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Abstract 

This paper presents the latest developments concerning the numerical modeling of steel-concrete 

composite beams using GBT-based (beam) finite elements. In particular, it is shown that GBT 

makes it possible to assess, accurately and with computational efficiency, the buckling (bifurcation) 

behavior of steel-concrete composite beams subjected to negative (hogging) bending. Two relevant 

buckling phenomena are considered, namely (i) local buckling of the web (plate-like), possibly involving 

the torsional rotation of the compression flange, and (ii) distortional buckling, combining a lateral 

displacement/rotation of the lower flange with cross-section transverse bending. The determination of 

the buckling loads is performed in two stages: (i) a pre-buckling analysis is first carried out, accounting 

for shear lag and concrete cracking effects, and (ii) an eigenvalue buckling analysis is performed next, 

on the basis of the calculated pre-buckling stresses, allowing for cross-section distortion and plate 

bending. Several numerical examples are presented, illustrating the application of the proposed GBT-

based finite element and providing clear evidence of its capabilities and potential. 
 
1. Introduction 

The design of continuous steel-concrete composite beams requires the performance of stability checks in 

negative (hogging) moment regions. The relevant buckling phenomena are usually termed (see Fig. 1(a)): 

(i) “local”, combining plate-like web bending and bottom (compressed) flange rotation, and (ii) “lateral-

distortional” (or simply “distortional”), where the bottom flange undergoes a lateral displacement and the 

cross-section (mainly the web) experiences transverse bending. In addition, the beam failure mode may 

also be influenced by web shear buckling. In Eurocode 4 (EC4  CEN 2004), (i) local buckling is taken 

into account through the use of an effective width approach, (ii) shear buckling is covered by means of 

specific checks and (iii) the design buckling resistance to distortional buckling is calculated using stability 

curves and requires the calculation of elastic critical buckling loads, resorting to the so-called “continuous 

inverted U-frame” model (e.g., Johnson & Anderson 2004  see Fig. 1(b)), which is not a trivial task. 
 
The calculation of elastic distortional buckling loads has deserved the attention of several researchers in 

the past. For instance, it is worth mentioning here (i) the beam finite element approach of Bradford & 

Trahair (1987) (see also, e.g., Bradford & Gao 1992), which accounts for web cubic deformation and 

independent rotations of the flanges, (ii) beam on elastic foundation-type solutions (Svensson 1985, 

Hanswille et al. 1998, Hanswille 2002) and (iii) other spring-type models (Dekker et al. 1995). 
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Figure 1: Steel-concrete composite beams: (a) distortional and local buckling modes and (b) inverted U-frame. 

 
Generalized Beam Theory (GBT) is a thin-walled prismatic bar theory that efficiently handles cross-

section in-plane and out-of-plane (warping) deformation, through the inclusion of “cross-section 

deformation modes”. GBT was originally proposed by Schardt (1966, 1989), has since been considerably 

developed (particularly in the last decade) and is currently well established as a very efficient and valuable 

numerical tool to analyze the linear, buckling, post-buckling, vibration and dynamic behavior of thin-

walled members (e.g., Camotim et al. 2010a, 2010b). 
 
GBT was first applied in the field of steel-concrete composite beams/bridges by Gonçalves & Camotim 

(2010), who demonstrated that GBT can handle, with particular efficiency, complex effects such as 

cross-section distortion, the presence of transverse diaphragms, shear lag or shear connection flexibility. 

