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Abstract 
Cellular and castellated members are steel I-section members with circular or hexagonal web 
openings placed at regular intervals along the member’s length. Compared with a member 
without web openings, these members have a more optimal material use in strong-axis bending. 
Other advantages are the savings in construction height possible by guiding service ducts 
through the web openings and aesthetics. However, compared with unperforated members, the 
resistance checks will be more complex and the fabrication cost will be higher. 
Depending on the boundary and loading conditions, flexural buckling about the strong axis could 
contribute to the failure of cellular or castellated columns or beam-columns. The corresponding 
critical buckling load of castellated and cellular columns is expected to be smaller than that of a 
similar I-section column without web openings, due to the decreased shear stiffness of the web. 
This is caused by the local bending and shear deformations around the openings. However, 
research covering this aspect is limited. 
In this paper, the elastic strong-axis flexural buckling behavior of castellated and cellular 
members will be investigated by means of a numerical parametric study. It will be shown that the 
existing formulations for the critical buckling load are still unsafe. Thus, a new expression for 
the critical buckling load will be proposed, based on an adaptation of the approach used for 
flexural buckling of battened columns. 
 

1. Introduction  
Cellular and castellated members are steel I-section members with large circular or hexagonal 
web openings in their webs, appearing at regular intervals in length direction. Because of these 
web openings, their strong-axis bending resistance will be optimized: for the same amount of 
material, the resistance will be higher than for I-section members without web openings. 
Additional cost savings are possible by the ability to guide service ducts though the openings, 
saving construction height. A last advantage is their lighter appearance. However, the presence 
of the web openings will modify the failure behavior of cellular and castellated members. 
 
Cellular and castellated members are predominantly used for beams, but they can also be used as 
columns. This can be out of aesthetic considerations, but also because the column is subjected to 
a combination of strong-axis bending and compression. Over the past years, a considerable 
amount of research has focused on the lateral-torsional buckling behavior of castellated and 
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cellular beams (Ellobody 2011; Nethercot and Kerdal 1982; Nseir et al. 2012; Sonck 2014; 
Sonck and Belis 2015; Zirakian 2006). However, the existing research about flexural buckling of 
cellular and castellated columns is much more limited. Depending on the boundary conditions, 
compressed columns can fail by strong-axis flexural buckling (Fig. 1). For this buckling type, the 
presence of the web openings will influence the critical buckling load detrimentally, due to the 
decreased shear stiffness of the web caused by local deformations around the web openings.  
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Figure 1: Strong axis flexural buckling of cellular and castellated columns. 

 
Research about the strong-axis flexural buckling behaviour is relatively limited. All existing 
research focuses on the elastic critical buckling load formulation. In (Sweedan et al. 2009), the 
critical buckling load of cellular columns is investigated. It is proposed to use a tabulated 
reduction factor for the critical Euler buckling load. Additionally, the approach used for battened 
columns as proposed in (Timoshenko and Gere 1961) was considered. However, this was found 
to be overly conservative. In (El-Sawy et al. 2009), a similar investigation was executed for 
castellated columns, where it was proposed to use charted values for a buckling modification 
factor that takes into account the effect of the shear stiffness of the web. In both papers, the 
introduced modification factors should be determined using charts based on the numerical 
results, which is not very convenient. However, a more appropriate closed expression for the 
critical buckling load is given in (Yuan et al. 2014) for castellated columns and in (Gu and 
Cheng 2016) for cellular columns. More details about these closed expressions and their 
derivation is given in Sections 2.2 and 2.3. The amount of geometries for which these 
expressions was validated was limited. 
 
In this paper, the closed expressions for the critical buckling load, given in (Yuan et al. 2014) 
and (Gu and Cheng 2016) will be checked in a larger numerical parametric study. Additionally, 
it will be investigated whether the approach used for battened columns could be modified to 
make it more precise. In this investigation, only simply supported, doubly symmetric castellated 
or cellular columns loaded by a central compressive force N will be considered.  
 
