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Abstract 

This paper describes an accurate and economical procedure for determining the flexural effective 

length of a column subjected to concentrated gravity loads within its unsupported length, for 

applications in the 2D second-order elastic analysis based design procedure. The presented 

buckling model has “notional” horizontal restraints where equivalent horizontal forces have been 

applied, and can be readily programmed into a structural analysis/design software. The 

performance of the procedure is compared against that using an effective length factor equal to 

unity and the buckling model described in the European drive-in rack design code. Twenty 

columns having various end restraint conditions subjected to concentrated gravity loads within 

their unsupported lengths are analysed to demonstrate the merits of the present procedure. It is 

demonstrated that, in most of the cases analysed, the present procedure leads to more liberal 

column capacities compared to the use of the unity effective length factor or the buckling model 

of the European drive-in rack design code. On average, the more liberal capacities are 

significantly closer to the ultimate loads determined through second-order plastic-zone analysis.  

 

 

1. Introduction 

This paper is concerned with the stability design of steel columns subjected to concentrated 

gravity loads within their unsupported lengths. Such columns include mill building columns and 

drive-in rack uprights. In steel storage rack design standards (ECS 2009, ERF 2012, RMI 2012, 

SA 2012), the use of equivalent horizontal forces in lieu of explicit modelling of initial out-of-

plumb is a well-accepted practice. The equivalent horizontal forces are simply the product of the 

applied gravity loads and the prescribed initial out-of-plumb, as illustrated in Figure 1, which is 

adopted from the European adjustable pallet racking code (ECS 2009).  

 

The concept of equivalent horizontal forces is predated by the notional load approach found in 

the literature (Liew et al. 1994, Clarke & Bridge 1995, ASCE 1997), which aims to capture the 

initial out-of-plumb (P-Δ), initial crookedness (P-δ), distributed plasticity and residual stress 

effects on the member forces at the ultimate limit state via the application of notional horizontal 

loads in a second-order analysis. However, the equivalent horizontal forces in the storage rack 

design standards principally model the frame’s (nominal) initial out-of-plumb only. 
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Figure 1 Equivalent horizontal forces (ECS 2009) 

 

The notional load approach has been promoted as a method that enables the use of the “actual 

unsupported length” of a column in its stability design check. However, in contrast to regular 

rectangular frames (White & Clarke 1997, White & Hajjar 1997, Surovek & White 2004, Tong 

& Xing 2007), little discussions can be found on the application of the notional load approach to 

a column subjected to gravity loads within its unsupported length, although Schmidt (2001) 

presented it for mill building columns. It is unclear to the engineer what the flexural effective 

length is for the bottom segment, or any of the upper segments, even when he or she uses the 

notional load approach or the equivalent horizontal forces. What is the “actual unsupported 

length” in this case? There is a belief that the use of an effective length factor equal to unity for 

the critical segment is unconservative, since there are no horizontal members connecting the 

column at each loaded point to adjacent columns. This belief appears to be justified by Clause 

9.4.3 of the European drive-in rack design code (ERF 2012), which specifies that only the base 

and the top of the upright (column) are to be laterally restrained in the buckling model used to 

determine the effective length when “direct second-order analysis” method is carried out. 

 

It will be explained and demonstrated in this paper that whether there is a horizontal member 

restraining the point of gravity loading or not is irrelevant to the flexural effective length to be 

used in the stability design check of the segment. For drive-in racks, the buckling model used to 

determine the flexural effective length is also independent of the horizontal restraints provided 

by the friction between the pallet bases and the pallet runners (Gilbert et al. 2014). 

 

This paper aims to elucidate the implications of the equivalent horizontal forces, and explain the 

more economical procedure for determining the (elastic) flexural effective length of a column 

subjected to concentrated gravity loads within its unsupported length. The proposed buckling 

model can be applied to the design of drive-in rack uprights and mill building columns, where 

automated creation of buckling models with no manual efforts from the program user has been 

implemented for several years (Dematic 2009).  

