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Abstract 
Although simple shear connections are typically idealized as perfectly pinned, the actual 
resistance of the gravity framing system to flexural and axial loads can be critical in evaluating 
the robustness and stability of steel buildings subjected to extreme loads such as earthquakes, 
fire, and column loss. There are several key reasons for including more realistic connection 
behaviors in the design and analysis of steel buildings for extreme loads: (i) the gravity 
connections may develop large localized deformations under combined flexural and axial 
loading, potentially precipitating their failure (e.g. due to local buckling, fracture of the bolts, 
etc.), (ii) the gravity connections provide critical lateral bracing to the columns, and failure of 
connections could lead to global instability (potentially resulting in disproportionate collapse), 
and (iii) accurately accounting for contributions from the gravity system in design could 
effectively reduce the demands on the lateral load-resisting system, thus reducing costs. In order 
to include contributions from the steel gravity frames in structural analysis and design, validated 
and computationally efficient analysis tools are needed. This paper describes a component-based 
model for single-plate shear connections that includes the effects of pre-tension and 
accommodates both standard and slotted holes, accounting for deformations associated with bolt 
slip, bolt bearing, and bolt shear. The model also accounts for load reversals and pinching effects 
associated with hysteresis, thus providing the capability to model the connections under arbitrary 
in-plane load histories. Validation cases show that the model is capable of simulating connection 
response under both earthquake and column removal loading. 
 
1. Introduction 
Tests of steel gravity framing systems have shown that steel gravity connections contribute to the 
capacity and robustness of structural systems subjected to extreme loads such as earthquakes, 
fire, and column removal.  However, in the design of structures for seismic and/or wind loads, 
contributions from the gravity connections to the lateral-load resisting system are often ignored 
(with the gravity connections idealized as perfectly pinned), even though gravity connections 
may comprise the majority of the steel framing connections. Tests of bare-steel single-plate shear 
connections under earthquake loads have demonstrated that the connections provide moment 
capacities on the order of 15 % to 20 % of their beam plastic moment capacities, and when 
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composite with a concrete slab on steel deck, they provide capacities on the order of 30 % to 
60 % of their beam plastic moment capacities (Liu and Astaneh-Asl 1999).   Including 
contributions from the steel gravity frames in capacity calculations of the lateral force resisting 
system during the design stage could be advantageous in the design and analysis of new 
structures, by reducing the cost of the overall structural system and making steel moment frame 
or braced frame buildings more competitive with concrete buildings.  Even if the gravity 
connections are not included in the design of the lateral load resisting system, including their 
contributions in building analyses under amplified design loads (i.e., the Federal Emergency 
Management Agency (FEMA) P-695 methodology (FEMA 2009)) could provide a quantifiable 
measure of inherent robustness (or reserve capacity) in the structural system, a topic of 
widespread current interest in the structural engineering community.  A recent study on 1-, 2-, 4-, 
and 8-story non-ductile steel moment framed buildings subjected to the FEMA P-695 “Far-
Field” ground motion set showed that including gravity frames in the building analyses reduced 
the probability of collapse by 45 % (on average), when compared with analyses of the moment 
frames only (Judd and Charney 2014). 
 
The role of the gravity connections in the system robustness is potentially even more critical 
when considering the response of steel buildings to column loss.  Large-scale tests of steel 
gravity framing systems under column removal (Johnson et al. 2014; Johnson and Meissner 
2015) have shown that the system robustness is largely dependent on the capacity of the 
connections to remain intact after undergoing highly-localized rotation and axial displacement 
demands.  However, the results of full-scale tests of steel gravity connections under column 
removal demands available in the literature remain limited to just a handful of connection 
configurations and load histories.  To evaluate general structural robustness, researchers and 
engineers need accurate and validated analysis tools to simulate the connection behavior over a 
wide range of connection configurations and under more general load histories. 
 
Several researchers (e.g., Sadek et al. (2008), Wen et al. (2013b), Main and Sadek (2014), 
Weigand (2014)) have shown that detailed finite element models can accurately simulate the 
behavior of single-plate shear connections under earthquake loads and/or column removal 
scenarios, which are used to evaluate the potential for disproportionate collapse.  However, the 
need to model large structural systems in engineering design practice makes detailed modeling of 
complete structural systems infeasible.  Main and Sadek (2014) recognized these limitations, and 
used results from their detailed finite element models to calibrate a biaxial spring to represent 
each bolt row in a single-plate shear connection, with stiffness parameters estimated based on 
linear regression of rotational stiffness data from seismic testing.  They showed that a reduced-
order modeling approach provided good agreement with push-down tests of two-span beam 
assemblies by Thompson (2009). 
 
