the smaller of bfc/100 and 2.5 in. In addition, AWS effectively allows a 

maximum flange out-of-straightness of Lb/960, where Lb is the unbraced length of the member.  

The maximum out-of-straightness permitted in the AISC COSP(AISC 2010) is effectively 

Lb/1000. Given the fixity at both ends of the unbraced length, a flange sweep imperfection of 

magnitude Lb/1000 amounts to a smaller net imperfection between the inflection points of the 

unbraced length, and is nearly equal to half the AWS tolerance. It is shown by Subramanian and 

White (2015; 2015a) that the use of the full tolerance values in FE simulations may be overly 

conservative relative to the experimental data represented by the AISC/AASHTO LTB curves, 

and that one-half the AWS tolerances yields better correlation with experimental data comprising 

of unstiffened girders. A comparison is shown in the following section, using one-half and the 

full tolerances (for the case of one-half tolerances, the maximum imperfection magnitudes are 

taken as one-half of that shown in Fig. 4 (a), (b), and (c)). The sweep in the longitudinal stiffener 

is taken as do/400 (Hendy and Murphy 2007) without reducing to one-half its magnitude. 
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The test simulations are first run using the base imperfection pattern shown in Fig. 4(a) along 

with either the flange tilt or sweep as appropriate for the expected failure mode, and the limit 

load and failure mode is determined from these analyses. The web lateral deflection at the limit 

load, which is taken as the failure mode pattern, is then scaled as described below to form the 

actual imperfection for the final test simulation analysis. In other words, the test simulation is run 

twice; once with the base imperfection pattern shown in Fig. 4(a) as the initial geometric 

imperfection, and then a second time by using the failure mode from the first analysis, scaled to 

satisfy the AWS (2010) tolerances on the maximum web out-of-flatness, as the initial 

imperfection. The flange sweep or flange tilt are also scaled as per the AWS tolerances. This 

relatively elaborate procedure is similar to an approach recommended by Hendy and Murphy 

(2007), and is believed to provide a reasonable estimate of the worst-case geometric 

imperfections for calculation of the “true Rb” of the test girders. The base web out-of-flatness 

shown in Fig. 4(a) is used as the starting point for the above analyses after conducting 

imperfection sensitivity studies (Subramanian and White 2014) with various base imperfection 

patterns and magnitudes. 

 

D

d
1

d
2

d
1
/67

d
2
/67

d
o
/400

     

Min (bfc/200 , 0.125)
Min (bfc/200 , 0.125)

Min (bfc/200 , 0.125)   Z

Y

X

Z Lb/1000

Lb/1000

 
(a) (b) (c) 

 

Figure 4: Initial geometric imperfections (a): Base imperfection for web out-of-flatness and longitudinal stiffener 

sweep (b): Flange tilt imperfection (c): Flange sweep 

3.5 Residual Stresses 

The residual stresses used in the studies are shown in Fig. 5. Residual stresses in the slender 

webs are neglected as they are small enough to cause negligible effect on the flexural capacities 

of slender web longitudinally stiffened plate girders (Subramanian and White 2014). The flange 

residual stress distribution is based on the Best-Fit Prawel pattern (Kim 2010).  

A self-equilibrating residual stress pattern in the longitudinal stiffener is developed based on an 

assumed heat affected zone of bl/5, where, bl is the width of the longitudinal stiffener. This 

pattern is obtained by starting with a typical residual stress pattern where the heat-affected zone 

has a tensile residual stress equal to Fy and the rest of the plate has a self-equilibrating residual 

compression. The elastic flexural stresses necessary to put this plate in moment equilibrium are 

then added to the above base stresses to create a representative statically admissible residual 

stress distribution in the longitudinal stiffener. 
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                                                               (a) Flanges            (b) Longitudinal stiffener 

Figure 5: Residual stress patterns 

4. Lateral Torsional Buckling Limit State 

4.1 Proposed LTB Model for Longitudinally Stiffened Girders 

A modified form of the AASHTO (2015) Specification equations for LTB is proposed by 