 

As this paper is only concerned with the flexural effective length of a column in a 2D second-

order elastic analysis based design procedure, three-dimensional phenomena such as torsional 

warping and flexural-torsional buckling (Teh et al. 2004) are not discussed. Based on second-

order plastic-zone analysis results, and making use of column curves, the proposed buckling 

model will be compared against the use of the unity effective length factor and the buckling 

model prescribed in Clause 9.4.3 of the European drive-in rack design code (ERF 2012). 
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2. How a compact steel column fails 

 

A compact steel column does not reach its ultimate load-carrying capacity when it buckles 

elastically, but only fails when the critical cross-section has yielded sufficiently under combined 

compression and bending. Figure 2 shows that a column that has buckled elastically is able to 

sustain increased loading beyond the elastic buckling load Pe (Gere & Timoshenko 1991). 

 

Figure 2 Behaviour and strength of a compact steel column (Gere & Timoshenko 1991) 

 

Curve A in the figure denotes the load-deflection path of an elastic, perfectly straight column 

following its bifurcation. Curve B denotes that of an elastic, initially crooked column. The 

softening response exhibited by this curve is due to the P-δ effect. In each of the two cases, the 

column can always sustain increased loading since its resistance increases with increasing 

deformations to the extent that it equilibrates the quasi-statically applied load. 

 

However, in reality, a compact steel column that buckles elastically would soon reach its ultimate 

load-carrying capacity as it encounters member instability due to (partial) yielding of the critical 

cross-section under combined compression and bending. For a simply supported column such as 

that shown in Figure 2, the bending moment at mid-span (the critical cross-section) results from 

the so-called P-δ effect. At the ultimate limit state, any further increase in the bending resistance 

of the mid-span due to increasing deformation could only match the increase in the P-δ effect if 

the applied load P decreases (while the displacement δ increases disproportionately).  

 

Real steel columns invariably have initial crookedness, so a steel column typically follows the 

path denoted by Curve C in Figure 2. In any case, the ultimate load capacity of a column of a 

given section depends largely on its effective length Le. The cantilevered and simply supported 

columns in Figure 3 have essentially the same ultimate load if they are composed of the same 

section. Based on this premise, column curves are used in steel structures design standards (SA 

1998, AISC 2010, SA/SNZ 2005), where these curves may be represented by mathematical 

functions. The member compression capacity of an initially crooked column is determined from 

its effective length and the relevant column curve, which is typically derived for the simply 

supported condition (for which the effective length factor is unity). 
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(a) (b) 

Figure 3 Two equivalent columns 

 

3. Implication of the equivalent horizontal forces 

 

As illustrated in Figure 1, the equivalent horizontal forces prescribed in steel design standards 

(AISC 2010, ECS 2009, ERF 2012, RMI 2012, SA 1998) model the frame’s nominal initial out-

of-plumb. It has also been established by Liew et al. (1994) and Clarke & Bridge (1995) that, in 

a second-order analysis, the bending moments in the columns resulting from the application of 

the equivalent horizontal forces are virtually equal to those due to the initial out-of-plumb.  

 

As discussed previously, the ultimate load Pu of an axially loaded cantilevered column such as 

that shown in Figure 3(a) can be determined directly from the relevant column curve and its 

effective length, which is twice its actual length, i.e. Pu = Pc(Le = 2L2). Viewed as an equivalent 

simply supported column having a length twice its actual length, shown in Figure 3(b), no 

interaction equation between axial force and bending moment needs to be considered in 

determining its ultimate load capacity. 

 

The free body, axial force and bending moment diagrams of the cantilevered column at the 

ultimate limit state, the latter two drawn for the assumed straight configuration, are shown in 

Figure 4. The bending moment Mu at the column base, which is due to the P-Δ effect, can be 

“reasonably” found through a second-order elastic analysis where the initial out-of-plumb Δ0 of 

the cantilevered column is modelled, either explicitly or via an equivalent horizontal force. 