Other researchers (e.g., Liu and Astaneh-Asl (2004), Foley et al. (2006), Wen et al. (2013a)) 
have used lumped plasticity springs as a simplified means to capture the connection moment-
rotation and axial force-deformation behaviors.  While lumped plasticity models do provide a 
fairly complete description of the connection backbone response under pure rotation or pure 
axial deformation, they cannot account for interactions between the connection flexural and axial 
behaviors.  Thus, they may not be appropriate for design under extreme loads as: (i) during 
earthquakes, the gravity connections may be subjected to significant axial loads in addition to 
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rotations (Astaneh-Asl 2005), and (ii) for column removal scenarios, the development of 
catenary action requires the connections to accommodate large axial deformations in 
combination with large rotations (Sadek et al. (2008), Oosterhof and Driver (2012), Main and 
Sadek (2014), Weigand (2014)). 
 
Component-based models provide a natural framework for capturing the complex behaviors of 
steel gravity connections under extreme loads as they including both fastener and connected 
element deformations, and provide automatic coupling between the in-plane flexural and axial 
behaviors. A number of component-based models are already available in the literature for 
certain types of steel gravity connections (e.g., bolted end-plate, bolted angle connections), but 
models for single-plate shear connections are relatively few.  In addition to Main and Sadek 
(2014), described above, Elsati and Richard (1996) provided backbone response parameters for 
76 mm (3.0 in) segments of single-plate shear connections and showed that component-based 
models could be used to model the connection pushover moment-rotation response.  Weigand 
and Berman (2008) also used component-based models to determine the moment-rotation 
response of single-plate shear connections, but with the backbone response curve parameters 
taken from a model developed by Rex and Easterling (1996), and including multilinear hysteretic 
rules for the component unload/reload behaviors.  Yu et al. (2009) likewise used the bolt-bearing 
curve developed by Rex and Easterling (1996) to model the backbone response of the connection 
segments, but with empirically modified stiffness values derived from finite element analysis 
results to model temperature dependence. Most recently, Koduru and Driver (2014) modified the 
empirical calibration factors determined by Yu et al. (2009), and also included shear yielding and 
shear fracture, to model the response of single-plate shear connections under column removal.  
 
This paper summarizes a new component-based connection model for single-plate shear 
connections that includes the effects of pre-tension in the bolts and provides the capability to 
model connections with standard and slotted holes.  The model is exercised under both cyclic 
rotations, representative of earthquakes, and combined rotations and axial deformations, 
representative of column removal scenarios.  Results from these representative cases show that 
the model can be used to predict connection force and rotation/deformation capacities under both 
seismic loads and column removal scenarios. 
 
2. Component-based Connection Model 
In component-based connection models, the connection is notionally discretized into 
characteristic-width segments with aggregate force-displacement behaviors represented by 
discrete connection springs (Fig. 1a).  Each characteristic-width segment captures contributions 
from the shear-plate, bolt, and beam-web, which are modeled as individual component springs in 
series as shown in Fig. 1(b) and Fig. 1(c)).  The formulations for the backbone and hysteretic 
responses of the component springs are discussed in detail in the sections below. 
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(a) 

 
 

(b) (c) 
Figure 1: (a) Discretization of single-plate shear connection into connection springs, (b) connection spring stiffness 

contributions in tension, and (c) connection spring stiffness contributions in compression 

 
2.1 Bolt Behavior 
The transverse force-deformation behavior of the bolt, including shear and flexural effects, is 
modeled using Eq. (1) as: 
 

 𝑅bolt = 𝑅unl +
�𝐾i,bolt−𝐾p,bolt�(∆bolt−∆unl)

