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Abstract 

The design of cold-formed steel members must consider a variety of buckling failure modes, 

including local buckling, distortional buckling, and global buckling. In 2004, the American Iron 

and Steel Institute incorporated the Direct Strength Method (DSM) into the North American 

Specification for the Design of Cold-Formed Steel Members as an alternative to traditional design 

methods. This method involves an elastic buckling analysis to determine buckling modes and 

stresses, and utilizes a series of nominal strength curves for predicting member strength. However, 

the strength curve selection requires mode determination based on general guidelines and 

interpretation of mode shapes. The purpose of this paper is to present a newly developed 

quantitative method of determining buckling modes. This will allow the complete DSM strength 

calculations to be performed by computer software without user intervention, and will enable 

stronger adoption of the Direct Strength Method. 

 

 

 

1. Introduction 

The Direct Strength Method (DSM) has been available for engineers to use with cold-formed steel 

design since the American Iron and Steel Institute (AISI) incorporated this option into the 2004 

Edition of the Specification. This method is general in nature and offers some nice advantages, 

such as the ability to handle unconventional shapes. 

 

The adoption of this method in the industry has been slow. This can be attributed to a number of 

factors relating to the time and effort involved. Specialized software is required to perform the 

elastic buckling analysis, effort is required to set up the analysis problem, calculation time inhibits 

iterative design changes, and the interpretation of buckling modes is a manual process. 

 

Strides have been made in the availability of software, analysis setup effort, and calculation times. 

But the determination of buckling modes without user interpretation has not yet been 

accomplished. That is the objective of this paper. 
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2. Buckling Modes 

The DSM strength curves are defined for specific buckling modes: local buckling, distortional 

buckling, and global buckling. Figures 1 and 2 show the relationship between elastic buckling 

strength and nominal design strength for compression and bending, respectively. 

 

    
 Figure 1 Figure 2 

 

Local buckling involves the deformation of flat plate elements. It has significant post-buckling 

strength because much of the cross section remains substantially intact and is capable of carrying 

additional load. Distortional buckling has more section deformation and therefore the post 

buckling strength is lower. Global buckling can be either flexural, torsional, or flexural-torsional 

buckling. These global modes represent a limit state and there is no post-buckling strength. 

 

For the direct strength method, it is important to correctly identify the buckling mode to utilize the 

appropriate strength curve. The DSM curves also incorporate interaction between local and global 

buckling, therefore proper distinction between local and distortional buckling is necessary. 

 

For basic shapes, the definition of local and distortional buckling is well defined and illustrated 

with examples such as those in Figures 3 and 4 (AISI 2012b). 

 

 
Figure 3: Example I-8 (AISI 2002) 
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Figure 4: Example I-10 (AISI 2002) 

 

For non-standard or more complex shapes, the mode determination may be less obvious and 

perhaps even a combination of modes. Figure 5 shows some example buckling modes which are 

more difficult to categorize. 

 

 
Figure 5 

 

 

3. Quantitative Approach 

The Commentary on North American Cold-Formed Steel Specification (AISI 2012b) provides a 

guideline for treating a buckling mode as local buckling where the half-wavelength is less than the 

largest characteristic dimension of the cross section. Larger half-wavelengths would be 

characterized as distortional buckling or global buckling. 

 

For non-standard shapes it may not be evident how the largest characteristic dimension is defined. 

Another macro-level approach would be limits on L/rc, where rc is the radius of gyration about the 

centroid. Preliminary study shows that L/rc < 3.5 is generally local buckling, and 3.5 < L/rc < 20 
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is generally distortional buckling. However these are not definitive measures. They do not take 

into account the specific geometry of the cross section and the type of buckling deformation that 

occurs. 

 

A micro-level approach that considers the section deformation is sensible to pursue. It was 

observed that variation in finite strip nodal rotations relative to nodal translations often provides a 

reliable differentiation of the different buckling modes. A standard deviation calculation was 

developed as shown in Equation 1. 