Viewed in this manner, it is clear that the column fails by the interaction between the axial force 

and the bending moment, and its capacity can be determined using the appropriate interaction 

equation. For bi-symmetric I-sections, and rectangular and square hollow sections that are 

compact, AS 4100 (SA 1998) specifies the following interaction equation where the ultimate 

moment Mu is given as 
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in which Ms is the section moment capacity, and βm is the ratio of the smaller to the larger end 

moment, taken as positive when the column is bent in double curvature. The compression 

capacity Pc΄ is discussed in the next paragraph. Interested readers may consult Bridge & Trahair 

(1987) and Trahair & Bradford (1998) for the derivation and application of the design equation. 

 

Figure 4 Force diagrams of a cantilevered column at the ultimate limit state 

 

It can be seen that, for the cantilevered column, the compression capacity Pc΄ in Equation (1) 

must be greater than the ultimate load Pu = Pc(Le = 2L2). In fact, the structural steel design 

standards (AISC 2010, SA 1998) specify that the compression capacity Pc΄ to be used in the 

interaction equation is equal to Pc(Le = L2), i.e. the effective length factor is unity whether the 

member is braced or unbraced at both ends.  

 

The preceding paragraph should resolve the doubt among drive-in rack designers whether an 

effective length factor equal to unity can be safely applied to the bottom segment of an upright 

when equivalent horizontal forces are included in the second-order analysis. In fact, as will be 

demonstrated later in this paper, the use of an effective length factor equal to unity in the 

interaction equation can be quite conservative in certain cases. The more correct procedure for 

determining the flexural effective length of a column segment is to apply a “notional” horizontal 

restraint where an equivalent horizontal force has been applied, in the buckling model. Figure 

5(b) depicts the buckling model for the cantilevered column, which would result in an elastic 

effective length factor close to 0.7 (equal to 0.699 in three significant figures). 

 

The notional horizontal restraint should be imposed onto the buckling model since the interaction 

equation is used to check the second-order bending moment resulting from the P-Δ effect. In 

other words, the destabilising effect due to the absence of a lateral restraint has been represented 

in the second-order analysis, and should not be duplicated in the buckling model to determine the 

effective length and therefore compression capacity Pc΄ in Equation (1). However, the 

implication of amplifying the bending moments due to the initial out-of-plumb (or equivalent 

horizontal forces) is less well appreciated in the literature, as reflected in the buckling model 

prescribed or allowed by certain standards (ERF 2012). 
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 (a) (b) 

Figure 5 Problem 4.1 

 

As far as computer analysis programs such as RAD (Dematic 2009) are concerned, a notional 

horizontal restraint can be automatically imposed onto the buckling model at any node where an 

equivalent horizontal force has been applied in the second-order elastic analysis. For simplicity, 

and without sacrificing accuracy for practical structures, the notional horizontal restraints of a 

prismatic column subjected to more than one concentrated gravity load within its unsupported 

length can be applied simultaneously in a single buckling model for all the segments. It should 

be noted that, in practice, the critical segment of such a column is invariably the bottom one.  

 

In addition to the member stability check represented by Equation (1), AS 4100 (SA 1998) 

requires that the member is checked against cross-section strength, which, for a compact 

rectangular or square hollow section, is represented by 
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in which Py is the squash load. However, as mentioned earlier, the cross-section strength check 

only governs stocky columns and those bent in substantial double curvature.  

 

4. Verification problems 

 

The column models analysed in this paper had an initial out-of-plumb ξ = 0.002 in both the 

second-order plastic and elastic analyses unless noted otherwise. However, no initial 

crookedness was modelled in the second-order elastic analyses as per the standard practice, while 

an initial crookedness δ0 of L/1000 was invariably modelled in the plastic-zone analyses, the 

direct results of which are taken to be the correct ones. 

 

In the following discussions, Method A refers to the use of the unity effective length factor to 

determine the compression capacity Pc΄ to be entered into Equation (1), and Method B refers to 

the use of the present buckling model, in which notional horizontal restraints are imposed where 

the equivalent horizontal forces have been applied.  
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The third method, called Method C, uses the buckling model described in Clause 9.4.3 of FEM 

10.2.07 (ERF 2012). The buckling model is only relevant to the columns subjected to 

intermediate gravity loads within its unsupported length, and is shown in the following sub-

sections where applicable. 