�1+�
�𝐾i,bolt−𝐾p,bolt��∆bolt−∆unl�

𝑅cyc,bolt
�
𝑛bolt

�

�1 𝑛bolt� �
+ 𝐾p,bolt(∆bolt − ∆unl)  , (1) 

 
where ∆bolt  is the bolt shear deformation, 𝑅bolt  is the bolt shear force, (∆unl, 𝑅unl)  are the 
coordinates of the last unload point, 𝑅cyc,bolt = sign(∆ − ∆unl)𝑅v,bolt − 𝑅unl + 𝐾p,bolt ∆unl is the 
cyclic reference load for the bolt shear force-deformation behavior where 
𝑅v,bolt = 0.62𝐹u,bolt𝐴b  (J3-1) is the shear capacity of the bolt, 𝑛bolt = 2,  𝐴b is the bolt cross-
sectional area and 𝐹u,bolt  is the tensile strength of the bolt material.  Fig. 2(a) shows a 
comparison of the bolt backbone force-displacement response to data from three bolt-shear tests 
for 19 mm (3/4 in) diameter A325 bolts from Weigand (2014).  Fig. 2(b) shows the behavior of 
the bolt under increasing magnitude cyclic shear deformations. 
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(a) (b) 

Figure 2: (a) Comparison of bolt shear component spring backbone response with bolt shear data from Weigand 
(2014)2, and (b) bolt shear component spring cyclic response 

 
The initial stiffness of the bolt force-deformation response is calculated using the bolt bearing 
stiffness 𝐾br,bolt and the bolt shearing stiffness 𝐾v,bolt as  
 
 𝐾i,bolt = 1

1
𝐾br,bolt

+ 1
𝐾v,bolt

   . (2) 

 
The bearing stiffness is calculated as 
 

 𝐾br,bolt = 1
1+3𝛽b

�𝑡p𝑡w𝐸bolt

2𝑡p𝑡w
�  , (3) 

 
based on the work by Nelson et al. (1983), where 𝛽b is a correction factor that accounts for the 
concentration of bearing forces at the interface between plates for bolt in single shear.  The value 
of 𝛽b can range from 1 for a simple shear pin to relatively small values (on the order of 0.15) for 
pre-tensioned bolts with large bolt heads, washers, and nuts.  For the analyses included in this 
paper, a value of  𝛽b = 0.7 was used.  The bolt shearing stiffness is determined by assuming that 
the bolt acts as a prismatic Timoshenko beam with circular cross-section and fixed ends, such 
that: 
 
 𝐾br,bolt = 12𝐸bolt𝐼bolt

𝐿bolt
3 (1+Φ)   , (4) 

 
where 𝐸bolt is the modulus of elasticity of the bolt, 𝐼bolt = 𝜋𝑑𝑏

2 64⁄  is the moment of inertia of 
the bolt shaft cross-section, 𝐿bolt = 𝑡p + 𝑡w is the bolt length, and 
 
 Φ = 12𝐸bolt𝐼bolt

𝐿bolt
2 � 1

𝜅𝐺bolt𝐴b
�
  (5) 

 

                                                 
2 Estimated uncertainty in measured experimental data less than 1 % 
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is a term in Timoshenko beam theory that characterizes the relative importance of the shear 
deformations to the bending deformations (Thomas et al. 1973).  In Eq. (5), 𝐺bolt = 𝐸 2(1 + 𝜐)⁄  
is the bolt shear modulus, and 𝜅 is the shear coefficient for a circular cross-section, defined as: 
 
 κ = 1

7
6+1

6� 𝜈
1+𝜈�

  . (6) 

 
The bolt plastic shear stiffness, 𝐾p,bolt, was assumed to be 2 % of the bolt initial shear stiffness, 
𝐾i,bolt. 
 
2.2 Shear Plate and Beam Web Behavior 
The shear-plate and beam-web component springs (i.e., plate springs) are modeled using a 
piecewise version the Richard Equation (see Richard and Abbott (1975)) such that: 
 

 𝑅(∆) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�𝐾b
−−𝐾p

−��∆−∆br
− �

�1+�
�𝐾b

−−𝐾p
−��∆−∆br

− �
𝑅b

− �
𝑛b

−

�

�1
𝑛b

−� �
+ 𝐾p

−(∆ − ∆br
− ),             ∆ ≤ ∆slipctr − 1

2
∆slip

�𝐾i−𝐾y�∆

�1+�
�𝐾i−𝐾y�∆

𝑅y
�
𝑛

�
�1 𝑛� � + 𝐾y∆,                  ∆slipctr − 1

2
∆slip ≤ ∆ ≤∆slipctr + 1

2
∆slip

�𝐾b
+−𝐾p

+��∆−∆br
+ �

�1+�
�𝐾b

+−𝐾p
+��∆−∆br

+ �

𝑅b
+(𝑇)

�
𝑛b

+

�

�1
𝑛b

+� �
+ 𝐾p

+(∆ − ∆br
+ ),             ∆ ≥ ∆slipctr + 1

2
∆slip

 (7) 

 
where the superscripts, (∙)+  and (∙)− , denote tensile and compressive deformations of the 
component spring, respectively, and the remaining parameters in Eq. (7) are defined below.  Fig. 
2(b) shows a schematic of the backbone response. 
 