Several illustrative examples were presented, concerning linear elastostatic and undamped free vibration 

analyses, and semi-analytical solutions were provided for simply supported members under uniform 

negative moment. Concrete cracking and other types of material non-linearity were not taken into 

consideration. Very recently, Henriques et al. (2015) developed a very accurate and computationally 

efficient physically non-linear GBT-based beam finite element, able to capture the materially non-linear 

behavior of wide-flange steel and steel-concrete composite beams up to collapse. This finite element 

incorporates the effects of concrete cracking/crushing, shear lag in wide flanges and steel plasticity. It 

was shown that the proposed beam finite element can offer significant advantages, with respect to 

standard shell/solid finite element and finite strip models, since (i) it becomes possible to obtain 

semi-analytical solutions (albeit for particular cases), (ii) a much smaller DOF number is generally 

required to achieve accurate results, even in full numerical analyses, (iii) the computation times are 

greatly reduced, particularly in physically non-linear problems, and (iv) the GBT modal decomposition 

of the solution into hierarchic and structurally meaningful cross-section deformation modes provides 

invaluable insight into the mechanics of the problems being analyzed. 
 
This paper focuses on local and distortional buckling (bifurcation) of steel-concrete composite beams 

under variable bending moment. A computationally efficient GBT-based beam finite element is 

developed to calculate the buckling loads. The pre-buckling stresses are calculated accounting for shear 

lag and concrete cracking effects, and the buckling analysis is designed to comply with the EC4 “inverted 

U-frame model” requirements, even if it can be modified to accommodate other assumptions. In 

addition, web and/or compression flange local buckling is also accounted for  since shear buckling is 

usually checked separately, no allowance for this phenomenon is made. To illustrate the application and 

capabilities of the proposed GBT-based finite element, numerical results are presented and discussed. For 

comparison and validation purposes, values obtained with finite strip analyses are provided. 
 
2. GBT Formulation for the Buckling Analysis of Steel-Concrete Composite Beams 

2.1 Fundamentals 

The notation employed in this paper follows that introduced by Gonçalves et al. (2010), with the matrix 

form of the equations and fundamental relations originally defined by Gonçalves & Camotim (2011, 
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2012), although the geometric nonlinear effects are simplified in accordance with the assumptions 

usually made in the context of linearized buckling analyses. 
 
It is assumed that the beam cross-section is of the type shown in Fig. 2(a), i.e., combining a reinforced 

concrete slab with an I-section steel beam. Fig. 2(b) displays the wall mid-lines and local axes (x defines 

the beam longitudinal direction), which constitute the basis of the GBT kinematic description. Each 

reinforcement layer is deemed smeared along the appropriate direction (y for the longitudinal rebars and x 

 

 

Figure 2: Steel-concrete composite beam (a) cross-section, (b) wall mid-lines and boundary conditions, (c) deformation 

modes for the pre-buckling analyses and (d) additional deformation modes for the buckling analyses (renderings 

using linear amplitude functions k=x).  
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for the transverse rebars) and a perfect bond between rebars and concrete is assumed. The cross-section is 

subdivided into the following walls: (i) two flanges and one web, for the steel I-section, and (ii) two 

reinforced concrete flanges of widths bc1 and bc2. Throughout the paper, the parameters associated with 

the concrete slab, steel I-section beam and rebars are identified by the subscripts c, a and s, respectively. 
 
Using the wall mid-surface local axes and Kirchhoff's thin plate assumption, the GBT displacement 

field for each wall is given by vector U, of the form 
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where the commas indicate differentiations, (x) is a column vector containing k=1, ..., D deformation 

mode amplitude functions (D is the number of deformations modes included in the analysis) and 

)(),(),( yyy wvu  are column vectors containing the wall mid-line displacement functions, along 

x, y, z, characterizing each deformation mode. The calculation of these displacement functions, 

for the particular case of steel-concrete beams, is explained next  for general cross-sections they can 

be obtained from the so-called “GBT cross-section analysis for arbitrary sections”, described by 

Gonçalves et al. (2010, 2014) and Bebiano et al. (2015), and already implemented in the GBTUL 

program, freely available at www.civil.ist.utl.pt/gbt. 
 
The Green-Lagrange strains E follow straightforwardly from the displacement field U. The non-

null strain components are subdivided into membrane (M) and bending (B) parts, where the latter are 

always assumed to be small. A plane stress state is assumed and equilibrium is established in terms 

of E and second Piola-Kirchhoff stresses S, through the virtual work statement. A Voigt-like 

notation and the wall local axes are employed, with E
T 

= [Exx  Eyy  2Exy] and S
T 

= [Sxx  Syy  Sxy]. 
 