In the next section, the already existing formulations for the strong-axis critical buckling load Ncr 
of castellated and cellular columns will be discussed. Subsequently, it will be shown how the 
existing approach for battened columns could be modified to obtain a new, more precise 
formulation of Ncr. All these formulations will be compared with the numerical results obtained 
using the numerical model and parametric study described in the next section. Finally, a detailed 
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comparison of the numerical and analytical results is described, illustrating the suitability of the 
new formulation. 
 
2. Existing design rules for strong-axis flexural buckling 
In this section, an overview will be given of the different existing formulations for the strong-
axis critical buckling load that could be suitable for cellular and castellated members.  
 
2.1 Critical load of built-up columns  
As first derived by Engesser, the effect of the shear deformation can decrease the critical Euler 
buckling load Ncr (Eq. 1) to a critical buckling load Ncr,Gav (Timoshenko and Gere 1961). The 
latter critical load can be expressed by Eq. 2, in which GAv is the shear stiffness of the member.  
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Timoshenko and Gere (1961) derived an expression for the critical buckling load of several built-
up column types, of which the geometry of columns with batten plates (Fig. 2) matches the 
cellular and castellated member geometries the best. The battens would correspond with the web 
posts between the web openings, whereas the longitudinal channels sections could correspond 
with the tee sections in cellular and castellated members (Fig. 3). 
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Figure 2: Flexural buckling of battened columns: additional deformation due to local bending moments. 

 
From this battened column, an element FEDCBA is extracted, subjected to a global normal force 
N, bending moment M and shear force V. These stress resultant are distributed over FEDABC as 
shown in Fig. 2, assuming that the points of inflection of the deflection curves are situated in the 
middle of the batten (point H) and in the channels at mid-distance between two battens (points F, 
D, A and C), just as for a Vierendeel beam. Thus, the local bending moments caused by the shear 
force are zero at the aforementioned locations. For each element, the additional deflection due to 
the local bending of the battens and the channels can be calculated. The resulting inverse shear 
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stiffness 1/Gav of the battened column can be calculated by dividing the angular shear 
displacement γ  by the shear force V (Eq. 3). In this expression, the first term originates from the 
rotation of the batten in B due to the local bending moment in the battens, with ael the distance 
between the centers of two adjoining battens, h’ the height between the centerlines of the top and 
bottom section and EIk the bending stiffness of the battens. The second term originates from the 
additional bending deflection A’A’’ of the channel section, EIf being the bending stiffness of the 
top and bottom sections. 
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In this calculation the local shear deformations, as well as additional deformations of the channel 
sections due to second order effects are neglected.  
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Figure 3: Equivalence of cellular and castellated columns with battened columns. 

 
The approach used for a built-up columns with batten plates could be adapted to take into 
account local bending deformations around the openings of cellular or castellated columns. This 
will be further developed in Section 3. 
 
2.2 Approach by (Yuan et al. 2014) for castellated columns 
In (Yuan et al. 2014), a derivation of the critical load Ncr,Yuan of castellated columns is presented, 
applying the Ritz method to express the stationarity of the potential energy. Bernoulli’s 
hypothesis is valid for the two tee sections: the rotation of the tee sections is equal to the slope of 
the deflected member axis. However, this will not be the case for the web post, which will 
undergo shear deformation. This shear deformation is implemented by assuming an independent 
axial displacement of the top and bottom tee section. In the derivation, a shear factor ksh=0.25 
was derived specifically for the common castellated member geometry with regular hexagonal 
openings and for a Poisson’s coefficient ν of 1/3. The shear factor ksh covers both the shear and 
bending deformation of the web post, considering a rectangular web post with average width. 
 
The critical buckling load Ncr,Yuan can be expressed using Eq. 4, using the dimensions from Fig. 
4. In this equation, EItee, is the bending stiffness of one tee about its principal y-axis, Atee the 
surface of the tee and e the distance between the center of gravity of the complete cross-section 
and the center of gravity of a tee. This expression for Ncr,Yuan was checked numerically for a 
relatively limited group of 56 castellated column geometries and its suitability will be further 
examined in Section 5. 
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Figure 4: Dimensions and coordinate system for cellular and castellated columns. 