Subramanian and White (2016; 2015b; 2015c) after extensive studies encompassing FE 

simulations of unstiffened rolled and welded members (both homogenous and hybrid) subjected 

to uniform moment and moment gradient loading, along with statistical and reliability analysis of 

a large experimental database. As per the recommendations, the LTB strength curve uses a 

plateau length of 0.63 /
p t y

L r E F=  (where Lp is the largest unbraced length at which the cross-

section attains its full capacity without undergoing significant lateral torsional buckling, rt is the 

effective radius of gyration for LTB), and a smaller maximum stress level for elastic LTB of Fyr 

= 0.5 Fyc. This model, with the modifications discussed below to address the influence of web 

longitudinal stiffening, is proposed in this paper as one method that captures the test simulation 

results for longitudinally stiffened girders with improved accuracy. Furthermore, for the 

longitudinally stiffened plate girders considered in this research, the “plateau” resistance used 

with these equations is calculated by multiplying the yield moment capacity by RbPr from the 

proposed model discussed in Section 2.  

In addition to the above, the bend-buckling stress of the longitudinally stiffened web, Fcrw, is 

calculated using the AASHTO LRFD Article 6.10.1.9.2 provisions. If this stress is less than Fyr = 

0.5Fyc, the unbraced length at which the nominal elastic buckling stress Fnc is equal to Fcrw is 

determined. The value Fcrw is the stress level at which Rb effectively becomes equal to 1.0, and 

the corresponding unbraced length is referred to here as L1. The inelastic LTB resistance of the 

longitudinally stiffened plate girder is then determined by linearly interpolating between the 

plateau strength (using the factor RbPr) at Lp and the point (L1, Fcrw).  

Conversely, if Fcrw is greater than Fyr = 0.5Fyc, the inelastic LTB resistance is obtained by 

linearly interpolating between (Lp, RbPrFyc) and (Lr, 0.5Fyc), where Lr is defined here as the length 

at which the theoretical elastic LTB strength is equal to Fyr = 0.5Fyc (note that the current 

AASHTO provisions define Lr as the length corresponding to Fyr = 0.7Fyc for homogeneous 

slender web plate girders).  

For compression flange stress levels below the smaller of the values Fcrw or 0.5Fyc, the elastic 

buckling equation in the current AASHTO Specifications, with Rb  = 1 is used to compute the 

LTB resistance. 

4.2 Case Studies 

The cases defined in Table 1 are assessed as part of the parametric studies discussed in this 

paper. The unbraced length is different for each of these cases. The different KLb values shown 

in the table belong to different ranges of the AASHTO LTB curve depending on the girder 

dimensions (particularly the bfc/D ratio) for a given test. In general, Case 1 has an effective 
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unbraced length near the transition between the yield plateau and the inelastic lateral torsional 

buckling regions as defined by AASHTO (i.e., at the length KLb = Lp). Cases 2 and 3 have 

effective unbraced lengths within the inelastic LTB range. Case 4 has an effective unbraced 

length near the length Lr on the current AASHTO LTB curve, but located in either the inelastic 

or elastic LTB region depending on the girder dimensions. Cases 5, 6 and 7 are comprised of 

studies with effective unbraced lengths well within the elastic range of the AASHTO LTB 

resistance curve.  

Table 1: Case studies for straight longitudinally stiffened girders at the LTB limit state  

Case 
KLb (in) 

do/D =1 

1 225 

2 375 

3 525 

4 675 

5 825 

6 975 

7 11251 

1. Unbraced length studied only for girders with D/tw = 300, and D/bfc = 5, 4 

For each of the above cases, the following parameters are held constant: 

• D = 150 inches, 

• ds/Dc = 0.4, which is the theoretical optimum position for flexure (Dubas 1948; 

Massonnet 1960). 

• Longitudinal stiffeners sized based on the minimum requirements from the AASHTO 

LRFD Specifications, and 

• 9.5 x 0.75 inch transverse stiffeners, which satisfy the minimum requirements from 

the AASHTO LRFD Specifications for all of the girders tested.  

The following parameters are varied: 

• Dc/D = 0.5, 0.625 and 0.75,  

• D/tw  = 200, 240 and 300, and 

• bfc = D/6, D/5, and D/4.  

• tfc = 1.5, 1.75, 2.25 in corresponding to the different values of compression flange 

widths. 

A total of 168 test girders are studied for LTB in this paper.  