 

Having determined the effective length of a column or column segment using either of the three 

aforementioned methods, the compression capacity Pc΄ to be entered into Equation (1) is read 

from the column curve shown in Figure 6. This curve has been derived through a series of 

plastic-zone analyses of simply supported columns having lengths ranging from 100 mm to 

18,000 mm. Each of these columns was assumed to have an initial crookedness δ0 of L/1000. 

 

Figure 6 Column curve of SHS 203 × 6.3 (without residual stresses and strain hardening) 

 

All the columns are composed of square hollow section (SHS) 203 × 6.3. This section was 

selected for three reasons. First, the issues of local, distortional, minor/major axis and flexural-

torsional buckling are irrelevant to the square hollow section, ensuring proper evaluations of the 

alternative methods used to determine the flexural effective length. Second, an interaction 

equation that accounts for the bending moment gradient, namely Equation (1), is available for a 

square hollow section, enabling a more rigorous comparison of the various buckling models 

considered in this paper. Third, simply supported columns of various lengths composed of this 

section had been tested and analysed by Key & Hancock (1993), who provided the finite strip 

analysis results including that neglecting residual stresses. The finite element models used in the 

present plastic-zone analyses (Strand7 2010) could therefore be verified and employed with 

confidence.  
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The square hollow section has an area of 4,818 mm
2
 and a second moment of area equal to 3.06 

× 10
7
 mm

4
. The slenderness ratios L/r in the following problems range from 37 to 113. 

 

For the purpose of this paper, the square hollow section was assumed to have a uniform yield 

stress of 395 MPa, which is the same as the flange yield stress in the analytical model of Key & 

Hancock (1993). No residual stresses nor strain hardening was assumed.  

 

4.1 Cantilevered columns axially loaded at the top 

 

This simple structure, depicted in Figure 5(a), is included in this paper to demonstrate that 

Equation (1) is not unduly conservative. This aspect is important since, in the following 

subsections, it will be asserted that the use of an effective length factor equal to unity (Method 

A), and the buckling model described in Clause 9.4.3 of FEM 10.2.07 (ERF 2012) that is used in 

Method C, lead to significant conservatism in the design of certain columns. 

 

For a cantilevered column, both the elastic and the inelastic effective length factors are equal to 

2. The buckling model used to determine the effective lengths in the present method (Method B) 

is depicted in Figure 5(b), which results in an elastic effective length factor equal to 0.7. 

 

Table 1 lists the professional factors Pua/Pud of Methods A and B for 3000, 6000 and 9000 mm 

long columns. The variable Pua denotes the ultimate load obtained by the second-order plastic-

zone analysis, and Pud is the ultimate load capacity determined through second-order elastic 

analysis in conjunction with Equations (1) and (2), which depends on the effective length used to 

read Pc΄ from the column curve shown in Figure 6. 

 
Table 1: Results for cantilevered columns with ξ = 0.002 

Case L (mm) Pua (kN) 
Method A (Le = L) Method B (Le = 0.7 L) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.1.1 3000 1289 1802 0.94 1841 0.94 

4.1.2 6000 394 1323 0.98 1689 0.98 

4.1.3 9000 180 684 0.99 1238 0.99 

 

It can be seen from Table 1 that, for a cantilevered column axially loaded at the top, significant 

differences in the assumed effective length factors do not lead to noticeably different ultimate 

load capacities Pud. For the 3000-mm column, the compression capacity Pc΄ entered into 

Equation (1) for the unity effective length factor is only 2% lower than that for the effective 

length factor of 0.7. For the other two columns, the reasons are twofold. First, a given percentage 

difference in the compression capacities Pc΄ translate to a much smaller one in the available 

moment capacities Mu given by Equation (1). Second, in the proximity of the ultimate load Pu, 

the second-order bending moment increases much more rapidly than the applied load. 

