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Abstract 
The Lateral Torsional Buckling (L.T.B.) design of beams in buildings has received considerable 
attention over the last decades, and relatively similar improved design rules are now 
implemented in major design standards. On the contrary, it may be shown that the various 
available design specifications for the L.T.B. design check of bridge girders still lead to 
significant discrepancies regarding the reduction curve to be used. Furthermore, the resistance to 
L.T.B. of steel bridges depends on several specific parameters such as cross-bracings, geometric 
imperfections and residual stresses. The present paper investigates both experimentally and 
numerically the influence of these parameters on the resistance to L.T.B., and proposes improved 
design rules. 

1. Introduction 
Lateral torsional buckling (L.T.B.) is a complex instability phenomenon which occurs when a 
girder is bent about its major-axis. Numerous experimental and theoretical studies have already 
been conducted to evaluate the resistance of steel girders – building-type girders mainly. The 
obtained results have been used as the basis for current steel construction standards. In the field 
of steel and composite bridge girders, few experimental and theoretical studies exist in order to 
evaluate their structural security particularly with respect to L.T.B. 

Within steel bridges, L.T.B. may occur at various stages in the life of the structure, from 
erection/deconstruction (Figs. 1a, 1b and 2b), to launching and service life (Figs. 1c and 2a). 
Also, composite bridges made of several parallel girders (Fig. 2b) require adequate and careful 
design of lateral braces for the erection phases, so as to limit unbraced lengths of the girders 
prone to L.T.B. 

Moreover, steel bridge girders are typically fabricated with thin, slender plates. These girders 
usually exhibit a full three dimensional response, and are influenced by a number of key 
parameters including cross-bracing, variable geometry of cross-sections, local buckling owing to 
slender webs, loading distributions or even aspects related to manufacturing and to material 
behavior. Typically, the manufacturing of such girders consists in flame cutting the flanges 

1 PhD, École Polytechnique Fédérale de Lausanne, <raph.thiebaud@gmail.com> 
2 Professor, École Polytechnique Fédérale de Lausanne, <jean-paul.lebet@epfl.ch> 
3 Graduate Student, CTICM, <aBeyer@cticm.com> 
4 Professor, University of Applied Sciences of Western Switzerland, <nicolas.boissonnade@hefr.ch> 

                                                 



followed by welding a thin web to the thick flanges – with or without longitudinal stiffeners in 
the web. This results in specific geometrical imperfections on the constituent plates as well as in 
particular residual stresses whose influence on the behavior of the structure is not to be 
neglected. Consequently, beyond being complex, the L.T.B. behavior of bridge girders deserves 
specific attention and shall in particular be differentiated from that of building beams. 

           
Figure 1: Lateral Torsional Buckling of steel bridges. (a) During deconstruction. (b) During erection (concreting 

phase), lower flange (hogging moment). (c) In service, upper flange (sagging moment) 

      
Figure 2: Lack of horizontal bracing in steel bridges. (a) In service. (b) During construction 

This paper presents the results of experimental and theoretical research works towards the L.T.B. 
of steel bridge girders. It first focuses on the determination of suitable residual stresses patterns 
(Section 2) that shall be recommended in numerical Finite Element (F.E.) studies, as based on 
experimental measurements. Then, Section 3 exposes the L.T.B. design recommendations used 
in Europe for bridge girders, and presents numerical models used to characterize the L.T.B. 
response of steel bridges in the present study. F.E. numerical studies covering the various 
influences of residual stresses, geometrical imperfections and cross-bracings are detailed in 
Section 4. Last, Section 5 analyses the numerical results as compared to design 
recommendations, and proposes a L.T.B. verification suited to steel bridge girders. 
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2. Residual stresses in welded (bridge) sections 
2.1. Typical residual stresses patterns 
Typical residual stresses models for bridge welded sections can be divided in two groups: models 
corresponding to flame-cut plates (mostly thick flanges), and models corresponding to rolled 
flanges. The models for flame-cut plates (Fig. 3) are characterized by tension blocks in the 
flanges’ edges and in the vicinity of the welds, and by compression blocks in the transition 
zones. Widths of tensile and compressive zones as well as the corresponding residual stresses are 
different in the two models. In particular, the model exposed in Fig. 3a shows tensile residual 
stresses at the edges equal to the yield stress fy. Note that this model is plate-by-plate self-
equilibrated. 
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Figure 3: Residual stresses distributions for welded profiles with flame-cut plates. (a) Welded profile according to 

E.C.C.S. (ECCS, 1976). (b) Welded profile according to Chacon et al. (Chacon, 2009) 

Others authors have proposed variants to this model as illustrated in Fig. 3b. The latter is a 
simplified version of Fig. 3a model for numerical simulation purposes. It differs firstly by the 
tensile and compressive widths which are function of the flange width bf and the web height hw. 
Secondly, it shows lower values of tensile and compressive residual stresses. This model is no 
more plate-by-plate self-equilibrated. 