4.3 Summary of Results 

Figures 6 through 8 compare the FE test simulation data for three cross-sections to the current 

AASHTO LRFD and Eurocode predictions as well as to the above proposed model for several 

tests with do/D =1. These figures show comparisons between the data obtained using the 

imperfections as per the full AWS tolerances and the full Best-Fit Prawel residual stresses, and 

with half of the AWS tolerances as imperfections and half Best-Fit Prawel residual stresses. 

Subramanian and White (2015a) recommend using one-half of the Best-Fit Prawel pattern 
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residual stresses along with half the AWS tolerances as initial geometric imperfections to capture 

the mean of experimental data for LTB of unstiffened girders. There is no statistical data 

available on the residual stress distributions present in longitudinally stiffened girders. The 

proposed LTB model in Section 4.1 is shown to be conservative with respect to the test 

simulation data that use one-half of the residual stresses along with one-half the imperfections. 

The results presented in this paper, using the full magnitude of residual stresses shown in Fig. 5 

and the imperfection magnitudes shown in Fig. 4, provide results that are closer to the lower 

bound of test simulation data using other combinations of residual stresses and imperfections 

within the AWS tolerances.  

In the following figures and discussions, Mmax refers to the flexural capacity obtained from FE 

test simulations, Mn EC refers to the capacity calculated using the Eurocode EN 1993-1-1 (CEN 

2005) and EN 1993-1-5 (CEN 2006) provisions, Mn AASHTO (Rb based on Fyc) is the capacity 

computed using the current AASHTO provisions including Rb as calculated by AASHTO, as 

well as using the elastic section modulus that includes the longitudinal stiffener, Mn AASHTO (Rb 

= 1.0) is the same calculation but taking Rb = 1.0, and Mn Proposed is the result from the 

proposed model described in Section 4.1. In these figures, the data points that correspond to the 

“plateau resistance” are obtained from the results in Subramanian and White (2014). 

The Commentary to Article 6.10.1.10.2 of the AASHTO LRFD Specifications permits the use of 

the compression flange stress at the governing strength condition in place of Fyc in the 

calculation of Rb in case of LTB or FLB, when the compression flange stress is smaller than Fyc. 

This approach recognizes the fact that the postbuckled web is generally more effective when the 

compression flange stress is smaller than Fyc at the governing strength condition. However, since 

the expression for Rb in AASHTO (2015) is derived for non-longitudinally stiffened girders, and 

is extremely conservative (20 to 60%) for longitudinally stiffened girders (Subramanian and 

White 2016), the approach of using a slightly larger Rb based on a compression flange stress 

smaller than Fyc does not yield a significant increase in strength. Hence, in this paper, the 

simplified calculation of Rb based on Fyc is presented when plotting Mn AASHTO based on Rb < 

1. 
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Figure 6: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 240, Dc/D = 0.5, D/bfc = 6, 

do/D = 1 with full AWS imperfections and Best-fit Prawel residual stress (Left) and half AWS imperfections and 

half Best-fit Prawel residual stress (right) 
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Figure 7: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 300, Dc/D = 0.5, D/bfc = 6, 

do/D = 1 with full AWS imperfections and Best-fit Prawel residual stress (Left) and half AWS imperfections and 

half Best-fit Prawel residual stress (right) 
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Figure 8: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 300, Dc/D = 0.75, D/bfc = 4, 

do/D = 1 with full AWS imperfections and Best-fit Prawel residual stress (Left) and half AWS imperfections and 

half Best-fit Prawel residual stress (right)  

Figure 6 shows results for a girder that has a value of RbAASHTO = 1.0 (RbAASHTO is equal to 1.0 here 

because the longitudinal stiffener increases the bend-buckling stress Fcrw to a value greater than 

the compression flange stress at the strength limit for all unbraced lengths).  

Figures 7 and 8 show results for slender web longitudinally stiffened girders where RbAASHTO < 

1.0. It can be observed from Fig. 7 that at the point (L1, FcrwSxc), the Mn AASHTO (Rb = 1.0) 

curve tends to over-predict the LTB resistance of the girders obtained from the test simulations. 