 

However, when either method is used, the ultimate load capacity Pua of the 3000-mm column is 

overestimated by more than 5% (Case 4.1.1 in Table 1). The reason is that the second-order 

bending moment at the ultimate limit state, which is the result of the P-Δ effect, is 

underestimated by the second-order elastic analysis. The elastic displacement of the 3000-mm 
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column is about 30% less than the inelastic displacement at the ultimate limit state, as evident in 

Figure 7. For each case shown in the figure, the elastic curve is somewhat stiffer than the 

inelastic one, which is plotted thicker, due to the neglect of initial crookedness in the former and, 

for Case 4.1.1, subsequent inelasticity in the latter. 

 

Figure 7 Elastic and inelastic load-deflection graphs of cantilevered columns 

 

According to AS/NZS 4084 (SA 2012), the minimum initial out-of-plumb ξ is equal to 0.004 

when second-order elastic analysis is performed, and 0.002 when second-order inelastic analysis 

is used. Table 2 shows the professional factors of Methods A and B when ξ = 0.004 is used in the 

second-order elastic analysis. 

 
Table 2: Results for cantilevered columns with ξ = 0.004 in the elastic analysis 

L (mm) Pua (kN) 
Method A (Le = L) Method B (Le = 0.7 L) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

3000 1289 1802 1.05 1841 1.04 

6000 394 1323 1.02 1689 1.01 

9000 180 684 1.01 1238 1.01 

 

Tables 1 and 2 demonstrate that the use of Equations (1) and (2) in the second-order elastic 

analysis does not lead to undue conservatism for the SHS columns analysed in the present work. 

This finding means that the two equations are unlikely to be the source of any significant 

conservatism found in the following examples. 

 

4.2 Columns with fixed bases and elastic restraints at the loading point 

 

The example depicted in Figure 8(a) is interesting in that it demonstrates the conservatism of the 

unity effective length factor approach (Method A) in a certain case where the actual elastic 
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effective length factor of the column is 1.0. Method B uses the buckling model depicted in 

Figure 8(b). 

 

 
              (a) (b) 

Figure 8 Problem 4.2 

 

This example also illustrates the consequence of using the same initial out-of-plumb in the 

second-order plastic and elastic analyses, which does not vary monotonically with the column 

slenderness. Another feature is that, except for Cases 4.2.2 and 4.2.3 listed in Table 3, the cross-

section strength represented by Equation (2) governs when the proposed method (Method B) is 

used to determine the compression capacity Pc΄ to be entered into Equation (1). 

 
Table 3: Results for columns with fixed bases and elastic restraints at the loading point 

Case L (mm) Kt´ Kr´ Pua (kN) 
Method A (Le = L) Method B (Fig. 11b) 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.2.1 5000 1 1 1633 1560 1.06 1807 0.97 (0.93) 

4.2.2  3 1 1777  1.14  0.99 

4.2.3  3 3 1778  1.14 1817 0.98 

4.2.4 7500 1 1 1022 949 1.12 1680 1.01 (0.99) 

4.2.5  3 1 1384  1.46  0.95 (0.93) 

4.2.6  3 3 1438  1.52 1720 0.95 (0.91) 

Note: If the cross-section strength governs, the professional factor resulting from Equation (1) is given in brackets. 

 

The normalised translational spring stiffness Kt´ in Table 3 and subsequent tables is defined as 
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K t
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in which E is the column’s elastic modulus and I is its second moment of area. Therefore, a value 

of Kt´ = 1.0 implies that the cantilevered column is translationally restrained by another identical 

(unloaded) column that is connected at the top via a pin-ended link. 

 

The normalised rotational spring stiffness Kr´ is defined as 
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An empty cell in Table 3 means that it has the same value as the above cell. This convention 

applies to all tables in this paper. 

 

Table 3 shows that, even for Case 4.2.4, where the actual elastic effective length factor is equal 

to 1.0, the use of the unity effective length factor leads to some conservatism. The conservatism 

quickly escalates as the translational restraint increases. Note that the columns (ξ = 0.002) sway 

rather significantly under axial compression alone, as evident from the load-deflection graphs 

plotted in Figure 9. 