Examples of models for residual stresses in welded profiles with rolled plates are presented in 
Fig. 4. The distribution is characterized by tensile stresses at the weld zone equilibrated by 
compressive stresses on the remaining zones. The first such model found in the literature 
(Fig. 4a) proposes a stress value equal to fy for the welded zone with a linear transition to the 
compressive zone where the residual stress is equal to –0.25 fy. The tensile and compressive 
widths are function of plate’s geometries. The other model (Fig. 4b) differs from the previous 
one with a direct transition between the tensile and compressive zones and with block widths that 
are mainly a function of plates’ thickness. This latter model can as well be shown to be plate-by-
plate self-equilibrated. 
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Figure 4: Residual stresses distributions for welded profiles with rolled plates. (a) Welded profile with fy = 235 MPa 

according to E.C.C.S. (ECCS, 1984). (b) Welded profile according to Gozzi et al. (Gozzi, 2007). 

2.2. Measurements of residual stresses in welded plates 
In order to define a more adequate residual stresses model for steel bridge girders, experimental 
activities were conducted at the Steel Structures Laboratory (ICOM) of the Ecole Polytechnique 
Fédérale de Lausanne (Lausanne, Switzerland). Indeed, very few models take into consideration 
all the phases of steel bridge girders manufacturing, that is flat rolling, flame cutting of thick 
flanges and web-flange welding. 

(a) (b) (c)
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Initial measurements Li Final measurements Lf

Li
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Figure 5: Principles of the sectioning method 

Dedicated residual stresses measurements were done using the sectioning method (Fig. 5, 
Tebedge, 1973). They were performed on different S355 steel plates corresponding to the flanges 
of flame-cut girders and flame-cut girders with a welded web (Fig. 6). The flange plates were 
60 mm thick and between 615 and 730 mm wide. The web plate was 20 mm thick (Fig. 6). 

The results of the residual stresses measurements are presented in Fig. 7 for flame-cut and 
welded specimens. 
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Figure 6: Experimental division of flange into strips (flame-cut specimen with width of 730 mm) 

Fig. 7a shows that flame cutting locally introduces a high residual tensile stress on the flange’s 
edges reaching approximately 250 MPa. This tension part is followed by a compressive zone, 
and the influence of welding is seen to be the introduction of further tensile stresses in the 
thermally-affected area near the welds, reaching about 50 MPa at peak. By dividing the edge 
distance by the sample width bf and the residual stresses by the yield stress fy, the results can be 
translated into a non-dimensional pattern, as represented in Fig. 7b. This model has served as a 
basis for the numerical simulations in this study. 
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Figure 7: Flame-cut flanges. (a) Distribution of the average residual stresses measured for welded samples. (b) Non-

dimensional residual stresses experimental model proposed 

3. Lateral Torsional Buckling checks – F.E. parametric studies 
3.1. Design according to Eurocodes/Swiss standards 
Eurocode 3 Part 2 (bridges) EN1993-2:2006 (CEN, 20016) proposes two verification methods 
for the lateral buckling of beams in its clause 6.3.4: a general method (§ 6.3.4.1) and a simplified 
one (§ 6.3.4.2). These approaches differ in the calculation of the so-called relative slenderness 
λLT but are based on the same L.T.B. curves for welded sections (§ 6.3.2.2). The proposed 
approach is based on an Ayrton-Perry format, and leads to a reduction factor χLT that is to be 
applied on the cross-section resistance, taking into account the penalty owing to member 
instability on the cross-sectional resistance. This χLT coefficient is calculated as follows: 
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fixes a length of 0.20 for the plastic plateau of the L.T.B. curves. The generalized imperfection 
factor αLT varies from 0.21 to 0.76 according to the cross-section type. Since bridges girders are 
generally plated girders (i.e. welded beams), curves c (if section slenderness h / b ≤ 2) and d (if 
h / b ≥ 2) usually prevail. 