One can observe that the proposed model is also somewhat unconservative near this point, since 

the proposed model and the above AASHTO model both correspond to the theoretical elastic 

LTB resistance (with J taken equal to zero) at (L1, Fcrw). This over-prediction by the proposed 

model is greatly reduced in the plots on the right that correspond to one-half the AWS tolerances 

used as imperfections, and one-half Best-fit Prawel residual stresses. Furthermore, the proposed 

model still slightly over predicts the test simulation results for shorter unbraced lengths within 

the inelastic LTB for these higher values of initial geometric imperfections. The Mn AASHTO (Rb 

based on Fyc) curve gives a closer prediction to the test simulation results in the vicinity of KLb = 
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L1. However, this is largely because a single Rb is calculated conservatively by taking the 

compression flange stress as Fyc and then used throughout this curve. The Mn AASHTO (Rb based 

on Fyc) curve is significantly conservative for short effective unbraced lengths.  

In the case of singly-symmetric girders having a large tension flange (and hence a large Dc/D), 

the AASHTO LRFD and proposed equations are highly conservative for large KLb values when 

RbAASHTO < 1.0 as shown in Fig. 8. This is owed to the AASHTO and AISC based assumption 

that, due to the slender web and potential distortional lateral buckling, the St. Venant torsional 

stiffness GJ provides negligible help to the LTB resistance. The AASHTO equations neglect the 

contribution from St. Venant torsion in calculating the elastic buckling stress for all slender web 

I-sections. This is a conservative approximation for the girders with large tension flanges studied 

in this research. For these girders, it is notable that the FE predictions compare closely with the 

calculations based on Eurocode, in which the authors include the St. Venant torsional stiffness 

contribution to the LTB resistance.  

It is important to note that the above behavior for large tension flanges may not always be the 

case. Due to the cross-section distortional deflection of the web, the influence of GJ on I-girder 

LTB resistances can be substantially reduced (White and Jung 2007). However, for 

longitudinally stiffened girders having relatively close spacing of the intermediate transverse 

stiffeners, the frame action of the transverse stiffeners may be expected to limit the amount and 

impact of the distortional deflections of the web. The authors have subsequently conducted 

studies on a larger panel aspect ratio of do/D = 2.0, and found that distortional deflections do not 

greatly influence the capacities of these types of members (Subramanian 2015).  

In addition, the above plots indicate that, in many cases, the Eurocode is conservative in its 

prediction of the LTB resistances of longitudinally stiffened girders obtained from the test 

simulations conducted in this research. This is chiefly due to the assumption of larger flange 

residual stresses in similar underlying test simulations conducted in the research leading to the 

Eurocode provisions (Greiner et al. 2001). The best estimate of the FE test simulation results 

conducted in this research is obtained using the proposed model. 

Table 2 summarizes the moment capacities obtained for all the doubly-symmetric girders (Dc/D 

= 0.5) for the panel aspect ratios of 1.0, evaluated in the LTB test simulations, while also 

addressing how well the AASHTO, Eurocode, and proposed model compare to the simulation 

data (Mmax). It is observed that the proposed LTB model described in Section 4.1 performs better 

than the current AASHTO and Eurocode equations in predicting the simulation-based flexural 

capacities of these girders. The results discussed in Table 2 are based on one-half AWS 

tolerances as imperfections along with one-half Best-Fit Prawel residual stresses. 

Table 2: Statistics for 27 longitudinally stiffened girders  

(a) KLb = 225 in 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.05 1.04 1.26 1.05 1.13 1.21 1.05 1.30 1.16 

COV 0.02 0.06 0.06 0.01 0.10 0.04 0.01 0.08 0.05 

Maximum 1.08 1.14 1.36 1.07 1.26 1.28 1.07 1.51 1.25 

Minimum 1.03 0.98 1.15 1.03 0.96 1.11 1.03 1.18 1.08 
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Table 2 (Continued): Statistics for 27 longitudinally stiffened girders  

(b) KLb = 375 in 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.11 1.07 1.46 1.12 1.18 1.36 1.17 1.41 1.31 

COV 0.02 0.08 0.09 0.02 0.12 0.07 0.04 0.11 0.07 

Maximum 1.15 1.23 1.63 1.17 1.40 1.48 1.23 1.71 1.44 

Minimum 1.08 1.01 1.28 1.08 1.00 1.21 1.10 1.25 1.15 

 (c) KLb = 525 in 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.10 1.02 1.60 1.13 1.15 1.42 1.23 1.47 1.35 