2.2 Pre-Buckling Analysis 

The pre-buckling analysis follows closely the methodology employed by Henriques et al. (2015), 

although concrete cracking is the only source of physical non-linearity considered here. It is assumed 

that the cross-section is in-plane undeformable and that Vlasov’s null membrane shear strain hypothesis 

holds in the steel beam flanges. Under these assumptions, the only cross-section deformation modes 

that it is necessary to include in the analyses are those displayed in Fig. 2(c): axial extension (E), 

Euler-Bernoulli bending (B) (calculated assuming that the concrete is uncracked), web shear (S) (in-plane 

displacements of the B mode, excluding warping, thus generating a uniform membrane strain distribution 

in the web) and linear/quadratic warping (LW/QW) modes in each concrete wall, accounting for shear lag 

effects. Although additional modes can be included, it has been shown previously (Henriques et al. 2015) 

that the LW/QW modes are sufficient to obtain excellent results, even when steel plasticity and concrete 

crushing effects are accounted for. It should still be noted that, even if no axial force is applied, the E mode 

must be included in the analysis, to capture the neutral axis shift due to cracking and shear lag effects. 
 
The only non-null stress components are M

xy

M

xx

B

xx SSS and, , even if 0M

xyS in the steel walls where 

Vlasov’s assumption holds. In this case, the tangent constitutive matrix is given by 
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where Et and Gt are the tangent uniaxial and shear moduli, respectively.. For steel (I-section and rebars), a 

linear elastic constitutive relation is adopted, although the rebars behave uniaxially (Gt=0). Note that 

the transvers rebars are not taken into consideration in the pre-buckling analyses, as the deformation 

modes considered do not involve 
yyE . Concerning the concrete material behavior, a simplified version 

of the constitutive law proposed by Henriques et al. (2015) is adopted, characterized by null tensile 

strength and a linear compressive branch. Since it is assumed that Syy=0, generalized cracking inevitably 

develops if Sxy0. Separate laws are adopted for Sxx and Sxy, with the former directly related to the 

longitudinal strains Exx through the specified uniaxial law. As for Sxy, a linear elastic relation is adopted, 

with the elastic shear modulus affected by a reduction factor   1 to account for cracking (i.e., Gt= Gc).  
 
A standard GBT finite element interpolation of the amplitude functions is employed, 
 

  =  d (4) 
 
where matrix  contains the interpolation functions and vector d contains the unknowns (the 

amplitude function nodal values). Hermite cubic polynomials are employed for the B and S modes, 

whereas Lagrange quadratic polynomials are used for the E, LW and QW modes (those involving 

warping and null in-plane displacements). This interpolation leads to a 23 DOF element if all seven 

deformation modes are considered. In the case of symmetric sections, the shear lag modes may be paired 

(LW1+LW2 and QW1+QW2), thus leading to a 17 DOF element. 
 
The out-of-balance force vector g, tangent stiffness matrix Kt and incremental load vector f are 

obtained from the numerical integration of the expressions 
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where V is the member (beam) volume, Ξ is a modal strain-displacement operator and q are forces 

acting along the walls mid-surface  (for simplicity, volume forces are not considered in this work). 

Numerical integration is carried out using, in each wall, 3 Gauss points along x and 5 points along 

both y and z  these numbers proved to be sufficient for the problems analyzed. The pre-buckling 

analysis is carried out using Newton-Raphson iterations for a single load step, defining the reference 

loading for the subsequent buckling analysis (calculation of the bifurcation loads). 
 
