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Abstract 
The lateral-torsional buckling capacity of steel girders can be improved with the addition of 
intermediate bracing. One form of bracing commonly used in the building industry is profiled 
sheeting that acts as a shear diaphragm to restrain the warping deformation of the top flange.  
Although metal deck forms are also commonly used in the bridge industry, the forms are not 
currently permitted to be relied upon for bracing due to flexibility in the connection method.    
Shear diaphragms attached to the top flange of adjacent girders can be relied on for bracing 
provided they have adequate stiffness and strength, both of which are sensitive to the connection 
details.  Shear diaphragms may be engaged to act as lateral bracing by connecting the diaphragm 
along either two or four sides. A common connection detail consists of connecting the diaphragm 
along two edges that are parallel to the longitudinal axis of the girder and studies have been 
carried out to develop strength requirements for suitable bracing. Provisions have not been 
adequately developed in stiffened diaphragms when the stiffening members are perpendicular to 
the longitudinal axis of the girder. This paper documents a computational study to develop 
strength requirements for stiffened diaphragms used for stability bracing.   
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1. Introduction 
The design of composite steel girders is frequently controlled by the limit state of lateral-
torsional buckling which is typically critical during the placement of the concrete deck. During 
the construction stage, the girders must support the entire construction load until the concrete has 
adequately cured and can provided lateral and torsional restraint to the top flange of the girders. 
Therefore, intermediate bracing is often used to reduce the unbraced length of the girders during 
construction. Unfortunately, the bracing can complicate the girder erection process, and can be 
relatively expensive to fabricate.  In bridge applications, the bracing usually consists of cross 
frames or diaphragms that can cause fatigue issues in the final bridge where they are no longer 
needed for stability. The drawbacks of traditional bracing methods in bridges have led 
researchers to investigate the feasibility of using permanent metal deck forms (PMDF) to 
continually brace the top flange of girders during construction.  
 
In 2008, a two part paper was published on shear diaphragm bracing of beams with the first part 
focused on the stiffness and strength behavior and the second part focused on the diaphragm and 
connection design requirements (Helwig and Yura 2008a, 2008b). In this study, the diaphragms 
were connected along the two edges that are parallel to the longitudinal axis of the girder and a 
model was created to estimate how the load flows through the diaphragms and to determine the 
force in the fasteners that connect the shear diaphragms to the top flanges of the girders. 
Following the publication of this work, an improved PMDF connection detail was developed for 
bridge applications that utilized stiffening angles which substantially increase the stiffness of the 
system (Egilmez 2005).  
 
This paper presents the results of a computational study to gain understanding of the behavior of 
stiffened PMDF diaphragm systems. The research is applicable to both building and bridge 
applications in which a shear diaphragm is relied upon for bracing and is connected on all four 
sides. Specifically, the stiffened diaphragm strength requirements were investigated and a model 
was created to estimate how the force flows through the stiffened shear diaphragms so that 
design provisions can be developed for the connections from the PMDF sheets to the stiffening 
members and for the connections from the stiffening angles to the girders.  
 
2. Background and Previous Work 
 
2.1 Shear Diaphragm Bracing 
Lateral-torsional buckling of a girder can be opposed by restraining either the lateral deflection 
of the compression flange or the twist of the cross-section (Yura 2001). When the compression 
flanges of two neighboring girders are connected by a shear diaphragm, the girders tend to 
buckle as a unit and the warping deformations of the flanges are resisted by the presence of the 
diaphragm. Therefore, the bracing provided by the diaphragm increases the buckling capacity of 
the girders. One of the first practical solutions for shear diaphragm bracing was produced by two 
independent studies that were published nearly simultaneously (Errera and Apparao 1976; 
Nethercot and Trahair 1975).  However, the solution was focused on diaphragm braced beams 
subjected to uniform moment.  Helwig and Frank (1999) modified this solution to account for 
more practical loading conditions resulting in the following equation:  
 
 mQdMCM gbcr  *  (1) 
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where Mcr = buckling capacity of the diaphragm-braced beam; Cb
* = factor for moment gradient 

that includes effects of load height, if applicable (Helwig et. al 1997; Galambos 1998), Mg = 
buckling capacity of the girder without the shear diaphragm; m = factor that depends on the 
loading type; Q = deck shear rigidity, and d = depth of the girder. The deck shear rigidity is 
expressed as follows: 
 
 dsGQ '  (2) 