COV 0.03 0.09 0.08 0.03 0.12 0.05 0.05 0.12 0.08 

Maximum 1.14 1.16 1.74 1.18 1.32 1.48 1.32 1.77 1.50 

Minimum 1.04 0.88 1.43 1.07 0.93 1.32 1.15 1.26 1.20 

(d) KLb = 675 in 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.04 1.00 1.63 1.10 1.18 1.39 1.33 1.71 1.35 

COV 0.08 0.09 0.02 0.05 0.14 0.05 0.08 0.25 0.10 

Maximum 1.14 1.13 1.69 1.17 1.45 1.46 1.53 2.37 1.55 

Minimum 0.93 0.87 1.59 1.01 0.94 1.27 1.21 1.30 1.22 

 (e) KLb = 825 in 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 0.99 0.99 1.55 1.10 1.23 1.30 1.52 2.07 1.34 

COV 0.07 0.08 0.05 0.06 0.16 0.09 0.15 0.30 0.11 

Maximum 1.08 1.15 1.65 1.19 1.53 1.46 1.96 2.91 1.54 

Minimum 0.90 0.92 1.44 0.98 0.96 1.17 1.31 1.36 1.16 

(f) KLb = 975 in 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.00 1.03 1.51 1.15 1.33 1.24 1.72 2.46 1.28 

COV 0.03 0.10 0.05 0.07 0.17 0.09 0.21 0.32 0.11 

Maximum 1.06 1.24 1.60 1.31 1.71 1.40 2.35 3.54 1.47 

Minimum 0.97 0.91 1.43 1.06 1.02 1.11 1.32 1.59 1.10 

(g) KLb = 1125 in (6 girders) 

Statistical 

Parameter 

Dc/D = 0.5 Dc/D = 0.625 Dc/D = 0.75 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 0.97 1.11 1.47 1.07 1.36 1.19 1.52 2.22 1.24 

COV 0.04 0.07 0.04 0.12 0.18 0.02 0.27 0.39 0.22 

Maximum 1.00 1.17 1.51 1.16 1.54 1.21 1.81 2.84 1.43 

Minimum 0.95 1.05 1.42 0.98 1.19 1.17 1.24 1.60 1.05 
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Summary of results for doubly-symmetric girders 

From Table 2, it is observed that the proposed model described in Section 4.1 performs better 

than the current AASHTO and Eurocode equations in predicting the simulation-based flexural 

capacities of these girders. The following key points are gleaned from the above table: 

1. The proposed model performs reasonably well for doubly-symmetric slender web girders. In 

general, this model gives slightly conservative predictions at smaller unbraced lengths in the 

inelastic LTB region, as compared to the AASHTO equations. This is due to the low values 

of initial geometric imperfections and residual stresses used in FE test simulations. As noted 

previously, due to end fixities on the test specimen, an initial flange sweep of Lb/2000 is 

close to Lb/4000 between the inflection points. The influence of this low magnitude of 

imperfection is reflected in Figs. 6 through 8, where the simulation data indicate a relatively 

flat slope within the inelastic LTB region for the plots shown on the right. However, plots for 

twice the values of initial imperfections are also shown in Figures 6 through 8 (left), which 

indicate excellent correlation with the proposed model in the inelastic range, although 

slightly unconservative at the region around Lr. In view of these observations, it is reasonable 

to state that the proposed LTB model is safe to use for design in the presence of geometric 

imperfections within AWS tolerances. 

2. While the current AASHTO model is conservative for the yield limit state, it tends to over-

predict the capacities for the doubly-symmetric girders in the inelastic and the shorter lengths 

of the elastic regions of the LTB curve (minimum of Mmax/MnAASHTO ranges from 0.87 to 

0.91). The current AASHTO predictions are actually quite good for doubly-symmetric 

girders at the smallest unbraced length considered within the inelastic LTB range in these 

studies (KLb = 225 inches and 300 inches, Table 2) and the longest unbraced lengths within 

the elastic LTB region (KLb = 1125 inches).  

It is important to note that the MnAASHTO calculations here are based on the calculation of a 

single Rb using the compression flange yield strength, and the use of this Rb for all the 

unbraced lengths corresponding to a given girder cross-section is conservative. If separate 

larger Rb values are calculated for each of the unbraced lengths, as permitted by AASHTO 

LRFD Article C6.10.1.10.2, the current AASHTO LRFD predictions tend to increase for 

larger KLb values within the inelastic buckling range, but not sufficiently large to capture the 

strengths indicated by FE test simulations.   