2.3 Buckling Analysis 

Since the buckling problems addressed in this paper are essentially triggered by longitudinal normal 

stresses, only the non-linear term associated with longitudinal extension is retained. The buckling analysis 

is carried out by solving the standard eigenvalue problem associated with the linearized buckling analysis 

concept, on the basis of the calculated membrane pre-buckling stress M

xxS  distribution. 
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With respect to the pre-buckling analysis, additional cross-section deformation modes must be included 

to enable capturing local and distortional buckling. Although the 0 M

yy

M

yy SE  assumption is still 

retained, transverse bending and torsional stresses/strains inevitably develop, caused by the local and 

distortional deformations, and the tangent constitutive matrices must be changed accordingly. 
 
For steel, a linear constitutive law is considered, making it is possible to uncouple the membrane/bending 

terms and integrate in the trough-thickness direction, as in the case of the shell-like stress resultant 

concept employed by Gonçalves & Camotim (2011, 2012). For the steel beam, this leads to 
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For the longitudinal rebars, only the membrane component is considered and integration along z provides 
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where Asx is the longitudinal rebar area per unit length. The transverse rebars are included in the 

concrete slab, as explained next. 
 
For concrete, the integration along z leads to 
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where (i) Etcx is assumed constant along z (the value at z=0, obtained from the pre-buckling analysis, 

is adopted), (ii) Gc is always affected by  (recall that the concrete is always cracked in some 

direction) and (iii) Dfcy is the transverse bending stiffness, which must include the contribution of the 

transverse reinforcement
3
 and account for cracking, if required (as is the case of EC4).  

 
The geometrically non-linear term is also integrated in the through-thickness direction, leading to  
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where  denotes an incremental (buckling) variation. For the finite element solution, the interpolation 

scheme of the pre-buckling analysis is employed, although a larger number of deformation modes 

are included in the analysis. The discretized eigenvalue problem is cast in the standard form 
 

                                                 
3
 Note that, since it is assumed that 0M

yyE , the straightforward through-thickness integration of the (2, 2) bending 

component of a cracked slab would lead to over-stiff solutions, since the neutral line is not located at z=0. This difficulty is 

circumvented by inserting directly the appropriate Dfcy value, which includes the contribution from the reinforcement. 
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 (Kt + G)d = 0, (10) 
 
where the linear and geometric stiffness matrices read 
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and it should be noted that through-thickness integration is not required. Numerical integration is carried 

out with the same number of Gauss points, along x and y, as that adopted for the pre-buckling analyses. 
 
Concerning the cross-section deformation modes, those employed in the pre-buckling analysis must be 

complemented to enable capturing distortional and local buckling effects. The cross-section structural 

model employed for the calculation of these modes is shown in Fig. 2(b), where the sliding boundary 

condition at the far-right end node of the concrete slab corresponds to a symmetry simplification of the 

inverted U-frame model
4
. The following modes are considered (see Fig. 2(d)): 

(i) A distortional mode D, calculated by imposing a unit lateral displacement (along y) in the lower 

flange and enforcing Vlasov’s assumption in all walls. This mode involves warping and cross-

section in-plane deformation and completes the so-called “Vlasov natural mode set” (Gonçalves et al. 

2010), which becomes completely defined by the E+B+D modes (for symmetric deformation). 

Note that this deformation mode involves transverse bending of the concrete (although it is generally 

minute), which is calculated taking into account the relevant boundary conditions in the concrete 

flange (in the present case, the sliding support). 

(ii) A set of local modes that do not involve warping and capture localized deformation: (L1) a vertical 

displacement of the far-right concrete node, (L2) a rotation of the concrete node above the web , 

(L3) a rotation of the lower flange/web intersection  and (L4-L7) local deformation in the web,  

corresponding to polynomials of increasing degree and null displacements and rotations at the 

web/flange junctions, with )max(/ kkk ffw   and 
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 These local modes are not typical of GBT-type analyses, as cross-section in-plane rotational DOFs 

are being considered. In particular, mode L1 only involves the right-hand side of the concrete slab 

and modes L4-L7 only involve the web  recall that the classic GBT deformation modes are 

                                                 
4
 For other cases, namely when the slab is continuous over several beams, the boundary conditions must be changed 

accordingly. Naturally, this can be easily handled with GBT. The inverted (single) U frame model was adopted here 

because it provides conservative buckling loads. 
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mutually orthogonalized and, therefore, involve displacements throughout the whole cross-section. 