 
Figure 3: Plate component spring backbone force-displacement response 
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Prior to bearing, the single-plate shear connection resists load via friction due to the clamping 
force supplied by the bolt pre-tension and the surface contact between the bolt and plates. For 
slip-critical connections, the plates are assumed to behave elastically prior to slip, with initial 
stiffnesses determined from the gross areas of the plate characteristic-width segments as: 
 
 𝐾i = 𝑤𝑡p𝐸

𝑎  (8) 
 
where 𝑤 is the width of the shear plate segment, 𝑡p is the plate thicknesses, 𝐸 is the modulus of 
elasticity of the plate steel, and 𝑎  is the distance between the column face to the bolt line.    
Connections that do not use pre-tensioned bolts may not develop the elastic plate stiffnesses, and 
thus may have significantly smaller initial stiffnesses.  For connections without pre-tensioned 
bolts, the initial stiffness of the friction-slip behavior can be assumed to equal the initial plate 
bearing stiffness for the relevant loading direction, 𝐾b

+ or 𝐾b
−, defined below. 

 
Slip occurs as the loading overcomes the resistance supplied by the bolt pre-tension and friction 
between the sliding surfaces.  After slip is initiated, the bolt continues to slip until the initiation 
of bearing contact between the bolt shaft and the bolt holes (at deformations of  ∆slipctr −
(1 2⁄ )∆slip  in compression or  ∆slipctr + (1 2⁄ )∆slip  in tension, where ∆slip  is the difference 
between the plate hole diameter (or slot width, when applicable) and the bolt diameter). 
 
The load at slip can be calculated as: 
 
 𝑅slip = 𝑛f𝜇𝜇𝐴𝑏𝐹u,bolt  , (9) 
 
Where 𝜇 is coefficient of friction between the steel surfaces in contact, 𝑛f is the number of faying 
surfaces (or slip planes), 𝐴b and 𝐹u,bolt were defined above, and 𝜇 is the ratio of the bolt pre-
tension load to the bolt tensile strength. For the modeling presented in this paper, 𝜇 = 0.75 was 
used and 𝜇 was taken as 0.338, corresponding to an average value calculated from a large set of 
data compiled by Grondin et al. (2007). 
 
It should be noted that when connections are loaded dynamically, the load in the connection 
spring may decrease as the coefficient of friction decreases from the static to the kinetic 
coefficient of friction.  However, most tests of single-plate shear connections, including those 
used for comparison with the model, have been conducted at sufficiently small loading rates that 
their behavior remained pseudo-static.  For pre-tensioned bolts in pseudo-static tests, the 
resistance of the connection tends to remain relatively constant or even increase slightly as the 
bolts slip (e.g., Liu and Astaneh-Asl (2004), Weigand (2014)).  While Eq. (7) allows for either 
positive or negative slip stiffnesses (designated as 𝐾y), the comparison studies presented here 
found that a small positive value of 0.01 % of the initial stiffness was appropriate in all of the 
considered cases. 
 
The capacity and stiffness parameters of bearing portion of the shear-plate and beam-web 
component behavior were adapted from the work of Rex and Easterling (1996), who performed 
46 tests on a single bolt bearing against a single plate. The elastic and plastic bearing stiffnesses 
of the bearing force-deformation response can be determined from 𝐾b

+ = 𝛽s𝐾�b𝜇𝐾b  and 𝐾p
+ =
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𝛽s𝐾�b𝜇𝐾p , where 𝛽s = 1  for structural steel, 𝜇𝐾b = 1.731 , and 𝜇𝐾p = −0.009  (see Rex and 
Easterling (1996)), and 
 
 𝐾�b = 1

1
𝐾� b

br+ 1
𝐾�b

b+ 1
𝐾�b

v
  (10) 

 
with elastic stiffness contributions resulting from direct bearing ( 𝐾�b

br = 120𝑡p𝐹y𝑑b
�4

5� � ), 
bending (𝐾�b

b = 32𝐸𝑡p�𝐿ehp − 𝑑b 2⁄ �
3
), and shearing (𝐾�b

v = (20 3⁄ )𝐺𝑡p�𝐿ehp − 𝑑b 2⁄ �).  In the 
equations for the stiffness contributions, 𝑡p is the plate thickness, 𝑑b is the bolt diameter, 𝐹y is 
the yield strength of the plate material, 𝐸 is the modulus of elasticity of the plate material, and 𝐺 
is the shear modulus of the plate material. 
 