 
where G’ = diaphragm effective shear stiffness; and sd = the tributary width of deck bracing a 
single girder. When a system has ng girders with a spacing of sg, the tributary with of the deck 
bracing a single girder is calculated as: 
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The effective shear stiffness and ultimate strength of a diaphragm can be determined 
experimentally using a cantilever shear frame such as the one depicted in Figure 1. Since the 
frame is a mechanism on its own, the diaphragm provides all of the lateral stiffness and strength 
to the system. The effective shear modulus, G’, is derived as follows: 
 

 
fw

PL
G '  (4) 

 
where P = lateral load on test frame; L = length of the test frame; f = center to center spacing of 
loading beams; w = diaphragm width: and γ = diaphragm shear strain.  
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Figure 1: Shear Test Frame with Diaphragm 

 
Suitable bracing must possess adequate stiffness and strength (Winter 1960).  Traditionally, the 
ideal stiffness of a brace is defined as the stiffness required for a perfectly straight member to 
buckle between the brace points.  For stability problems, a larger stiffness than the ideal value is 
required to control deformation and brace forces. Therefore, Equation 1 must be modified before 
it can be used for design. For diaphragm braced beams, Helwig and Yura (2008a) recommended 
that four times the ideal diaphragm stiffness be used for design. Since diaphragm braced beams 
are essentially continuously braced, the traditional definition of “buckling between the braced 
points” was not meaningful.  Therefore, the ideal stiffness for diaphragm braced beams was 
based upon the stiffness required to reach a given load or stress level (Helwig and Yura 2008a).  
While a given stress limit is somewhat arbitrary, a value such as 50 ksi (or the yield stress of the 
material under consideration) would be a practical limit. For a given maximum factored moment, 
Mu, the previous expression can be utilized to obtain the following design equation:  
 

 
4

'* dsmG
MCM d

gbu   (5) 

 
In addition to establishing the diaphragm stiffness requirements, Helwig and Yura (2008b) 
developed the following equation (from parametric study of three different sections at three 
different span-to-depth ratios) to determine the maximum warping restraining moment per unit 
length along the longitudinal axis of the girder, M’br_max: 
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where Mu = maximum design moment along the diaphragm braced beam; L = spacing between 
discrete bracing points that prevent twist: and d = beam depth. Equation 6 above was developed 
using a large displacement analysis on an imperfect system with the diaphragm stiffness set at 
four times the ideal value. Notional loads were used to create the imperfection in the top flange 
while keeping the bottom flange straight which previously studies have shown to represent the 
critical shape imperfection for beam bracing problems (Wang and Helwig 2005).  The maximum 
twist imperfection at midspan was set to θo = L/(500d) which is conservatively twice the value 
of the θo = L/(1000d) which is consistent with imperfection limits from the AISC Code of 
Standard Practice (AISC 2010).  
 
The moment and shear on an unstiffened PMDF diaphragm are calculated as Mbr = M’brLd and 
Vbr = 2Mbr/wd, respectively where Ld is the length of the diaphragm segment and wd is the width 
of the diaphragm segment (see Figure 2). These equations are based on the assumptions that the 
unstiffened PMDF sheets act independently from one another even though they are connected by 
intermediate sidelap fasteners. In laboratory tests performed by Egilmez et al. (2005), the 
unstiffened PMDF sheets were observed to act in this manner.  

Ld

wd wd wd wd

VbrVbr Vbr Vbr

VbrVbr Vbr Vbr

MbrMbr Mbr Mbr

MbrMbr Mbr Mbr

 
Figure 2: Behavior of Unstiffened Diaphragm 
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2.1 Stiffened and Unstiffened PMDF Diaphragms 
In the building industry, PMDFs are often relied upon to laterally brace beams during 
construction. The large in-plane shear stiffness of PMDFs can effectively restrain the warping 
deformation of the beams only if an adequate connection is developed between the PMDFs and 
the girders. Since the top flange of adjacent beams are typically at the same elevation in 
buildings, PMDFs span continuously across the top of the beams and are connected directly to 
the flange via mechanical fasteners, puddle welds, or shear studs as shown in Figure 3a. In the 
bridge industry, however, the elevation of the top flange often differs between adjacent girders 
due to differential camber and along the length of a girder due to a change in the flange thickness 
(aka a haunch). To maintain a constant deck thickness, angles that support the PMDF are welded 
to the top flange at different heights to accommodate the elevation difference in the flanges as 
shown in Figure 3b. The support angle eccentricity is defined as the distance from the bottom of 
the PMDF to the closest face of the top flange. While the support angle connection is quite stiff 
in the direction parallel to the span of the girder, the angle is flexible and can easily bend when 
loaded perpendicular to the span of the angle. Currah (1993) showed that the support angle 
eccentricity substantially decreased the stiffness of the shear diaphragm system.  
 