 

 𝑠 =
√∑𝜑2 𝑛⁄ −(∑𝜑 𝑛⁄ )2

∑𝛿 ∑𝑤⁄
 (1) 

where: 

  = rotation of each node 

  = translation of each node 

 n = number of nodes 

 w = width of each strip/element 

 

An analysis of several different shapes showed that distortional buckling modes resulted in values 

of s in the range of 0.1 to 0.5. Local buckling modes exhibited higher values, and global buckling 

modes resulted in lower values which approached zero as member length increased. 

 

This demonstrates that a numerical evaluation is capable of reflecting characteristics of the buckled 

shape. However, this heuristic approach relies on statistical measures that do not properly account 

for changes in node distribution, variations in element stiffness, unique boundary conditions, etc. 

It is necessary to capture the mechanics of the section deformation in a quantitative way. 

 

Observation of the axial deformation associated with different mode shapes revealed additional 

characteristics about the buckling types. The example in Figure 6 shows that local buckling has 

little axial deformation, whereas distortional and global buckling exhibit relatively large axial 

deformations (warping). The axial deformations in Figure 6 have been magnified for clarity. 

 

    
 (a) Local Buckling (b) Distortional Buckling (c) Global Buckling 

 

Figure 6 
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The mode shape deformation characteristics are summarized in Table 3.1 in a qualitative manner. 

The objective is to establish a quantitative measure of the section deformation and axial 

deformation. 

 
Table 1: Buckling Characteristics 

Characteristic Local Distortional Global 

Section Deformation Hi Hi Lo 

Axial Deformation Lo Hi Hi 

 

 

4. Work Method 

A reasonable mechanical approach to measuring deformation is to calculate the work associated 

with the deformation for a specific mode shape. Local buckling involves more element curvature 

and therefore requires more section deformation work. Distortional buckling exhibits both section 

deformation and axial deformation, whereas global buckling has essentially no section 

deformation. 

 

Mechanical work is determined by force applied and the distance moved by that force. In an elastic 

system the force increases with the amount of displacement. Figure 7 illustrates the example of a 

simple spring. 

 

 
Figure 7 

 

The force F is proportional to the displacement x by the spring constant k (F = k·x). The work 

done by the force on the spring is determined as shown in Equation 2. 

 

 W =  F·dx =  k·x·dx = ½kx² (2) 

 

For a system with multiple degrees of freedom, the work done is expressed in matrix form as 

shown in Equation 3. 

 

 W = ½ {d}T[K]{d} (3) 

 

where {d} (Nx1) represents displacements, and [K] (NxN) represents the elastic stiffness matrix. 

In an elastic buckling analysis for a specific half-wavelength, [K] and {d} are already determined. 

The mode shape displacements {d} for a finite strip analysis include four different directions for 

each node: horizontal (x), vertical (y), rotational (), and axial (z), as shown in Figure 8. 
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 Figure 8 

 

To calculate the work associated with the cross section deformation, it is necessary to separate the 

in-plane displacements, which involves directions x, y, and . However, these displacements may 

include global translation or rotation of the member (flexural or torsional buckling). To isolate the 

section deformation, these global displacements must be determined and subtracted from the total 

displacements. 

 

The result is a section deformation matrix {ds} which is determined as follows for each node i: 

 

 dsxi = dxi – (x̅ − Yiθ̅) (4) 

 dsyi = dyi – (y̅ + Xiθ̅) (5) 

 dszi = 0 (6) 

 dsi = di – θ̅ (7) 

 

 
 Figure 9 

 

where these terms are illustrated in Figure 9 and defined as: 

 x̅ = mean horizontal displacement 

x 

y z 

 

x 

-Yi 

y 
Xi 

Yi 

Xi 

 



 7 

 y̅ = mean vertical displacement 

 θ̅ = mean rotational displacement 

 Xi = horizontal coordinate of node from centroid 

 Yi = vertical coordinate of node from centroid 

 

The work associated with the section deformation is then determined by: 

 

 Ws = ½ {ds}
T[K]{ds} (8) 

 

The scaling of the mode shape displacements is arbitrary, so a normalization of the deformation 

work is required. This is accomplished by dividing the section deformation work by the axial 

deformation work. The axial deformation work is calculated as: 

 

 Wa = ½ {da}
T[K]{da} (9) 

 

where {da} is developed as follows for each node i: 

 

 daxi = 0 (10) 

 dayi = 0 (11) 

 dazi = dzi (12) 

 dai = 0 (13) 

 

Therefore, the normalized deformation work is the unitless ratio Ws / Wa. The magnitude of this 

ratio can vary greatly, so for convenience the work ratio is defined using the square root of the 

ratio as shown in Equation 14. 