The bearing response of the plates in compression is more constrained than that in tension, due to 
the additional restraint against bending provided by the plate welds.  The additional constraint 
leads to a marginally stiffer force-deformation response in compression, relative to that in 
tension, an effect has also been noted experimentally for single-plate shear connections under 
increasing magnitude reversed cyclic loading (Crocker and Chambers 2004).  The component 
spring bearing force-deformation response in compression mirrors the response in tension, but 
with initial elastic and plastic bearing stiffnesses based only on the direct bearing stiffness such 
that 𝐾b

− = 𝛽s𝐾�b
br𝜇𝐾b  and 𝐾p

+ = 𝛽s𝐾�b
br𝜇𝐾p .  In compression, 𝜇𝐾p = 0.001 is taken as a small 

positive value to avoid the potential for a negative tangent stiffness.  
 
Load Reversal Behavior 
The behavior of single-plate shear connections upon load reversal can be relatively complex, but 
adequately capturing those complexities is critical to modeling the load-history-dependent 
resistance and energy dissipation capacity of the connections.  Tests on single-plate shear 
connections under seismic loads have shown that the connection moment-rotation response 
becomes increasingly pinched and nonlinear at large rotations (e.g., Crocker and Chambers 
(2004), Liu and Astaneh-Asl (2004)).  At small rotations prior to bearing, friction supplied by 
pre-tensioned bolts resists sliding in both directions, and the cyclic friction slip behavior at load 
reversal can be characterized by  
 

 𝑅 = 𝑅unl + �𝐾i−𝐾y�(Δ−∆unl)

�1+�
�𝐾i−𝐾y��Δ−∆unl�

𝑅cyc
�
𝑛y

�
�1 𝑛y� �

+ 𝐾y(Δ − ∆unl)  , (11) 

 
where, similar to the bolt shearing response, (Δunl, 𝑅unl) are the coordinates of the last unload 
point and 𝑅cyc = sign(∆ − ∆unl)𝑅y − 𝑅unl + 𝐾y ∆unl is the current value of the cyclic reference 
load.  Eq. (11) represents a “full” (i.e., not pinched) cyclic hysteresis that is symmetric about the 
origin. 
 
After bearing has been initiated, the plate component spring model also tracks the coordinates of 
the minimum and maximum unload points, �Δunl,min, 𝑅unl,min�  and �Δunl,max, 𝑅unl,max� 
respectively.  The load reversal behavior is then defined between the values of the minimum and 
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maximum unload points within the current cycle, permitting the model to capture the evolution 
of the connection response with increased hole elongations due to bearing.  Pinching in the 
connection begins at the initiation of bearing deformations as a result of the loss of pre-tension in 
the bolts.  This phenomenon is captured within the shear-plate and beam-web component springs 
by allowing the pinching (the scalar parameter 𝛾 in Eq. (15) below) to vary as a function of 
accumulated bearing deformation.  The pinched hysteresis response is formed from a 
combination of two response curves. The first curve is the general form of the Richard Equation, 
which represents the response with no pinching, written in terms of the bearing curve 
parameters: 
 

 𝑅 = 𝑅unl + �𝐾b
+−𝐾p

+�(Δ−∆unl)

�1+�
�𝐾b

+−𝐾p
+��Δ−∆unl�
𝑅cyc

�
𝑛b

+

�

�1
𝑛b

+� �
+ 𝐾p

+(Δ − ∆unl)  , (12) 

 
where 𝑅cyc = 𝑅b

+ + 𝑅y  for the initial unload cycle, and 𝑅cyc = 𝑅unl,max − 𝑅unl,min  for all 
subsequent cycles.  The second curve, which represents the fully pinched response, is defined 
using a Bézier curve (e.g., Farin (1993), Prautizsch et al. (2002)).  The Bézier curve was chosen 
because it provides an adaptable smoothly transitioning approximation to a piecewise-linear 
curve, that can be defined to traverse a path through zero load at zero displacement with a small 
residual stiffness 𝐾res, and to terminate at the appropriate minimum or maximum unload point, 
depending on loading direction.  The Bézier curve is calculated as 
 