PMDF

Support 
Angle

PMDF

Shear Stud

  
(a)      (b) 

Figure 3:  Typical PMDF Connection in (a) Buildings (b) Bridges  
 
To increase the connection stiffness perpendicular to the span of the girder, Egilmez (2005) 
added stiffening angles to the PMDF diaphragm system as shown in Figure 4. The stiffening 
angles spanned between the adjacent girders and were connected to a member attached to the top 
flange. The angles were placed at the lap splice of two neighboring PMDFs so that one screw 
would penetrate both PMDFs and fasten them to the stiffening angle. While the addition of the 
stiffening angle significantly increased the stiffness of the PMDF/connection system, it also 
altered the system’s load path. Therefore the following parametric study was performed to 
determine how the load flows through the stiffened PMDF diaphragm system.  
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Figure 4:  PMDF Connection with Stiffening Angles 

 
3. Finite-Element Model 
Abaqus 6.13 was used to conduct parametric studies on a system of simply supported twin 
girders that were connected by a shear diaphragm at the top flange. In all analyses, linear elastic 
materials were used for all components of the model. Since the shear diaphragm bracing for 
forming systems is primarily active during construction, the assumption of elastic behavior is 
reasonable.  For applications involving significant inelasticity, the solutions provide a good 
starting point for the bracing requirements; however additional investigation is necessary.  While 
the PMDFs in reality are connected to the edge of the girder, the PMDFs were connected to the 
nodes at the flange/web intersection for simplicity and this model is consistent with the 
mechanical representation of the shear diaphragm where the bracing restrains warping 
deformation of the top flange.  
 
3.1 FEA Girder Model 
For the girder model, two finite elements were used across the width of the flanges and four 
elements were used through the depth of the web. Vertical web stiffeners that matched the flange 
width having four elements through the depth were used at each support to prevent web buckling 
from the concentrated reaction. The aspect ratio of the elements were maintained to values less 
than 1:2 for all analyses in this study. The girders and vertical web stiffeners were modeled using 
an 8-node doubly curved thin shell element with reduced integration and five degrees of freedom 
per node (aka S8R5 in Abaqus 6.13). At both ends, the girders were supported vertically and 
horizontally at the web to bottom flange intersection while only one end was fixed longitudinally 
to create the conventional simply supported pinned-roller condition. Twist of the cross section 
was prevented by horizontally pinning the top of the beam at the web to top flange intersection, 
creating a warping permitted connection.  
 
Uniform load distributed along the length of the girder was the only load case considered in the 
analysis. All of the load was applied at the top flange to web intersection since the majority of 
the construction load flows into the girders at this location with exception to the girders self-
weight. Furthermore, loading a girder at the top flange decreases the buckling capacity of the 
girder due to second-order effects and is therefore a conservative assumption. Both girders were 
equally loaded in the analysis even though the system is expected to behave as a lean-on system 
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(i.e. the buckling capacity of the system is equal to the sum of the buckling capacity of the 
components regardless of the load distribution between the adjacent girders) as mentioned by 
Helwig and Yura (2008a).  
 
3.1 FEA Stiffened Diaphragm Model 
The stiffened shear diaphragm was modeled using cross-frames built up from linear two-node 
three-dimensional truss elements that can act in both tension and compression. For reference, 
Figure 5 shows a plan view of the truss model. The PMDF sheets are modeled using the cross-
frames (XF) that are connected to the centerline of the girders top flange. The stiffening angles 
are simulated using a rigid beam that is pinned to the centerline of the girders top flange and 
connected to the stiffening cross-frame (SXF).  
 