 
2.3 Approach by (Gu and Cheng 2016) for cellular columns 
Very recently, Gu and Cheng (2016) proposed a formulation for the critical buckling load of 
cellular columns. Its derivation is very similar to the derivation in (Yuan 2014) for castellated 
columns, although it is somewhat less detailed. Furthermore, in this derivation the bending 
deformations of the web were not considered. Following the notations of Fig. 4, the critical 
buckling load Ncr,Gu can be expressed by Eq. 5, with the shear factor ksh given by  Eq. 6. 
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The validation of the proposed Ncr,Gu was very limited, as the results were only compared with 
numerical results for 13 different cellular column geometries. The suitability of the proposed 
expression will be further discussed in Section 5. 
 
2.4 Other solutions 
Apart from the three approaches mentioned above, it might be useful to compare the obtained 
numerical values of the critical strong-axis flexural buckling load with the critical buckling load 
Ncr,0, using the bending stiffness EI0 of the gross cross-section at the web post (Eq 7). The 
reduced bending stiffness of the member could be taken into account by considering the value of 
the 2T critical buckling load Ncr,2T given by Eq. 8. In the latter equation, bending stiffness EI 
about the strong axis is calculated for the cross-section at the center of the opening. This 2T 
approach, in which all cross-sectional properties are calculated at the cross-section at the center 
of the web opening is currently already being used in European pre-standards (CEN 1998) for 
lateral-torsional buckling, and has been found to be a valid approach for other global buckling 
modes of castellated and cellular members (Sonck 2014) (Sonck et al. 2012). 
 



 6

 
2

0
,0 2cr

EI
N

L

π=  (7) 

 
2

2
,2 2

T
cr T

EI
N

L

π=  (8) 

 
3. Formulation of expression for critical load 
In Section 2.1, the method used to derive the critical moment of battened columns was 
introduced as a possible approach to calculate the shear stiffness of the perforated web. In its 
original shape, preliminary investigations showed this approach to be very conservative: it 
resulted in an overly low shear stiffness. This is caused by the fact that all material is assumed to 
be located on the center lines of the tee sections and web posts, neglecting the stiffer regions 
above and below the web post, where the center lines of the tee sections and the web posts 
intersect. Thus, a modification of the approach for battened columns was proposed, taking into 
account that part of the web post lines and tee section lines will be rigid. Additionally, equivalent 
opening dimensions were proposed to be used for the web post width and tee section height. 
Lastly, the effect of the openings on the overall bending stiffness of the castellated and cellular 
column was taken into account by using a weighted average. 
 
These adaptations will be further explained in the following sections. It will be assumed that the 
circular and rectangular openings can be replaced by equivalent rectangular openings with a 
specific set of dimensions, depending on the considered deformation. However, the distribution 
of stress resultants, as depicted in Fig. 5, will remain the same. In this figure, h’ is the distance 
between the centers of gravity of the tee sections at the center of the web opening, w the web 
post width and ℓo the opening length. 
 

ah’

w ℓo/2ℓo/2w ℓo/2ℓo/2

C             B              A

F E D

H   

w+ℓo

A’
A”

-V(w+ℓo)/4

V(w+ℓo)/4
-V(w+ℓo)/2

V(w+ℓo)/2

-
+

+

-

V/2V/2V/2

V(w+ℓo)/h’ V(w+ℓo)/h’

V/2

V(w+ℓo)/h’

 
Figure 5. Considered distribution of forces. 

 
3.1 Effect of web post bending 
The rotation of the web post ends relative to the chord EB connecting the two web post ends (γ1 
in Fig. 3) can be found using the unit force method on the simply supported member EB (Fig. 6). 
In the original derivation, the bending stiffness of the web post was constant along EB. However, 
for the castellated and cellular members, it is assumed that the intersection between the web post 
and tee section, highlighted in Fig. 6 will not deform (EIWP=∞), resulting in the integral only 
being non-zero in the central part of the web post. The resulting rotation is given by Eq. 9. In this 
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expression, *
WPEI  is the bending stiffness of the equivalent web post with width w*. This 

equivalent web post width w* can be calculated by Eq. 10, using Eq. 11  for cellular columns, 
and Eq. 12 for castellated columns (Fig. 6). 
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Figure 6: Determination of displacement AA’=γ1(w+ℓo)/2 due to web post bending.  