In its current version, SIA263:2013 (SIA, 2013) Swiss standards for steel construction provides a 
similar expression to Eq. (1) but chooses a plastic plateau length of 0.4 and an imperfection 
factor αD = αLT = 0.49 for welded cross-sections. 
3.2. F.E. parametric studies 
Shell F.E. numerical models have been developed with the non-linear finite elements software 
FINELg (FINELg, 2003). Failure loads were obtained by means of Geometrically and Materially 
Non-linear with Imperfections Analyses (G.M.N.I.A.), while critical loads were calculated using 
Linear Bifurcation Analyses (L.B.A.). In the present study, S355 steel with a yield strength 
fy = 355 N/mm2 and a multilinear elastic-plastic material law as the one of Fig. 8 was used. 
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Figure 8: Material law considered in F.E. simulations 

Two numerical shell models have been built so as to investigate L.T.B. in bridges: 

 A girder-type model that considers a simple girder without any effect of cross-bracings. 
The loading consisted in a constant major-axis bending moment applied at the girder's 
extremities, and supports were defined to represent typical “fork” support conditions. 
This approach enables the evaluation of the influences of residual stresses or of initial 
imperfections on the resistance to L.T.B.; 

 A bridge-type approach, where the model represents a “full” bridge with cross-bracings 
and lateral bracings, loaded with a uniformly distributed load. This model characterizes 
the various influences of the other parameters previously listed. 

More precisely, the girder-type shell model accounts for geometrical imperfections modelled 
with an initial sinusoidal deformation (Fig. 9) with two deformation amplitudes: ∆ = L / 1000 
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and ∆ = L / 3000 where L is the girder span. Considering two deformation amplitudes enables to 
evaluate the sensitivity of the resistance to L.T.B. with the amplitude of the initial imperfection. 

z

xy

  

Figure 9: Initial imperfect geometry following a sinusoidal function (amplified 100x). (a) Axonometry. (b) View 
from the end of the girder 

In order to determine the influence of residual stresses on the resistance to L.T.B. of a bridge 
girder, a case without residual stresses and three cases with different residual stresses models are 
considered for the numerical studies (Fig. 10). Fig. 10a follows the flame-cutting type residual 
stresses pattern from (ECCS, 1976). Fig. 10b follows the welding model from (ECCS, 1984). 
Fig. 10c follows the residual stresses experimental model proposed for flanges in Fig. 7b. For the 
web, the residual stresses pattern is based on the proposition from (Chacon, 2009), adapting the 
tensile width on the welded area to hw / 20 with a stress value of 0.63 fy. 
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Figure 10: Residual stresses models considered for the numerical studies, fy = 355 MPa. (a) Model from 
(ECCS, 1976). (b) Model from (ECCS, 1984). (c) Model proposed in Fig. 7b 

The bridge-type model considers a twin-girder bridge with a simple span L with different cross-
bracing systems and an erection lateral bracing (Fig. 11). The spacing of the two girders was 
fixed to 6.0 m. The static system presents a fixed support and a support allowing lateral 
movement at one end, a free support and a support allowing longitudinal movement at the other 
end (Fig. 11). The uniform load applies at the center of the upper flanges. 
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The bridge-type F.E. models used both shell elements (girders, cross-bracings and stiffeners), 
and of bar elements for the truss girders. Failure loads were calculated using G.M.N.I.A. 
analyses, including as an initial geometrical imperfection the 1st critical mode shape of the 
L.B.A. calculation with an amplitude of L / 1000, where L is the span of the bridge. The residual 
stresses considered are the ones from Fig. 7b. Fig. 12 presents details on the support conditions 
and on different cross-bracing systems. 

fixed support
support with displacement allowed in 
the direction of the arrow

L = 50 m

 
Figure 11: Twin-girder model with a span L = 50 m and cross-bracings every 10.0 m 

   

Figure 12: Details of the cross-bracings at girders’ extremities. (a) Frame. (b) Truss. (c) Diaphragm 

Two geometries of frame cross-bracing (Fig. 12a) have been considered in the present study; on 
the one hand, the cross-bracings on supports that are hf / 2 high, and on the other hand, the ones 
located in span that are hf / 4 high. The truss cross-bracings (Fig. 12b) are K-shaped and are 
modelled with square cross-sections truss elements. The diaphragms (Fig. 12c) are made of thick 
planar elements linking the upper and lower flanges. Further information on geometries are given 
in (Thiébaud, 2014). The parametric study focuses on two bridge girder cross-section geometries 
(Fig. 13). 
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Figure 13: Geometry of the considered cross-sections 