3. The proposed model recognizes the fact that Rb =1 at effective unbraced lengths long enough 

where the elastic LTB strength precedes web bend-buckling. This ensures that the proposed 

model is either an excellent prediction of elastic LTB strengths (for doubly-symmetric 

girders) or conservative (for singly-symmetric girders with large tension flanges) at large 

effective unbraced lengths.  

Summary of results for singly-symmetric girders 

The following key points are gleaned from the Table 2 for singly-symmetric cross-sections. 

1. The current AASHTO LRFD equations can severely under-predict the true strength in the 

case of singly-symmetric girders, especially at longer unbraced lengths in the elastic buckling 

range. The mean professional factor (Mmax/MnAASHTO) for Dc/D = 0.625 varies between 1.13 

and 1.36, and the COV varies between 0.10 and 0.18. The mean professional factor 

(Mmax/MnAASHTO) for Dc/D = 0.75 varies between 1.3 and 2.46, and the COV varies between 

0.08 and 0.39. The larger means and COVs are for the longer unbraced lengths. It is evident 
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that neglecting J in computing the elastic unbraced lengths is overly pessimistic for cross-

sections with larger tension flanges. However, including J and using the form of the proposed 

or current LTB strength equations, will result in a gross over-prediction of the inelastic LTB 

strength of such girders. 

2. The proposed model provides a better prediction with a mean professional factor 

(Mmax/MnProposed) that varies between 1.05 and 1.15, and a COV that varies between 0.01 and 

0.12 for Dc/D = 0.625. The mean professional factor (Mmax/ MnProposed) for Dc/D = 0.75 varies 

between 1.05 and 1.72, and the COV varies between 0.01 and 0.27. 

3. The current AASHTO model under-predicts the capacity for several reasons. The first is that 

AASHTO’s current calculation of Rb is highly conservative for singly-symmetric girders as 

discussed in Subramanian and White (2014). The second is the fact that the AASHTO elastic 

LTB equations neglect the St Venant torsional stiffness (GJ) contribution to the buckling 

strength. These factors combine to make the current AASHTO predictions significantly 

conservative for these cases.  

4. The proposed model eliminates the conservatism associated with the first of the above 

reasons. However, it does not address the second reason. As discussed previously, one must 

be cautious in counting upon the contribution from GJ for slender web members. However, it 

is expected that for the close transverse stiffener spacing typically used in longitudinally 

stiffened girders (even if the AASHTO do/D limit is extended to 2.0), the assumption of J = 0 

in writing the LTB resistances tends to be generally conservative.  

For the singly-symmetric girders studied in this research, the above conservative approach of 

taking J = 0 in the elastic LTB prediction is justified due to lack of better characterization of 

web distortion effects.  

Based on the data in Table 2, one can observe that the Eurocode model is more conservative than 

the test simulation data, and the proposed model for Dc/D = 0.5, and Dc/D = 0.625. However, the 

under-prediction by the Eurocode model is consistent across various unbraced lengths for singly-

symmetric girders and is larger for doubly-symmetric cross-sections in the inelastic and elastic 

LTB region. This conservatism is largely due to two reasons:  

1. For slender web girders with unbraced lengths sufficiently short such that the yield limit state 

governs, the Eurocode effective width cross-section model (CEN 2006) is conservative 

compared to the proposed cross-section Rb model in Section 2 (Subramanian and White 

2016).  

2. The residual stress pattern considered for slender web I-girders in the Eurocode 

developments is more severe than that considered in this research (Greiner et al. 2001). 

The Eurocode predictions are less conservative than the proposed model for cross-sections with 

Dc/D = 0.75 at long unbraced lengths in the elastic LTB region because, the calculations 

presented in this paper for MnEC include the effect of the St.Venant torsional rigidity, GJ. The 

proposed model and AASHTO equations take GJ to be zero for these types of members. 