 

 𝜆𝑤 = √𝑊𝑠 𝑊𝑎⁄  (14) 

 

 

5. Results 

 

Several example sections were analyzed using this work ratio calculation. For common local 

buckling modes, this ratio was generally in the range of 20 to 100. Distortional buckling values 

were typically between 2 and 10. Global buckling values approached 0 as expected, because the 

global displacements are subtracted to obtain the section deformations, and this buckling mode 

has essentially no section deformation. 

 

Figures 10 through 18 on the following pages contain plots of the elastic buckling stress profiles 

(in blue) and the corresponding section deformation work ratios (in red). 
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Figure 10: Example I-8 (AISI 2002) 
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Figure 11: Example I-10 (AISI 2002) 
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Figure 12: Example I-12 (AISI 2002) 

 

Figure 12 illustrates that the first mode for bending is categorized as local buckling (high work 

ratio), whereas the first mode for compression is categorized as distortional buckling (low work 

ratio).  
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Figure 13: Example I-13 (AISI 2002) 

 

For the hat shape in bending shown in Figure 13, the distortional buckling mode between 3 ft and 

10 ft does not have any stress minima. For the compression case, global buckling experiences 

torsion and flexure at different lengths.  
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Figure 14: Hat with Intermediate Stiffeners 

 

For the compression case shown in Figure 14, this shape experiences two distinct distortional 

buckling modes at different lengths.  
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Figure 15: Custom Cee Shape 
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Figure 16: Rectangular Tube 

 

For the rectangular tube in bending shown in Figure 16, the distortional buckling mode between 5 

ft and 20 ft, does not have any stress minima.  
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Figure 17: Bend Radius Impact 

 

Figure 17 demonstrates that as the bend radius increases, the work ratio decreases but the 

buckling mode remains local buckling. Lengths between 2 and 10 ft experience distortional 

buckling (as in Figure 13), but no stress minima exist. 
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Figure 18: Bent Flange Impact 

 

For a hat shape in positive bending, Figure 18 shows the introduction of a bent top flange at angles 

of 5, 10, and 15 degrees. This increases the buckling stress and decreases the work ratio. For the 

10 and 15 degree flange angles, two stress minima occur, one as local buckling and one as 

distortional buckling. 
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6. Conclusions 

With current descriptive characterizations of mode shapes, some buckling modes may be indistinct 

or difficult to establish. The work method presented in this paper typically depicts a distinct 

difference between local buckling and distortional buckling, and between distortional buckling and 

global buckling. Furthermore, the local and distortional buckling stress minima generally fall 

between the abrupt changes in the work ratio. 

 

The elegance of this method is that no assumptions about the section geometry or the analysis 

model are required. If the model is sufficient to provide elastic buckling values and mode shapes, 

it can also be used to reliably categorize buckling modes, whether the section consists of flat 

elements, stiffened elements, curved elements, or unconventional shapes. 

 

The simplicity of this approach is evident from its use of the elastic stiffness matrix and mode 

shape displacements already determined in the elastic buckling analysis. The displacement 

adjustments and subsequent matrix multiplications require little computational effort. 

 

The recommendation is that section deformation work ratios, w, between 1 and 16 should be 

treated as distortional buckling, higher values should be treated as local buckling, and lower values 

should be treated as global buckling. Suitable language for this approach will be proposed to the 

American Iron and Steel Institute for inclusion in the next edition of the North American 

Specification for the Design of Cold-Formed Steel Structural Members. 
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