 𝑩(𝑡) = � 𝐵𝑖

𝑛(𝑡)𝑛
𝑖=0 𝑷𝑖  , (13) 

 
where 𝑡 is a parametric variable ranging from 0 to 1 (i.e., 0 at the current unload point and 1 at 
the current reload point), 
 
 𝐵𝑖

𝑛(𝑡) = �𝑛
𝑖 � (1 − 𝑡)𝑛−𝑖𝑡𝑖       𝑖 = 0, 1, … , 𝑛 (14) 

 
are Bernstein polynomials, �𝑛

𝑖 � = 𝑛!
𝑖!(𝑛−𝑖)!

 are the binomial coefficients, and 𝑷𝑖 is the set of control 
points that define the curve trajectory (Fig. 4).  Tests of connections under cyclic rotation cycles 
have shown that 𝐾rel

− ≈ (1 2⁄ )𝐾b
− and 𝐾rel

+ ≈ (1 2⁄ )𝐾b
+. At a given value of 𝑡, the Bézier curve 

resulting from Eq. (14) has two components, where the second component corresponds to the 
component spring load (i.e, 𝑩2(𝑡) = 𝑅BZ).  𝑅BZ represents load reversal behavior that is fully 
pinched. 
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Figure 4: Schematic of Bézier curve with control points (unload from positive deformation) 

 
The actual load reversal path 𝑅p  is calculated as a weighted summation between the full 
hysteretic behavior (i.e., Richard Equation) and fully pinched behavior (i.e., Bézier curve) as: 
 
 𝑅p = 𝛾𝑅 + (1 − 𝛾)𝑅BZ  , (15) 
 
where the amount that each curve contributes to the response defines the pinching ratio 𝛾, which 
can vary between 0 and 1.  Fig. 5(a) shows a schematic of the pinching behavior for the initial 
unload cycle and Fig. 5(b) shows a schematic of the pinching behavior for the subsequent cycles. 
 

   
(a) (b) 

Figure 5: Schematic showing plate component spring pinched hysteresis (Eq. (15)) for (a) initial unload cycle and 
(b) subsequent unload cycle 

 
Calibration of Pinched Hysteresis 
The evolution of the pinching parameter 𝛾 was determined by assuming that the bolt behaves 
elastically, and calibrating the shear-plate and beam-web component-spring pinching behavior 
against data from Liu and Astaneh-Asl (2004), for a four-bolt single-plate shear connection 
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subjected to increasing magnitude rotation cycles.  The results of the pinching calibration are 
shown in Fig. 6(a), and Fig. 6(b) shows a comparison of the model response using the calibrated 
pinching function to the data from Liu and Astaneh-Asl (2004).  More information on procedure 
used to calibrate the pinching parameter is available in Weigand (2016). 
 

  
(a) (b) 

Figure 6: (a) Pinching ratio data with fitted pinching curve, and (b) comparison of model response, using fitted 
pinching curve, to experimental data from Liu and Astaneh-Asl (2004)3 

 
3. Calculation of Connection Deformations 
The axial deformations of the connection springs, Δj, were calculated in terms of the connection 
rotation and axial deformation demands, 𝜃  and 𝛿 , respectively, using a rigid-body fiber-
displacement model derived by Weigand and Berman (2014): 
 
 Δj = 𝛿 + (1 − cos 𝜃)𝑋j1 − sin 𝜃𝑋j2  , (16) 
 
where 𝑿𝑗  denotes the location of the 𝑗th  connection spring with components 𝑿𝑗 = �𝑋j1, 𝑋j2 �

𝑇
 

relative to the center of rotation of the connection (Fig. 7).  For seismic tests, the connections are 
subjected only to rotation demands (i.e., 𝛿 = 0), and the connection spring deformations are 
essentially linear with increasing rotation. 
 

 
Figure 7: Coordinate system for calculation of spring displacements from rigid-body fiber displacement model 

(Source: Weigand and Berman (2014)) 

                                                 
3 Estimated uncertainty in measured experimental data less than 1 % 



 12 

 
For the connections subjected to column loss, the connection demands can be calculated in terms 
of the vertical deflection of the simulated missing column, Δsyst,  (termed “simulated vertical 
displacement”) as 
 
 𝜃 = tan−1 �Δsyst

𝐿r
�  , (17) 

 
and 
 

 𝛿 = 𝐿r
2

��1 + �Δsyst

𝐿r
�

2
− 1�  , (18) 

 
where 𝐿r is the distance between the centers of gravity of connection bolt groups on the ends of 
the framing members (in the undeformed configuration). 
 