The present (“non-standard”) approach is followed to enable a clearer mechanical interpretation 

of the results, as each mode is associated with specific localized deformations.  
 
It should be mentioned that it has been assumed that the lower flange is sufficiently stocky to preclude 

the occurrence of transverse bending in this wall. Although such effect can be easily incorporated, by 

including additional local deformation modes (in the lower flange), this has not been done in this work. 

For other cases, namely when the slab is continuous over several beams, the boundary conditions 

must be changed accordingly. Naturally, this can be easily handled with GBT. The inverted (single) 

U frame model was adopted here because it falls on the conservative side. 
 
 
3. Numerical Examples 

3.1 Linear Elastic Shear Lag 

First, in order to illustrate the capabilities of the pre-buckling analysis, an elastic shear lag problem is 

presented (Henriques et al. 2015). The cross-section geometry and material parameters are shown in 

Fig. 3(a). Two simply supported spans of length L=6 m and L=8 m are considered and the loading 

consists of a 1 kN/m uniformly distributed vertical loads acting in the web planes. Due to the double 

symmetry, only a “quarter” of the twin-beam (half of the length and cross-section) is analyzed. 
 

 
Figure 3: Elastic shear lag: (a) cross-section geometry, loading and material parameters, (b) brick finite element 

models and (c) neutral surface obtained with the brick model 2. 

 
The GBT analyses are carried out with 8 equal-length finite elements. Since the material behavior is 

assumed elastic, numerical integration is carried out with only 2/3 integration points along z/y, 

respectively, in each wall. For comparison purposes, analyses with 20-node brick finite elements were 

carried out using ATENA (Cervenka et al. 2013) and two refinement levels (see Fig. 3(b)), where 

“model 2” involves doubling (approximately) the number of elements along x and y, and also along z in 

the concrete slab. Both brick models yielded identical results and therefore only those corresponding 

to one of them (model 2) are included in the results presented (provided in Fig. 4). Fig. 3(c) makes it 

possible to observe the complexity of the problem at hand: the neutral surface is located in the concrete 

slab and is inclined (rather than horizontal). 
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Figure 4: Elastic shear lag: (a) mid-span Sxx distributions at the concrete slab mid-height and (b) slab mid-surface contour 

plots for Sxx and Sxy. 



 10 

The stresses obtained with the GBT and brick element models are compared in Fig. 4. In particular, 

the top graphs plot the mid-surface Sxx distributions at mid-span and the bottom figures display surface 

plots of both Sxx and Sxy (also mid-surface values). In spite of the huge difference in the DOF numbers 

involved in each model, the GBT and brick element model stresses are generally in very good agreement, 

specially the mid-span values. The shear lag effects are quite visible and, naturally, more pronounced for 

the shorter span. Note also that the unequal concrete flange widths cause asymmetric stress distributions. 
 
Concerning the mid-span stresses (top graphs), the GBT distributions display a sharp peak over the web, 

due to the “point” contact assumed between the concrete and the steel top flange. The brick element 

models predict a smoother stress distribution in this zone, due to the existence of a contact surface 

between the steel flange and concrete. Although hardly necessary, this contact zone can also be modeled 

in the GBT analyses, by employing a subdivision of the concrete walls into contact and no-contact wall 

segments. Note also that the effect of the contact zone is clearly visible in the Sxy surface plots, as the 

GBT/brick results vary abruptly/smoothly from one side to the other. Finally, note that the GBT Sxy 

surface plots yield non-null values at x=0. This effect can only be mitigated by including transverse 

extension modes in the analysis, rendering the GBT formulation unnecessarily more complex. 
 