Girder

Cross Frame (XF) Stiffening Cross 
Frame (SXF)

Rigid Beam

 
Figure 5: Plan View of Finite Element Stiffened Diaphragm Model 

 
In his work on the fundamentals of beam bracing, Yura (2001) derived an equation to determine 
the in-plane stiffness of a tension-compression cross-frame system. This equation can be used to 
determine the stiffness of both the XF and the SXF as follows:  
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where βxf = stiffness of the XF (kip∙in/rad);  βsxf = stiffness of the SXF (kip∙in/rad); Axf = area of 
the XF elements; Asxf = area of the SXF elements, E = modulus of elasticity; sg = center to center 
spacing of the girders; ss = center to center spacing of the stiffening angles; hxf = horizontal 
distance between ends of XF members; hsxf = horizontal distance between ends of SXF members; 
Lxf = length of the XF members; and Lsxf = length of the SXF members. The relative stiffness of 
the XF and the SXF is controlled by changing the area of the corresponding truss elements. The 
shear rigidity of the XF, Qxf, and the shear rigidity of the SXF, Qsxf, can be calculated as follows: 
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where sxf = center-to-center spacing between adjacent XF. For the purposes of the research in this 
paper, sxf = 2hxf. The total shear rigidity of the stiffened PMDF diaphragms, Qtotal, is calculated as 
the sum of the contributing parts: 
 
 sxfxftotal QQQ   (11) 

 
The relative shear rigidity of the XF to the total shear rigidity, qxf, and the relative shear rigidity 
of the SXF to the total shear rigidity is taken as:   
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4. Relative Shear Rigidity of Stiffened Diaphragm Components 
The relative shear rigidity of the XF and SXF can be determined from experimental results from 
Egilmez et al. (2009). In these experiments, a full-scale laboratory test was performed on a twin 
girder system that was braced by several different PMDF diaphragm configurations – with and 
without stiffening angles. To measure the stiffness of the simply supported twin girder and 
PMDF diaphragm systems, lateral loads were applied at the quarter points and/or the midpoint of 
the top flanges and the corresponding lateral deflections were recorded at these points. A singly 
symmetric cross-section was used for the girders that was created by flame cutting the top flange 
of a W30x90 down to a 6.25 in. width from its original 10.4 in. width. The twin girder system 
spanned 49 ft. - 5 in. and the center-to-center spacing of the girders was 9 ft. - 7-¼ in. Three 
different thickness values of the PMDF sheets were tested in this study (20ga, 18ga, 16ga) and 
the PMDF sheets were 3 in. deep with an 8 in. pitch. Cold formed L3x2x10ga and L3x3x10ga 
were used as support angles for the PMDF sheets and as stiffening angles. These support angles 
were welded to the top flange of the girder at the maximum expected eccentricity of 2.75 inches. 
Stiffened PMDF diaphragms with support angles at 8, 16, and 24 ft were tested along with 
unstiffened PMDF diaphragms. 
 
To determine a realistic value of the relative shear rigidity of the XF vs the SXF, a FEM of the 
twin girder system outlined above was created as shown in Figure 6. First, the FEM excluded the 
stiffening truss panel and the area of the XF was adjusted until the lateral stiffness of the system 
matched the experimental results for the unstiffened PMDF diaphragm test. Next, the SXF were 
added to the system and the area of their members was increased until the lateral stiffness of the 
system matched the experimental results for the stiffened PMDF diaphragm test. Thus, the shear 
rigidity for both the XF and the SXF could be calculated. The case that was considered used an 
18ga thick PMDF with L3x2x10ga support and stiffening angles. Table 1 shows the lateral 
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stiffness from the laboratory test and the lateral stiffness from the FEM for the unstiffened 
PMDFs and the PMDFs with stiffening angles at 8 ft. on center. The effective shear modulus and 
the total shear rigidity was calculated for both cases using the results from the calibrated FEM. 
For the case described above, qxf and qsxf were approximately 0.45 and 0.55, respectively. The 
understanding of realistic values for qxf and qsxf will help define the parameters of the following 
parametric study.  
  

 
Figure 6:  Plan View of FEA Model for Comparison with Experimental Results 

 
 

Table 1: FEA Results Compared to Experimental Results 

Type of PMDF System

Partial Deck Full Deck Full Deck
G' Qtotal

Quarter Point Loading Quarter Point Loading Midspan Loading

LAB FEM LAB FEM LAB FEM Equation Equation

(kip/in) (kip/in) (kip/in) (kip/in) (kip/in) (kip/in) (kip/in‐rad) (kip/in)

Unstiffened 18.8 18.8 17.4 18.8 11.4 10.1 13.0 703.9

Stiffening Angles @ 8' 34.8 34.8 34.0 34.8 19.3 20.0 28.0 1556.2  
(Egilmez et al. 2009) 