Reporting F.E. reference results involved the following five steps: 

 F.E. calculation of the L.T.B. critical moment Mcr through an L.B.A. analysis; 

 Numerical calculation of the L.T.B. ultimate moment MD,GMNIA through the calculation of 
the failure load using a non-linear geometrical and material analysis; 

 Analytical determination of the characteristic bending moment MRk that, in the case of 
bridge girders with a class 4 “slender” section, requires the calculation of the effective 
elastic section modulus related to the axis of the compressed flange Weff,c; 

 Determination of the relative slenderness Rk
D LT

cr

M
M

λ λ= = ; 

 Calculation of the L.T.B. reduction factor ,D GMNIA
D LT

Rk

M
M

χ χ= = . 

By varying the lengths of the girders in the girder-type approach and the distance between cross-
bracings in the bridge-type approach it is possible to obtain a series of λD – χD pairs, used as the 
F.E. reference for the comparison with the different L.T.B. curves as prescribed in European 
design codes. 

4. Analysis of numerical results 
4.1. Influence of residual stresses 
Fig. 14 presents the influence of residual stresses on resistance to L.T.B. The results are obtained 
with the numerical model described in section 3.2 for the four following situations: 

 Without residual stress (denoted as “W RS” on the following figures); 

 Residual stresses taking into account the flame-cutting and welding according to 
Fig. 10c; 

 Residual stresses taking into account the effect of welding only following the simplified 
model (ECCS, 1984) on Fig. 10b; 

 Residual stress taking into account flame-cutting and welding according to the model 
(ECCS, 1976) on Fig. 10a. 
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The resistance to L.T.B. differences between the situations of residual stresses in Figs. 10c and 
10b, as well as the Fig. 10b and without RS, are represented in Fig. 14 with labels Δ(c-b) and 
Δ(b-W RS), respectively. 

For the studied cross-sections, the effect of the residual stresses on the resistance to L.T.B. is 
visible for a relative slenderness λD < 1.4. The effect is greatest for λD values ranging from 0.6 to 
0.8, then stabilizes or even diminishes depending on the cross-section considered. Beyond the 
λD = 1.4 value, elastic L.T.B. behavior prevails. 
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Figure 14: Influence of residual stresses. (a) St-Pellegrino-type section (SP). (b) Wilwisheim-type section (W) 

Firstly, for both SP and W cross-sections (Figs. 14a and 14b), one immediately notices that the 
introduction of residual stresses decreases the resistance to L.T.B. as compared to an ideal girder 
without residual stresses. The differences given by the curves Δ(b-W RS) reach maximums of 
13.5% for λD = 0.53 (Fig. 14a) and 16.1% for λD = 0.62 (Fig. 14b). These differences show that 
the effect of residual stresses on L.T.B. cannot be neglected. 

The difference Δ(c-b) is also interesting since it shows the effect of the residual stresses due to 
flame-cutting as compared to a model of residual stresses developed for the welded profiles in 
buildings. The differences between those two situations reach maximums of 9.8% for λD = 0.83 
(Fig. 14a) and of 8.2% for λD = 0.62 (Fig. 14b) in favor of the flame-cutting and welding model 
of residual stresses of Fig. 10c. It is therefore recommended to use the flame-cutting and welding 
residual stresses model presented in Fig. 10c within F.E. simulations of the failure load of steel 
slender plate girders in bridges, as this residual stresses model not only represents more precisely 
the fabrication process but also yields more economic results. 

4.2. Influence of geometrical imperfections 
Fig. 15 presents the influence of the amplitude of geometrical imperfections on the resistance to 
L.T.B. Case L / 1000, representing the manufacturing geometrical tolerances (SIA, 2013b), and 
case L / 3000, taking the values of geometrical imperfection measured in the study 
(Thiébaud, 2014), are compared. 
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Figure 15: Influence of the amplitude of geometrical imperfections. (a) St-Pellegrino-type section (SP). (b) 
Wilwisheim-type section (W) 

Figs. 15a and 15b obviously illustrate that when the amplitude of the imperfections decreases, 
the resistance increases (i.e. χD values are higher), even more so when the relative slenderness 
lies between 0.4 and 1.5. The resistance deviation, represented by the curve L / 3000 – L / 1000 
in Fig. 15, shows maximum values of 11.9% for λD = 0.63 (“St-Pellegrino” geometry) and of 
8.8% for λD = 1.0 (“Wilwisheim” geometry). Such results clearly indicate that the effect of the 
amplitude of geometrical imperfections may lead to significant differences. It follows that the 
amplitude of L / 1000 is recommended for the calculation of the failure load of steel girders in 
bridges, both because it represents a reasonable value and for safety reasons. This value can also 
be shown to be safe-sided in comparison to experimental measurements (Thiébaud, 2014). 