3.1 Buckling of Simply Supported Beams under Negative Bending 

This illustrative example concerns simply supported beams subjected to uniform negative moment. 

The relevant geometrical and material parameters, as well as the results obtained, are given in Fig. 5. 

Two steel web height (hw) values are considered and the span L varies between 1 and 17 m. The 

longitudinal reinforcement is deemed located at z=0 and the concrete slab is assumed uncracked in the 

transverse direction (the contribution of the transverse reinforcement is not considered). 
 
Due to the uniform bending, no shear lag effects exist in the pre-buckling analyses and the deck is 

fully cracked in the longitudinal direction. In this case, sinusoidal amplitude functions provide exact 

solutions and, therefore, the finite strip software CUFSM (Li & Schafer 2010) can be employed for 

comparison purposes. The GBT buckling analyses are carried out with 10 equal-length finite elements. 
 
The top graph of Fig. 5 displays the variation of the critical buckling moment with L and the two 

bottom diagrams provide the corresponding GBT modal participations, obtained by means of a strain 

energy criterion. Furthermore, a representative sample of the GBT buckling modes is also shown. It is 

observed that the GBT results are in excellent agreement with the finite strip ones throughout the whole 

L range considered, which demonstrates that the GBT deformation modes selected are appropriate for 

the problem under consideration. These results make it possible to conclude that, as expected, local 

buckling is characterized by very small half-wave lengths, whereas distortional buckling is associated 

with moderate half-wavelengths and is the critical mode for spans of practical interest. The GBT modal 

participation diagrams show that the local buckling mode has major contributions from modes L4/L5 

(web local deformation) and noteworthy participations of modes L3/L6 (rotation of the lower flange 

and web local deformation with 3 half-waves). On the other hand, the distortional mode essentially 

corresponds to the D mode, with a very small participation of mode L3 (note also that this deformation 

mode is the only one participating in both buckling modes). The dashed curves in the top graph 

correspond to buckling analyses performed with the D mode alone and clearly show that the results 

obtained are very accurate, practically matching those determined with all modes for the length range 

associated with critical distortional buckling. It is still worth mentioning that increasing the web height 

hw influences significantly the local buckling load (as expected), but has a minute effect on the 

distortional buckling load (although the half-wavelength value is significantly altered). 
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Figure 5: Buckling of simply supported steel-concrete beam subjected to uniform negative moment. 
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3.2 Buckling of Two-Span Beams Subjected to Uniformly Distributed Loads 

Consider the two-span composite beam shown in Fig. 6, subjected to a uniformly distributed load. 

All relevant material and geometric parameters are displayed in the figure  note that two web thickness 

values are considered. The supports fully restrain all cross-section in-plane displacements, but completely 

allow cross-section warping. This problem is considerably more complex than the previous one, 

since the pre-buckling stresses vary quite rapidly along the beam span and, therefore, the buckling mode 

is localized in the negative bending region, near the intermediate support. 
 
The GBT pre-buckling analysis is performed using a symmetry simplification, whereas the buckling 

analysis takes advantage of the anti-symmetry of the buckling modes with respect to the intermediate 

support. Such strategy makes it possible to analyze a single span and achieve a significant economy in 

terms of DOF number. 
 
First, a fully uncracked analysis is carried out, where the contribution of the reinforcement is discarded. 

The results are shown in Fig. 6: (i) the top graph shows the the critical load as a function of the number  
 

 
Figure 6: Buckling of a two-span beam (uncracked analysis). 
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of finite elements, for the two web thickness values considered, (ii) the bottom graphs display the modal 

participations in each case (for discretizations involving 50 finite elements) and (iii) the corresponding 

buckling mode shapes are shown below. The top graph makes it possible to conclude that at least 10 

GBT-based finite elements are necessary to achieve acceptable solutions. Note also that, naturally, the 

buckling load is higher for the stockier web. The buckling modes and the modal participations evidence a 

distortional-type behavior, although the deformation is quite localized near the intermediate support and 

has small participations from the local modes: (i) for tw=15 mm, contributions from the bottom flange 
 

 

Figure 7: Buckling of a two-span beam (cracked analysis). 
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and web local modes are observed (3% for L3 and 7% for L4), whereas (ii) for tw=30 mm, a significant 

contribution of the top flange rotation mode is obtained (14% for L2). 
 