 

5. Flange Local Buckling Limit State 

Selected tests are conducted to assess the performance of the proposed Rb cross-section model in 

Section 2 while evaluating the strengths of longitudinally stiffened plate girders that are 

controlled by the Flange Local Buckling (FLB) limit state. AASHTO (2015) restricts the flange 

slenderness (bfc/2tfc) to 12 in Section 6.11.2.2. This limit ensures that the members studied in this 
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paper are noncompact flange cross-sections. The paper examines the applicability of the flange 

local buckling resistance in the current AASHTO provisions for longitudinally stiffened 

homogenous girders.  

The FLB resistance equations are given in Section 6.10.8.2.2 of the AASHTO Specifications. 

When the compression flange is compact, the local buckling resistance of the flange is taken as 

RbFyc. In case of a noncompact flange, AASHTO Equation 6.10.8.2.2-2, 

 

 1 1
yr f pf

nc b h yc

h yc rf pf

F
F R R F

R F

λ λ

λ λ

   −
= − −     −    

  (2) 

 

is used to compute the local buckling resistance of the flange. The applicability of this equation 

in conjunction with the proposed Rb model is discussed below.  

5.1 FE Modeling 

The same test setup used in Fig. 3 is used in the FLB studies. The lateral braces at the 

compression flange are spaced such that the unbraced length is smaller than the plateau length, 

Lp. 

The Best-Fit Prawel residual stresses and the longitudinal stiffener residual stress as shown in 

Fig. 5 are used in the FLB test studies. The initial web-out-flatness imperfections used in these 

tests are also modeled via the same procedure described previously. In addition to the web 

imperfection, a flange tilt as shown in Fig. 4 (b) is modeled for the FLB sensitive studies in this 

chapter, also satisfying the AWS (2010) criteria. 

5.2 Case Studies 

Two cases with do/D = 1, and 2 are selectively studied for validating the FLB equations. They 

are designated as Cases 1, and 2 in Table 3. The compression flange slenderness, bfc/2tfc is set to 

12.0 for all the girders studied here. The following parameters are varied here.  

• Dc /D = 0.5, 0.625 and  0.75, 

• D/tw = 200, 240 and 300, and  

• bfc = D/6, D/5 and D/4. 

• tfc = 1.04, 1.25 and 1.57 corresponding to the three different values of bfc. 

The clear web depth between the flanges is 150 in, and the yield stress of all the plate elements is 

50 ksi. The longitudinal stiffener is located at 0.4Dc. A total of 54 girders are studied for FLB in 

this paper. 

Table 3: Case studies for straight girders at FLB limit state 

Case  do/D Longitudinal Stiffener ds/Dc 

1 1 AASHTO min 0.4 

2 2 AASHTO min 0.4 

5.3 Results 

The results of this study are tabulated in Tables 4 and 5 for Cases 1 and 2. The results are 

presented as a comparison between Mmax/MnPr and Mmax/MnAASHTO, where Mmax is the maximum 
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moment obtained in the FE test simulation, MnPr is the flange local buckling capacity calculated 

using RbPr in conjunction with AASHTO (2015) FLB equations and MnAASHTO is calculated using 

RbAASHTO. 

It is evident from Tables 4 and 5, and from Fig. 9 that the proposed Rb model provides 

satisfactory, albeit conservative predictions (11 to 17%) of the girder resistances for noncompact 

flange longitudinally stiffened girders compared to test simulations. It is also clear that the 

AASHTO equations tend to under-predict the true capacities by a larger margin (11 to 71%) than 

the proposed model by virtue of the fact that Rb is conservative for doubly-symmetric 

longitudinally stiffened girders, and more so for singly-symmetric members, as demonstrated in 

Subramanian and White (2014). 

 