4. Results and Discussion 
To examine the ability of the component-based model to adequately capture the connection 
response, the model was used to predict the responses of multiple tested connections for which 
data are available in the literature.  Fig. 8 shows a comparison of the predicted response from the 
model to the moments at the peak rotations from each cycle of data from Crocker and Chambers 
(2000), for a 4-bolt single-plate shear connection with 19 mm (3/4 in) diameter A325 bolts, a 9.5 
mm (3/8 in) thick A36 shear plate, and a W18×55 beam section.  It should be noted that, because 
Crocker and Chambers (2000) listed the material grades used in the connection tests, but did not 
include coupon data for the shear plate and beam web materials, this comparison assumed plate 
material yield and ultimate tensile strengths equal to the expected material strengths from 
ANSI/AISC 341-10 (AISC 2005).  Fig. 8 shows that the model underestimated the resistance of 
the connection at small rotations, relative to the connection data, but better approximated the 
peak moments of the connection at large rotations.  During the cycle prior to connection failure 
in the test, the model was within 5 % of the moments at the peak rotations (4 % at the cycle peak 
and 1 % at the cycle valley). 

 
Figure 8: Comparison of moment-rotation response predicted by component-based model with connection data from 

Crocker and Chambers (2000)4 (connection data shown at cycle peaks) 

                                                 
4 Estimated uncertainty in measured experimental data less than 2 % 
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The component-based connection model was also compared to data from single-plate shear 
connection sub-assemblages tested by Weigand and Berman (2014) under simulated column 
removal.  The model was subjected to the same rotation and axial deformation demands as were 
used in the sub-assemblage tests.  The component spring displacements, due to the connection 
demands, were calculated from Eq. (16).  Fig. 9 shows a comparison of the connection response 
predicted by the model with the vertical (i.e., along 𝑋2) and horizontal (i.e., along 𝑋1) force-
displacement responses from Specimen sps4b|STD|34|38|48L from Weigand and Berman (2014), 
which corresponds to a 4-bolt single-plate shear connection with 19 mm (3/4 in) diameter bolts, a 
9.5 mm (3/8 in) thick shear plate, and a 14.6 m (48 ft) span.  The estimated uncertainty in the 
measured experimental data was less than ± 0.5 %, based on repeated calibrations of the 
instruments over the course of testing.  The model under-predicts the connection vertical 
resistance throughout most of the analysis, relative to the connection data.  This discrepancy 
occurs as a result of excess shear force in the tested connections, an effect which is described in 
detail in Weigand (2016).  The model does not account for this excess shear force; however, as 
the excess shear force dissipates at large simulated vertical displacements (i.e., when the shear 
resistance of the connection is due primarily to tension resistance in the rotated configuration), 
the vertical force-displacement response of the model approaches that of the tested connection.  
The model predicted the peak vertical connection resistance within 4 % and the peak horizontal 
connection resistance within 1 %. 
 

  
(a) (b) 

Figure 9: Comparison of predicted (a) vertical force-displacement response and (b) horizontal force-displacement 
response from component-based model with connection data 

 
5. Summary 
This paper summarized the development of a component-based model for single-plate shear 
connections.  The model was compared against the moment-rotation response of a single-plate 
shear connection tested under increasing magnitude rotation cycles (i.e., seismic loads), as well 
as against the vertical and horizontal force-displacement responses of a connections tested under 
combined rotation and axial deformation demands (i.e., column removal loads).  The close 
agreement between the model and the connection experiments, as well as additional comparisons 
between the model predictions and connection test data presented in Weigand (2016), serve as 
validation of the proposed modeling approach. 
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Beyond predicting the responses of the single-plate shear connection tests considered in this 
paper for validation, the component-based model provides other key capabilities, such as the 
capacity to capture load reversals and energy dissipation, that are critical to modeling the 
responses of connections subjected to extreme loads.  The model also accounts for the pinching 
effects associated with hysteresis, which are critical to modeling the history-dependent resistance 
of connections under seismic loads, and which also play a role in the behavior of connections 
subjected to column removal. 
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