 

Figure 9 Elastic and inelastic load-deflection graphs of 7500-mm columns 

 

It can be seen from Table 3 that, even when the same initial out-of-plumb
 
ξ = 0.002 is used in 

both the second-order plastic and elastic analyses, the use of the proposed buckling model 

depicted in Figure 8(b) in conjunction with Equations (1) and (2) does not lead to over-optimistic 

capacities by more than 5%. This outcome is despite the 27% underestimation of the tip 

displacement at the ultimate limit state (and therefore the P-Δ effect) of Case 4.2.5 by the 

second-order elastic analysis, as evident in Figure 9. For each case shown in the figure, the 

elastic curve is noticeably stiffer than the inelastic one, which is plotted thicker. 

 

4.3 Columns with one intermediate gravity load 
  

The example depicted in Figure 10(a) has a loading arrangement that may be encountered in mill 

building columns (see also Problem 4.6), and shows cases where Methods A and C are 

alternately over-conservative while Method B, which uses the buckling model depicted in Figure 

10(b), is consistently accurate. The buckling model used by Method C, described in Clause 9.4.3 

of FEM 10.2.07 (ERF 2012), is shown in Figure 10(c). The “actual unsupported length” in 

Method A is the loaded length Lb. 
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Figure 10 Problem 4.3 

 

Table 4 shows that, for the pin-ended column (Case 4.3.1), the buckling model described in 

Clause 9.4.3 of FEM 10.2.07 (ERF 2012) and used in Method C leads to an underestimation of 

the ultimate load capacity by almost 20%. For the column with elastic rotational restraints (Case 

4.3.2), the use of the unity effective length factor underestimates same by more than 30%. On the 

other hand, Method B is consistently accurate for both columns. 

 
Table 4: Results for columns with one intermediate gravity load  

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.3.1 0 ∞ 0 1203 1324 1.07 1600 1.02 1098 1.18 

4.3.2 1 ∞ 1 1765  1.33 1721 1.03 1624 1.09 

 

4.4 Columns with two equally spaced gravity loads 
  

The example depicted in Figure 11(a) has a loading arrangement that may be encountered in 

drive-in racks. The three methods of determining the effective length are compared across three 

different restraint conditions at the bottom and the top. Method A invariably uses the length of 

each segment, 5000 mm, as the effective length. Method B uses the buckling model depicted in 

Figure 11(b), while Method C uses that in Figure 11(c). 

 

Figure 11 Problem 4.4 
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Table 5 shows that, for the first two columns, the three methods give the same results despite the 

differences in the compression capacity Pc΄ determined from the column curve. However, for the 

largest capacity column, Method C underestimates the ultimate load capacity by 15%. 

 
Table 5: Results for columns with two equally spaced gravity loads 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.4.1 1 1 1 400 1560 1.05 1716 1.05 996 1.05 

4.4.2 ∞ 0 ∞ 484  1.03 1773 1.03 1389 1.03 

4.4.3 1 ∞ 1 1092  1.00 1727 1.00 996 1.15 

  
4.5 Columns with two unequally spaced gravity loads 

  

The example depicted in Figure 12(a) has two unequally spaced gravity loads, and is interesting 

in that Method A determines the middle segment of the column without rotational restraint (Case 

4.5.1 in Table 6) to be critical while Method B and C invariably determine the bottom segment to 

be critical for both cases shown in Table 6. For Case 4.5.1, Method C determines the effective 

length factor of the bottom segment to be 3.2. Method A uses each segment length as its 

effective length, Method B uses the buckling model depicted in Figure 12(b), and Method C uses 

that depicted in Figure 12(a) minus the horizontal loads. 

 

Figure 12 Problem 4.5 

 
Table 6: Results for columns with two unequally spaced gravity loads 

Case Kr´bot Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.5.1 0 630 949 0.99 1767 0.99 603 1.11 

4.5.2 3 1394 1802 0.96 1781 0.96 1279 1.13 

 

Although Methods A and B do not always determine the same segment to be critical, they yield 

essentially the same results that are accurate within 5%. On the other hand, Method C 

underestimates the ultimate load capacities by more than 10%. 
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4.6 Columns subjected to primary bending moments 
  

All the preceding examples involve columns that are loaded concentrically, and are therefore 

subjected to secondary bending moments only due to the column’s initial out-of-plumb and 

deflection (in addition to axial compression). The example depicted in Figure 13(a) is subjected 

to a primary bending moment due to a 200-mm eccentricity of the axial load P. Depending on 

the eccentricity direction, the primary bending moment may act clockwise or counter-clockwise. 