Equivalent web post width w* and opening length ℓ*o.  
 
3.2 Effect of tee section bending 
The additional deformation A’A” of the tee section in location A, relative to the tangent in B can 
again be found using the unit force method on a cantilever beam BA (Fig. 7). In the original 
expression, the bending stiffness of the beam BA was assumed to be constant. However, for the 
castellated and cellular members, it is assumed that the intersection between the web post and tee 
section, highlighted in Fig. 7 will not deform (EITS=∞), resulting in the integral only being non-
zero in the right part of the beam BA with length ℓo/2. The resulting displacement A’A” is given 
in Eq. 13. In this expression, the bending stiffness of the equivalent tee section *TSEI is calculated 
using an equivalent opening height a* given by Eq. 14 for cellular columns and Eq. 15 for 
castellated columns (Fig. 9). 
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Figure 7: Determination of relative displacement A’A” due to tee section bending. Equivalent opening height a*. 

  
3.3 Effect of overall bending 
For the larger lengths, the effect of the shear deformation decreases and the effect of the overall 
bending stiffness EI dominates. It was found that the deviations for these larger lengths were 
minimal if a weighted average EI* was used for the overall bending stiffness. The weighted 
average, given by Eq. 16, was determined by considering the smallest encompassing rectangle 
for each opening, i.e. the rectangle with height a and length ℓo. 
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3.4 Overall expression for GAv and Ncr,Gav 
Finally, the inverse shear stiffness 1/GAv can be determined by Eq. 17. Using this expression in 
Eq. 18, the critical load Ncr,Gav can be calculated as a function of α and β. In Section 5, these 
values will vary between 0.45 and 1.00 in steps of 0.05, and the best-fitting values of α and β will 
be determined. 
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4. Numerical model and parametric study 
In this section, the numerical model used for the parametric study, as well as the considered 
parameters during this study are described. The dimensions and the used coordinate system are 
depicted in Fig. 4. 
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4.1 Numerical model 
The numerical model used for the parametric study was constructed in Abaqus (Dassault 
Systèmes 2014). The member was modelled using quadratic shell elements with reduced 
integration (S8R) for the flanges and the web, disregarding the fillet between the flanges and the 
web.  
 
At both ends, the members were simply supported, preventing all lateral displacements (in y- and 
z-direction) and rotations about the longitudinal x-axis. At one end, the axial displacement of the 
central web node was prevented. To prevent weak-axis buckling, additional lateral restraints (in 
y-direction) were introduced along axial lines at the web to flange intersections, as well as at the 
centre of the web. Kinematic coupling constraints prevented local deformations of the web at the 
column ends. The compressive force N was introduced at both ends of the columns as line loads 
(shell edge loads) on the flanges and the web, of which the sizes would correspond with a 
uniform compressive stress over the cross-section. 
 
The critical buckling load was determined using a linear buckling analysis. The considered 
members were all perfectly straight and displayed perfect linear elastic behaviour with the 
modulus of elasticity E=210 GPa and Poisson’s coefficient ν=0.3. Using these values, the shear 
modulus G=E/2/(1+ν) can be determined. 
 
4.2 Parametric study 
The different critical buckling load formulations from Sections 2 and 3 were checked using the 
results of a parametric study in which the critical buckling load of a large number of castellated 
and cellular columns was determined. All considered geometries were fabricated starting from 
the six hot-rolled I-sections listed in Table 1. It was assumed that these parent sections were cut 
into two halves according to a certain pattern, after which both halves were shifted and welded 
together (Fig. 8). The final height H of the castellated or cellular member can be found using 
Eqs. 19 and 20, assuming a cut width rb of 8 mm. 
 

Table 1: Considered parent sections and their dimensions. 