 
5. Parametric Study  
Two different sections were considered in this study as shown in Figure 7. Section 1 is simply a 
W16x26 (neglecting the fillets of the beam) while Section 2 is the same a W16x26 with its 
flange width increased by a factor of 1.5 (from 5.5 in. to 8.25 in.). Section 1 was purposely the 
same as one of the sections used in the parametric study by Helwig and Yura (2008b) as the 
research in this paper is intended to build upon the foundation of the previous work. As 
explained by Helwig and Yura (2008b) the W16x26 was used since it has one of the most 
slender webs of the standard rolled sections and will therefore produce conservative results for 
sections with stockier webs.  
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Section 1
Flanges: 5.5 in x 0.345 in
Web:      15.01 in x 0.25 in

Section 2
Flanges: 8.25 in x 0.345 in
Web:      15.01 in x 0.25 in

 
Figure 7:  Sections for Parametric Study 

 
Four different span to depth ratios (L/d) for each section were considered in this analysis, namely 
15.3, 19.9, 24.5, and 26.0. As the span of the twin girder system increased, more XFs and SXFs 
were required. As shown in Figure 8, 20, 26, 32, and 34 XFs and 5, 6, 8, and 8 SXFs were used 
for the span to depth ratios of 15.3, 19.9, 24.5, and 26.0, respectively. Finally, three different 
stiffness parameters were included in the study where the proportional shear rigidity of the XFs 
and SXFs were varied as follows: Case 1: qxf = 1.0 and qsxf = 0, Case 2:  qxf = 0.75 and qsxf = 
0.25, and Case 3:  qxf = 0.5 and qsxf = 0.5. Therefore, 24 different models in total (2 sections x 4 
L/d ratios x 3 Cases) were used for the parametric study.  
 

L/d = 15.3 – 20 Cross‐Frames – 5 Stiffening Cross‐Frames

L/d = 19.9 – 26 Cross‐Frames – 6 Stiffening Cross‐Frames

L/d = 24.5 – 32 Cross‐Frames – 8 Stiffening Cross‐Frames

L/d = 26.0 – 34 Cross‐Frames – 8 Stiffening Cross‐Frames
 

Figure 8:  Plan View of Models for Parametric Study 
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For consistency with the aforementioned work by Helwig and Yura (2008b), the ideal diaphragm 
stiffness was determined from an eigenvalue buckling analysis of a perfectly straight system that 
carried uniform loads of equal proportion along the web to top flange intersection of the two 
girders. The magnitude of the load was such that it produced a maximum bending stress of 50 ksi 
at midspan of the girders. The diaphragm strength requirements were determined from a large-
displacement analysis carried out on an imperfect system using a diaphragm stiffness of four 
times the ideal value. The twist imperfection at midspan was set to θo = L/(500d) and the 
imperfect system was created by setting the diaphragm stiffness equal to zero and running an 
eigenvalue buckling analysis with the bottom flanges of the girders supported horizontally along 
their length. The buckled shape was then scaled and imported into the model for the large 
displacement analysis in a manner that did not stress the girders, the XF members, or the SXF 
members.  
 
6. Maximum Bracing Moments along the Length of the Girder 
For Section 1 and Case 1 (where all of this stiffness was present in the XF) the results 
theoretically should be identical to those given by Helwig and Yura (2008b). Therefore, the 
maximum value for the warping restraining moment per unit length along the length of the 
girders of the XF, M’br_xf_max, should equal to the value shown in Equation 6 above. Figure 9 
shows the normalized M’br_xf_max value for the four different span-to-depth ratios as the load on 
the beam was increased from zero until the girder moment reached Mmax. While Equation 6 was 
validated for L/d of 13.5 and 19.9, M’br_xf_max exceeded the value in the equation for L/d of 24.5 
and 26.0. In fact for L/d = 26.0, the FEM did not converge for the case of M/Mmax = 1.0. This 
result was somewhat unexpected since M’br_max in the study by Helwig and Yura (2008b) never 
exceeded the value in Equation 6 even for L/d = 25. The discrepancy could possibly be attributed 
to the difference in how the imperfections were applied in this study (imported buckled shape) 
versus the notional load used in the previous study by Helwig. The present study, however, does 
indicate that at large L/d ratios Equation 6 may become unconservative. As the beams began to 
buckle at the larger L/d ratios of 24.5 and 26.0, a substantial amount of twist was observed at the 
midspan of the beam with the lateral deflection of the bottom flange exceeding that of the top 
flange by more than a factor of two. Thus, it was expected that increasing the width of the 
flanges (which in turn would increase the beams weak axis stiffness and torsional stiffness) 
would decrease the lateral deflections of the flanges, reducing the required bracing moment.  
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Figure 9:  Maximum Normalized Brace Moments for Section 1 