Table 4: Comparison of FLB capacities using RbPr and RbAASHTO for Case 1 

(a): D/tw = 300 

Dc/D D/bfc Mmax/MnPr Mmax/MnAASHTO 

0.5 

6 1.11 1.28 

5 1.12 1.26 

4 1.13 1.22 

0.625 

6 1.12 1.42 

5 1.11 1.33 

4 1.11 1.25 

0.75 

6 1.11 1.64 

5 1.11 1.49 

4 1.11 1.34 

(b): D/tw = 240 

Dc/D D/bfc Mmax/MnPr Mmax/MnAASHTO 

0.5 

6 1.11 1.11 

5 1.14 1.14 

4 1.14 1.14 

0.625 

6 1.14 1.38 

5 1.16 1.34 

4 1.14 1.26 

0.75 

6 1.13 1.50 

5 1.14 1.42 

4 1.06 1.23 

(c): D/tw = 200 

Dc/D D/bfc Mmax/MnPr Mmax/MnAASHTO 

0.5 

6 1.17 1.17 

5 1.16 1.16 

4 1.17 1.17 

0.625 

6 1.11 1.11 

5 1.13 1.13 

4 1.14 1.14 

0.75 

6 1.14 1.42 

5 1.15 1.38 

4 1.16 1.32 
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Table 5: Comparison of FLB capacities using RbPr and RbAASHTO for Case 2 

(a): D/tw = 300 

Dc/D D/bfc Mmax/MnPr Mmax/MnAASHTO 

0.5 

6 1.15 1.33 

5 1.14 1.28 

4 1.11 1.20 

0.625 

6 1.14 1.46 

5 1.15 1.39 

4 1.13 1.28 

0.75 

6 1.13 1.71 

5 1.14 1.56 

4 1.12 1.37 

(b): D/tw = 240 

Dc/D D/bfc Mmax/MnPr Mmax/MnAASHTO 

0.5 

6 1.12 1.12 

5 1.11 1.11 

4 1.14 1.14 

0.625 

6 1.15 1.41 

5 1.16 1.36 

4 1.15 1.29 

0.75 

6 1.13 1.54 

5 1.15 1.47 

4 1.16 1.37 

(c): D/tw = 200 

Dc/D D/bfc Mmax/MnPr Mmax/MnAASHTO 

0.5 

6 1.13 1.13 

5 1.11 1.11 

4 1.10 1.10 

0.625 

6 1.14 1.14 

5 1.16 1.16 

4 1.17 1.17 

0.75 

6 1.14 1.46 

5 1.16 1.42 

4 1.17 1.35 
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            (a) Case 1, do/D =1, ds/Dc = 0.4                   (b) Case 2, do/D =2, ds/Dc = 0.4 

Figure 9: Comparison of MnProposed with MnAASHTO for FLB of longitudinally stiffened girders 
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 It is recommended, based on the tests discussed in this paper, that the same form of the 

equations as in the current Specifications be used for FLB resistance calculations. However, Rb 

may be computed using the proposed Rb cross-section model.  

Table 6 shows the overall statistics of the proposed Rb model and the current AASHTO 

equations for longitudinally stiffened girders governed by the FLB limit state. Clearly, the 

proposed model is more optimistic than the AASHTO equations, with a lower mean and a lower 

coefficient of variation. 

Table 6: Statistics for Mmax/MnPr and Mmax/MnAASHTO for straight girders at FLB limit state 

Statistical Parameter Mmax/MnPr Mmax/MnAASHTO 

Mean 1.13 1.30 

COV 0.02 0.12 

Maximum 1.17 1.71 

Minimum 1.06 1.10 

Median 1.14 1.29 

 

6. Conclusions 

A proposed cross-section model to calculate Rb of longitudinally stiffened girders is evaluated 

for LTB and FLB limit states in this paper. The following conclusions can be drawn from the 

research presented herein. 

1. This paper demonstrates that using the superior Rb cross-section model along with modified 

LTB equations predicts the LTB strengths of straight longitudinally stiffened girders 

obtained from FE simulations better than the current AASHTO and Eurocode equations. The 

proposed modified form of the LTB equations gives due consideration to the occurrence of 

web bend-buckling, and provides a much improved correlation with test simulation data 

when compared to the AASHTO 2015 Specifications. This model also explicitly recognizes 

that the load shedding factor, Rb, need not be used as a factor on the LTB resistance 

equations, if LTB precedes web bend-buckling.  

2. It is established that the proposed Rb model used in conjunction with the FLB equations for 

noncompact flanges is satisfactory in predicting the capacities of these types of girders. 

Slender flanges are not studied in this research because AASHTO effectively prohibits their 

use in bridge girders by limiting the maximum flange slenderness to 12.0. 

The authors have also conducted research with moment gradient loading in subsequent research, 

and have shown that the proposed cross-section model for Rb can satisfactorily be used for all 

loading and limit state conditions for straight longitudinally stiffened girders. 
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