4.3. Influence of cross-bracings 
Fig. 16 presents results relative to the influence of cross-bracings on the resistance to L.T.B. of a 
bridge with a 50 m span and a St-Pellegrino-type cross-section (SP50). The three types of cross-
bracings (frame, truss and diaphragm) have a 7 – 8 – 10 m spacing, in ascending order of relative 
slenderness in Fig. 16. 
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Figure 16: Influence of the cross-section types on the resistance to L.T.B. 

As a first observation on the efficiency of different cross-bracing systems, Fig. 16 results clearly 
show that λD decreases as the cross-bracings rigidity increases, for an equal distance between 
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cross-bracings. As an example, one can note that, for a distance between cross-bracings of 10 m 
(corresponding to the point of each series with the greatest λD), the increase in resistance with 
respect to a frame cross-bracing is of 14% for a truss cross-bracing and of 27% for a diaphragm 
cross-bracing in the St-Pellegrino case. 

Fig. 16 also shows that when the distance between cross-bracings decreases (i.e. when the 
number of lateral supports increases), the resistance to L.T.B. obviously increases. In the case of 
a frame cross-bracing, decreasing the distance between bracings from 10 m to 8 m then to 7 m 
increases the resistance by 7% and 17%, respectively. In the case of the truss cross-bracing, these 
increases are not as important since the cross-bracings are more rigid, but still show some 5% 
and 13% increases, respectively. As for the diaphragm cross-bracing, the full cross-sectional 
resistance (χD = 1.0) is already reached with a distance between cross-bracings of 10 m. 

Fig. 17 shows the shapes of the critical modes (on the left) chosen for the non-linear calculation 
of the SP cross-section and the L.T.B. failure shapes (on the right) associated with frame cross-
bracings (Fig. 17a), truss cross-bracings (Fig. 17b) and diaphragm cross-bracings (Fig. 17c) with 
a distance between cross-bracings of 10 m. 

L.T.B. critical shape (x1000) L.T.B. failure shape (x50) 

  

(a) 

  

(b) 

  

(c) 

Figure 17: Plan of critical shapes (on the left) and failure shape (on the right) for the SP cross-section. (a) SP50 –
 frame cross-bracing, e = 10 m, λD = 0.917; χD = 0.743. (b) SP50 – truss cross-bracing, e = 10 m, λD = 0.709; 

χD = 0.879. (c) SP50 – diaphragm cross-bracing, e = 10 m, λD = 0.693; χD = 1.017 

For all three types of cross-bracings, one naturally observes a good correspondence between the 
critical and failure modes; in addition, the maximum lateral displacement of both L.B.A. and 
G.M.N.I.A. computations is always seen to occur between two cross-bracings at mid-span, in the 
region of greatest major-axis bending moment, the adjacent spans being seen to somehow 
restrain L.T.B. of the weakest segment. By comparing the failure modes, it appears that for truss 
and diaphragm cross-bracings, the lateral deformations are mostly located in between cross-
bracings, whereas for frame cross-bracings it also extends to the adjacent parts. Besides, the 
model with the diaphragm cross-bracings (Fig. 17c) shows for the failure shape that L.T.B. is 
coupled to local buckling in the web. 

 12 



5. Analysis of code prescriptions for Lateral Torsional Buckling 
This section analyses the obtained numerical results through comparisons with the analytical 
approaches available in the Swiss Standards SIA263:2013 (SIA, 2013) or the European 
Standards Eurocode EN1993-2:2006 (CEN, 2006), for both “girder-type” and “bridge-type” 
approaches so as to recommend a practical design method for the L.T.B. of bridge girders. 