Next, the pre-buckling analyses are performed taking cracking into account. For illustrative purposes, 

the cracking pattern obtained is displayed in Fig. 7. For the buckling analyses, two Dfcy values are 

considered, corresponding to transversally uncracked and cracked concrete  the latter case is the one 

prescribed by EC4. The results are also displayed in Fig. 7, namely the buckling load as a function of 

the number of finite elements and the modal participations. A comparison between these buckling loads 

and those shown in Fig. 6 reveals that the former, with respect to the latter, (i) do not change significantly 

for the transversally cracked case and (ii) increase for the transversally uncracked case, particularly when 

tw=30 mm. This is explained by the fact that (i) the cracked pre-buckling analysis leads to more localized 

compressive stresses (and, hence, higher buckling loads) and (ii) the transversally uncracked beam is 

associated with an increased U-frame stiffness (higher buckling loads), an effect that is more pronounced 

when the web is stockier (tw=30 mm). The modal participation graphs, located in the bottom part of the 

figure, show that the buckling mode of the transversally uncracked beam essentially coincides with the 

distortional deformation mode, whereas other deformation modes have relevant contributions  for the 

transversally cracked beam. 
 
Finally, the influence of the long/short term loading ratio is analyzed. With the proposed finite element, 

this effect can be accounted for by performing separate pre-buckling analyses, in order to calculate the 

accumulated stresses in the beam. For instance, assuming that a short-term loading is superimposed on a 

long-term one, two separate pre-buckling analyses must be performed: (I) a long-term analysis, where 

creep effects are taken into account by means of an appropriate concrete modular ratio, and (II) a 

short-term analysis, whose load is incremented until the buckling load is reached. Then, the buckling 

eigenvalue problem reads 
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where it should be noted that the loading parameter  only affects the short-term loading. Naturally, the 

same principle can be applied to assess the effects of the evolution of the static system during construction. 
 
The graph in Fig. 8 shows the results obtained adopting a concrete modular ratio of 2 and increasing the 

ratio between the long-term loading and the buckling load obtained for short-term loading alone (pcr,0%). 
 

 
Figure 8: Influence of long/short term loading. 
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In all cases, 50 finite elements were considered and cracking was allowed for in the longitudinal and 

transverse directions. These results show that the critical buckling load decreases slightly with the above 

ratio, with a maximum drop (at a ratio of 90%) of about 6 % and 7%, respectively for tw=15 mm and 

tw=30 mm. It should be mentioned that no values for ratios higher than 90% are given, because, in this 

range, buckling occurs at the long-term loading stage. 
 
4. Concluding Remarks 

A computationally efficient GBT-based beam finite element for calculating buckling (bifurcation) loads 

of steel-concrete composite beams was proposed, which accounts for shear lag, concrete cracking and 

distortional/local buckling effects. Attention is called to the following features of the proposed element: 

(i) The pre-buckling analysis is carried out with seven deformation modes (five for symmetric cross-

sections) and takes into consideration concrete cracking and shear lag effects. Moreover, the 

influence of long/short-term loading and construction stages may also be taken into account.  

(ii) The buckling analysis is performed with eight additional deformation modes, namely one distortional 

mode and seven local modes. Through-thickness integration is avoided and it is possible to define, 

separately, the various bending/membrane stiffness terms for the concrete slab. In particular, it 

is possible to prescribe a cracked slab in the transverse direction, as specified in Eurocode 4. 
 
Additional work is currently under way and includes (i) comparing the GBT resulted presented here with 

values obtained from shell finite element models and (ii) performing extensive parametric studies, 

aimed at assessing the individual and combined influence of various relevant parameters. 
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