 
The results from the investigation of Case 1 for Section 2 are presented in Figure 10. Recall that 
Section 2 is the same as Section 1 but with the flanges increased by a factor of 1.5. With the 
increased flange width, M’br_xf_max along the length of the girders for all L/d ratios was reduced, 
and convergence was reached at the L/d ratio of 26.0. Therefore, M’br_xf_max along the length of 
the beam is dependent on more than Mu, L, and d as indicated by Equation 6, however, more 
research is needed before the exact relationship with the weak axis stiffness and/or torsional 
stiffness of the girders can be stated.  
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Figure 10:  Maximum Normalized XF Brace Moments for Section 2 
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7. Effect of Relative Shear Rigidity on Brace Moment Distribution 
To display how changing the relative shear rigidity of the XF and the SXF affects the forces in 
the 24 FEA models, the results from the model using Section 1 with L/d = 19.9 will be explained 
in detail. Figure 11 shows the normalized brace moments in the XF, M’br_xf, along the girder for 
the three different cases where the shear rigidity varies. Since the girders are symmetric about the 
centerline, the brace moments are only graphed over half of the span where x = the distance from 
the girder’s support. As the proportional shear rigidity, qxf, of the XF decreases from Case 1 to 
Case 3, M’br_xf also decreases. Further normalizing M’br_xf by qxf causes the three curves for the 
three different stiffness ratios to virtually coincide as shown in Figure 12. Therefore, M’br_xf is 
directly proportional to the shear rigidity of the UTP and M’br_xf_max can be calculated as follows: 
 

 
2max__ 001.0'

d

LqM
M xfu

xfbr   (14) 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0 0.1 0.2 0.3 0.4 0.5

M
' b
r_
xf
d
2 /
(M

u
L)

X/L

Case 2

Case 3

Case 1 L/d = 19.9

 
Figure 11:  Normalized XF Brace Moments along Girder Length 
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Figure 12:  Further Normalized XF Brace Moments along Girder Length 

 
Similar to the XF, the forces in the SXF also vary as the shear rigidity of the SXF changes as 
shown in Figure 13. As the proportional shear rigidity of the SXF, qxsf, increases from Case 1 to 
Case 3, M’br_sxf also increases. Further normalizing M’br_sxf by qsxf caused the two curves for the 



 15

Case 2 and Case 3 to fall on top of one another as shown in Figure 14 (Case 1 cannot be 
normalized by qsxf because it would cause zero to appear in the denominator of the fraction). 
Therefore, M’sxf_br is directly proportional to the shear rigidity of the SXF and M’br_sxf_max can be 
calculated as follows: 
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Figure 13:  Normalized SXF Brace Moments along Girder Length 
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Figure 14:  Further Normalized SXF Brace Moments along Girder Length 

 
8. Connection Design Provisions for Stiffened PMDF Diaphragms 
The next step in this ongoing research is to use the knowledge gained from the parametric study 
on brace moment distribution in a stiffened PMDF diaphragm to determine design provisions for 
the connections from the PMDF sheets to the stiffening angles and for the connections from the 
girders to the stiffening angles.  
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9. Conclusions 
This paper summarized the results of a parametric study to determine the strength requirements 
of stiffened permanent metal deck form diaphragms utilized for stability bracing of girders. The 
strength requirements were based on a diaphragm stiffness of four times the ideal value and an 
initial girder twist imperfect of θo = L/(500d). For simplicity, the stiffened diaphragms were 
modeled using cross-frames for the metal deck forms and rigid beams with stiffening cross-
frames for the stiffening angles. The relative shear rigidity of the cross-frames versus the 
stiffening cross-frames was calibrated from the experimental test results of a previous study. 
From the parametric study which consisted of 24 models, both an expression for the maximum 
bracing moments of the cross-frames and an expression for the maximum bracing moments 
stiffening cross-frames were developed. Ongoing research is being conducted to determine a 
model for the fastener forces so that design provisions can be developed for the connections from 
the metal deck forms to the stiffening angles and for the connections from the stiffening angles to 
the girder.  
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