5.1. “Girder-type” model 

From an analytical point of view, calculating λD for steel bridge girders requires the calculation 
of the L.T.B. critical stress σcr or the critical bending moment Mcr, which can be done using one 
of the two following methods: 

1. The analytical procedure according to SIA263:2013 in § 5.6.2.3 leads to the following 
relative slenderness: 

 D
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Dy
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where AD and ID are respectively the area and weak axis second moment of area of a T section 
composed of the effective compression flange and of the half of the effective web in 
compression; η is a factor accounting for a non-constant distribution of bending along the 
girder (η = 1 for a constant bending moment). Eq. (2) shows that the relative slenderness is 
composed of a constant term ηπ Ef y

2/  and a term DDD lIA ⋅/  depending solely on the 
geometry and growing linearly with the unbraced length lD; 

2. In dividing the critical L.T.B. moment Mcr calculated with Djalaly's three factor formula5 
(Djalaly, 1974) by the effective elastic section modulus Weff,c of the class 4 cross-section. 
The relative slenderness is expressed by : 

 
cr

ceffy

crD

y
D

M
Wff ,==

σ
λ  (3) 

Fig. 18 enables a comparison of the two analytical approaches as compared to the F.E. numerical 
results from section 4. The relative slenderness λD is represented as a function of the L.T.B. 
length lD for the St-Pellegrino (SP – Fig. 18a) and Wilwisheim (W – Fig. 18b) sections. The 
relative slenderness values calculated numerically by the FINELg F.E. model are represented by 
the points SP – FinelG (Fig. 18a) and W – FinelG (Fig. 18b). 

For the same girder geometries, the analytical expression in Eq. (2) leads to higher relative 
slenderness values up to 30% (case where lD = 30 m, Fig. 18a) as compared to the ones computed 
numerically by FINELg with the girder model. Assuming that the relative slenderness values 
calculated numerically are closer to reality, the analytical expression SIA263:2013 – § 5.6.2.3 
leads to safe-sided resistance predictions, since higher λD values are associated to lower χD ones. 

Oppositely, the three factors analytical expression (Djalaly, 1974) used for the calculation of lD 
as in Eq. (3) shows an excellent correspondence with the numerically calculated ones (Figs. 18a 

5 Space is missing here to give full details on the Djalaly’s method. The interested reader may usefully refer to 
(Djalaly, 1974). 
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and 18b) – non-linear dependence of λD with lD is indeed taken into account by Eq. (3). Thus, 
keeping the slenderness values calculated numerically as references, the analytical expression 
(Djalaly, 1974) enables one to place λD with increased accuracy on the χD – λD diagram, 
generally leading to a gain on the evaluation of the resistance to L.T.B. 
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Figure 18: Comparison of the calculation of the relative slenderness as a function of the unbraced length lD. (a) St-
Pellegrino-type section (SP). (b) Wilwisheim-type section (W) 
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Figure 19: Numerical and analytical comparison of χD with the girder type approach. (a) St-Pellegrino-type section 
(SP). (b) Wilwisheim-type section (W) 

Fig. 19 compares the analytical and numerical approaches of the reduction factor χD for the St-
Pellegrino (Fig. 19a) and Wilwisheim (Fig .19b) cross-sections. Analytically, the relative 
slenderness values λD are determined as presented in Fig. 18 and detailed previously. The 
reduction factor χD is determined analytically with buckling curve c for the SIA263:2013 
standard and curve d for EN1993-2:2006 European standards. Besides, the curves Δχ represent 
the following resistance differences: 

1. Δχ (FinelG – Djalaly) represents the deviation in resistance to L.T.B. between the FINELg 
numerical simulations and the SIA263:2013 curve c for a relative slenderness calculated 
using the method recommended by Djalaly in (Djalaly, 1974); 
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2. Δχ (FinelG – SIA263:2013) represents the deviation in resistance to L.T.B. between the 
FINELg numerical simulations and SIA263:2013 curve c for a relative slenderness 
calculated using the SIA263:2013 – § 5.6.2.3 method. 

For the SP section (Fig. 19a), the analytical results (SIA263:2013 – curve c, EN1993-2:2006 –
 curve d and Djalaly) remain below the numerical results (SP – FinelG) for a relative slenderness 
λD bigger than 0.5. For smaller relative slenderness values (λD = 0.2 and 0.4), the F.E.-computed 
resistances are below the values from curve c from SIA263:2013. These values correspond to 
girders with lengths L1 = 1.83 m and L2 = 3.67 m for a girder height of hf = 2.0 m. The 
corresponding girder slenderness values (L / h) are 0.9 and 1.8, values that are not representative 
of bridge girders and triggers other structural behaviors than L.T.B. (e.g. concentrated bearing 
stresses, local buckling…). Therefore, the relevance of such results shall be left aside in the 
development of an improved design method against L.T.B. 