 

 (a) (b) (c) 

Figure 13 Problem 4.6 

 

The “actual unsupported length” in Method A is the loaded length Lb. Method B uses the 

buckling model shown in Figure 13(b), while Method C uses that shown in Figure 13(c). 

 

It can be seen from Tables 7 and 8 that, whether the primary bending moment acts in the 

clockwise or counter-clockwise direction, the proposed Method B is consistently accurate with 

errors less than 10%. In contrast, Methods A and C lead to errors of 15% or more in some cases. 

 
Table 7: Results for columns subjected to a clockwise primary bending moment 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.6.1 0 ∞ 0 564 1324 1.02 1600 0.97 1098 1.09 

4.6.2 1 ∞ 1 861  1.17 1721 1.04 1624 1.07 

 

 

Table 8: Results for columns subjected to a counter-clockwise primary bending moment 

Case Kr´bot Kt´top Kr´top Pua (kN) 
Method A  Method B Method C 

Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud Pc΄ (kN) Pua/Pud 

4.6.3 0 ∞ 0 575 1324 1.08 1600 1.02 1098 1.15 

4.6.4 1 ∞ 1 874  1.22 1721 1.09 1624 1.11 
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5. Summary and conclusions 

 

The notional load approach, in conjunction with second-order elastic analysis, was conceived in 

order to allow the use of the “actual unsupported length” of a column in its stability design 

check. However, in structural engineering practice, it is unclear what the unsupported length is 

for a segment of a column with intermediate gravity loads where no lateral restraints exist. The 

European drive-in rack design code prescribes a buckling model that mostly results in effective 

length factors greater than unity. This paper points out that, in the context of second-order elastic 

analysis based design procedure, not only the effective length factor of a segment without lateral 

restraints at both ends needs not be greater than unity, it can even be significantly less than unity. 

 

It is explained that, since the destabilising effect due to the absence of a lateral restraint has been 

represented in the second-order analysis that incorporates the notional horizontal load (or the 

equivalent horizontal force), a
 
notional horizontal restraint should be imposed onto the buckling 

model in determining the effective length to be used in the interaction equation.  

 

Based on the results of plastic-zone analysis incorporating an initial out-of-plumb equal to 0.002, 

it was found that, while the actual (inelastic) effective length factor of a cantilevered column is 

2.0, the use of the braced effective length factor equal to 0.7 in conjunction with the second-

order elastic analysis incorporating an initial out-of-plumb equal to 0.004 still led to a slightly 

conservative result. When an initial out-of-plumb equal to 0.002 was used in the elastic analysis, 

the braced effective length factor gave essentially the same results as the unity effective length 

factor, which are close to the plastic-zone analysis results. 

 

It is demonstrated through twenty examples involving columns subjected to concentrated gravity 

loads within their unsupported lengths that the proposed buckling model can lead to designs that 

are more economical than the use of the unity effective length factor or the buckling model 

described in the European drive-in rack design code. Automatically imposing notional horizontal 

restraints onto the buckling model where equivalent horizontal forces have been applied in the 

second-order analysis can be implemented in a computer program without much difficulty, with 

potentially significant savings in the total cost of the drive-in racking system or mill building 

columns. 

 

In this paper, for the sake of simplicity, all the notional horizontal restraints of a prismatic 

column subjected to more than one concentrated gravity load within its unsupported length are 

applied simultaneously to a single buckling model for all the column segments. This approach is 

reasonable for most practical columns including the uprights of a drive-in rack, where the design 

gravity loads and the spacings between them are largely uniform. The authors have analysed 

more than thirty columns having various end restraint and loading conditions, and have never 

found any case for which the proposed method leads to an unconservative error greater than 5%. 
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