Cross-section SP (Fig. 19a) shows a difference in resistance ∆χ (FinelG – Djalaly) reaching a 
maximum of 12% for a relative slenderness λD = 1.0 corresponding to a girder length 
L7 = 9.25 m. For this same girder, however with λD calculated with SIA263:2013 – § 5.6.2.3, the 
deviation of resistance ∆χ (FinelG – SIA263:2013) grows again, reaching 0.20 (20%). These 
differences bring out the existing margin between the numerical simulations and the 
SIA263:2013 standard – curve c. 

For section W (Fig. 19b) the analytical calculations (SIA263:2013 – curve c, EN1993-2:2006 –
 curve d and Djalaly) remain smaller or equal to their numerical counterparts (W – FinelG) for 
all the considered reduced slenderness values λD – i.e. safe-sided. For the girder whose length is 
L7 = 16.2 m, the maximum resistance deviations are similar to SP and reaches 0.12 (12%) for ∆χ 
(FinelG – Djalaly) and 0.17 (17%) for ∆χ (FinelG – SIA263:2013) for a relative slenderness of 
λD = 1.0 (Fig. 19b). 

Therefore, for both SP and W geometries, a design approach characterized by i) the calculation 
of λD by means of Eq. (3) and Djajaly’s three factor formula, and ii) by the use of buckling 
curve c shall be recommended. 

5.2. “Bridge-type” model 

Fig. 20 presents the relative slenderness values λD calculated analytically with Eq. (2) and 
numerically as a function of the distance e between cross-bracings. The relative slenderness 
values calculated analytically take into account the in-plane cross-bracings’ rigidities in 
calculating the unbraced length lD according to clause 5.5.3.1 of SIA263:2013. The results are 
valid for frame cross-bracings every 5 to 10 m and for St-Pellegrino (SP – Fig. 20a) and 
Wilwisheim (W – Fig. 20b) cross-sections with a constant distributed transverse load applied to 
the upper flange. 
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Figure 20: Comparison of the calculation of the relative slenderness as a function of the cross-bracings’ spacing e. 
(a) St-Pellegrino-type section (SP). (b) Wilwisheim-type section (W) 
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Figure 21: Comparison of analytical and numerical results of the χD calculation for the bridge type approach. (a) St-
Pellegrino-type section (SP). (b) Wilwisheim-type section (W) 

For bridges with a St-Pellegrino section (Fig. 20a), the results show that the analytical approach 
(SIA263:2013 – § 5.5.3.1) tends to overestimate the numerical prediction (FinelG – SP50 –
 Frame) for λD values. This tendency remains safe since the reduction factor χD decreases as λD 
increases. The deviation between the analytical and numerical approaches is also seen to grow 
when e increases. For example, for a distance between cross-bracings e = 5 m, λD is 
overestimated by 15%, while for e = 10 m it is overestimated by 36%. 

For bridges with a Wilwisheim section (Fig. 20b), the results show that the analytical approach 
(SIA263:2013 – § 5.5.3.1) much better evaluates the relative slenderness as compared to the 
reference numerical calculations (FinelG – W50 – Frame). The deviations in λD between the 
analytical and the numerical approaches are very small, and reach a maximum of 5% for a 
distance between cross-bracings e = 5.5 m. 

Fig. 21 compares the analytical and numerical approaches for the determination of factor χD for 
St-Pellegrino (Fig. 21a) and Wilwisheim (Fig. 21b) cross-sections. The six dots on Figs. 21a and 
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21b correspond, for increasing λD values, to distances between cross-bracings of 5 – 5.5 – 6.25 –
 7.125 – 8.375 – 10 m, respectively. 

For bridges with a St-Pellegrino section (Fig. 21a), the numerical results (FinelG – SP50 –
 Frame) show that they are above the SIA263:2013 reduction curve c with an appreciable safety 
margin around 7 to 8%. When the numerical results are compared to the analytical ones 
(SIA263:2013 – § 5.5.3.1), deviations in the reduction factors χD, represented by the curve ∆χ in 
Fig. 21a, increase when λD increases. This is consecutive to overestimations of λD values by 
SIA263:2013 –§ 5.5.3.1 (Fig. 20a) analytical calculation method which shifts λD to the right side 
following curve c of SIA263:2013. For example, ∆χ spans from 0.15 (15%) for a distance 
between cross-bracings of e = 5 m to a maximum of 0.31 (31%) for e = 10 m (Fig. 21a). 

For bridges with a Wilwisheim section (Fig. 21b), the numerical results (FinelG – W50 – Frame) 
show, as for the SP section, that they are well above the reduction curve c of SIA263:2013. The 
safety margin is comfortable since it reaches values up to 20% for a distance between cross-
bracings of e = 10 m. However, when the numerical results are compared to their analytical 
counterparts (SIA263:2013 – § 5.5.3.1), the increased accuracy in the relative slenderness 
calculation (Fig. 20b) enables a better “positioning” of the analytical λD as compared to the 
numerical one. This decreases the difference ∆χ in reduction factors as compared to the SP 
section, as is shown on Fig. 21b. For example, the reserve of resistance ∆χ goes from 0.14 (14%) 
for a distance between cross-bracings of e = 5 m to 0.21 (21%) for e = 10 m (Fig. 21b). 

The same conclusions as for the “girder-type” approach shall apply here to the “bridge-type 
approach, i.e. i) the calculation of λD by means of Eq. (3) and Djajaly’s three factor formula, and 
ii) the use of buckling curve c can safely be recommended. 

5.3. Recommendation of a buckling curve 
On Fig. 22, a total of 186 points represents the whole set of numerical results exposed previously 
alongside with the results of a M.Sc. project (Torriani, 2014). On the same graph, curves b and c 
from SIA263:2013 standard and curve d from Eurocode 1993-2:2006 are represented. 
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Figure 22: Representation of all numerical results obtained for the L.T.B. of bridge girders 
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In Fig. 22, the differences in L.T.B. resistance ∆χD between the reduction factors calculated 
numerically (χnum.) using the girder type and FINELg bridge type approaches to FINELg and 
standards' reduction curves (χnum.) are represented in Figs. 23. The differences in resistance for 
SIA263:2013 curve b are given in Fig. 23a, those with SIA263:2013 curve c in Fig. 23b and 
those from EN1993-2:2006 curve d in Fig. 23c. 

The SIA263:2013 reduction curve b shows differences in resistance (Fig. 23a) reaching a 
maximum of 0.20 (20%), with an average ∆χD equal to 0.07 and a standard deviation equal to 
0.05. The number of numerical results on the unsafe side ∆χD < 0 is 11 out of 186 and is relative 
to λD values lower than 1.0 for the girder and bridge-type approaches, as shown in Fig. 22. 
The differences increase when compared to SIA263:2013 curve c (Fig. 23b), the maximum 
values reaching 0.25 (25%). The average ∆χD lies around 0.10 with a standard deviation of 0.06. 
The number of numerical results on the unsafe side decreases to 4 out of 186 and concerns 
relative slenderness values λD smaller than 0.60 for the girder type approach only (Fig. 22). No 
numerical result from the bridge type approach is on the unsafe side of curve c. 

EN1993-2:2006 reduction curve d shows important differences in resistance (Fig. 23c) up to 0.38 
(38%) with an average ∆χD equal to 0.20 and a standard deviation equal to 0.10. No numerical 
value is on the unsafe side of curve d. 
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Figure 23 Differences on χD between the numerical results and the L.T.B. curves. (a) SIA263:2013 curve b case. (b) 
SIA263:2013 curve c case. (c) EN1993-2:2006 curve d case. 
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6. Conclusions 
The present paper was dedicated to the L.T.B. behavior and response of welded bridge girders. 
In particular, the distribution of characteristic residual stresses within the cross-section was 
investigated experimentally. These studies have enabled the definition of a residual stresses 
pattern suited to steel bridge girders that properly reflects the manufacturing stages of flame-
cutting and welding. 

Then, the paper has investigated the various influences on the resistance to L.T.B. of residual 
stresses, geometrical imperfections and cross-bracing systems, both on isolated girders and on a 
twin-girder steel bridge for the latter. Numerical and analytical studies allowed validating a 
verification method adapted to bridge steel girders, and its key features shall be summarized as 
follows: 

 In the case of an isolated steel bridge girder without lateral bracing, an analytical 
determination of the L.T.B. relative slenderness λD is possible with a high accuracy 
through the three factors expression giving the critical bending moment value Mcr as 
recommended by Djalay (cf. (Djalaly, 1974)); 

 For an isolated steel bridge girder elastically supported by cross-bracings (typically 
during the erection phase), the calculation of the relative slenderness λD may be done 
safely through a simplified formula mainly involving the unbraced length lD; 

 SIA263:2013 and EN1993-2:2006 buckling curve c leads to safe estimates of the 
reduction factor χD, leading to higher L.T.B. resistances than presently prescribed in 
these codes (curve d is recommended in EN1993-2:2006). Deeper investigations 
(e.g. reliability analyses) may be found in (Thiébaud, 2014). 
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