 
Total height 

h (m) 
Flange width 

b (m) 
Flange thickness 

tf (m) 
Web thickness 

tw (m) 
IPE300 0.300 0.150 0.0107 0.0071 
IPE600 0.600 0.220 0.0190 0.0120 

HEA320 0.310 0.300 0.0155 0.0090 
HEA650 0.640 0.300 0.0260 0.0135 
HEM320 0.359 0.309 0.0400 0.0210 
HEM650 0.668 0.305 0.0400 0.0210 

 

                   

                   
Figure 8: Fabrication of cellular and castellated members. 
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The two varying factors for cellular member geometries were the diameter of the opening a=fa.h 
and the distance w=fwℓo=fwa between two openings. By varying the geometry factors fa and fw 
(Table 2) and taking into account the geometric constraints from (CTICM 2006) and (CEN 
1998), all realistic cellular geometries made from the selected parent section were considered.  
 
For the castellated geometries, the height of the opening a, the width of the web post w= fwℓo and 
the opening angle α can vary. The values of the factors fH and fw, as well as the opening angle α 
were varied as mentioned in Table 3. Considering the abovementioned geometric restrictions, a 
large group of castellated member geometries was considered, going from very narrow openings 
through regular hexagonal openings to very wide, almost Angelina® like openings. 

 
Table 2: Varied geometry parameters for cellular columns. 

fa 0.8 1.0 1.2 
fw 0.1 0.4 0.7 

 
Table 3: Varied geometry parameters for castellated columns. 

fH 1.4 1.5 1.6 
fw 0.1 0.3 0.5 
α 45° 60° 75° 

 
For each considered geometry, five different lengths were considered, so that the corresponding 

slenderness 2 ,2/y T cr Tf A Nλ =  would be approximately equal to 0.5, 1.0, 1.5, 2 or 2.5. This 

slenderness was determined using the surface A2T of the cross-section at the center of the 
opening, a yield stress fy of 235 MPa and the critical buckling load Ncr,2T.  
 
In total, 725 different linear buckling analyses were executed: 215 for the cellular columns and 
510 for the castellated columns. The lowest eigenvalue obtained for each of these is considered 
as Ncr,abq. 
 
5. Results and discussion 
In this section, the numerically obtained values of the critical load Ncr,abq will be compared with 
the different critical load formulations for cellular and castellated columns. For each examined 
geometry and each formulation of Ncr, the error ∆ can be determined using Eq. 21. If ∆ is 
positive, the formulation is safe (but conservative), while negative ∆ values correspond with 
unsafe formulations. 

 , 1 100%cr abq

cr

N

N

 
∆ = − ⋅ 

 
 (21) 

 
All considered 725 geometries, with the exception of three castellated columns, failed by flexural 
buckling about the strong axis. The three deviating buckling modes all occurred for an IPE600 
parent section with fH=1.4. They all failed by local buckling of the tee sections at the ends of the 
column. These three local failure modes will be not further considered in the remainder of this 
paper. 



 11

5.1 Existing proposals 
In Fig. 9, the numerical results are compared with the most simple expression of all possible 
formulations: the gross critical buckling load Ncr,0 (Eq. 7), considering the bending stiffness of 
the gross-cross section and neglecting shear deformations. As expected, this formulation is 
unsafe. For the intermediate and longer lengths, this unsafety is relatively small (smaller than 
15%), but for the shorter lengths large unsafe errors could be perceived for both the castellated 
and cellular columns. The latter is due to the effect of the finite shear stiffness of the cross-
sections, which becomes increasingly important for shorter lengths. This effect seems to be more 
severe for the cellular columns. In Tables 4 and 5, numerical values of the minimum and 
maximum error, as well as its mean value and standard deviation are listed for respectively 
cellular and castellated columns. This comparison also illustrates the detrimental effect of the 
web openings on the critical buckling load: the critical buckling load Ncr,abq of castellated and 
cellular columns can be about 30 to 40% smaller than the buckling load obtained for similar 
columns without web openings. 
 
Another simple approach would be to use Ncr,2T, as given by Eq. 8 (Fig. 10). Here the effect of 
the finite shear stiffness is also neglected, but the bending stiffness is calculated for the cross-
section at the center of the web opening. As expected, this improves the safety for the longer 
columns, which now display slight conservative behavior. However, for the shorter lengths, this 
formulation remain very unsafe. Thus, as already stated by other authors, the shear flexibility of 
the columns needs to be taken into account to come up with an accurate formulation of the 
buckling load. 
 

 
Figure 9: Error ∆ between Ncr,abq and Ncr,0 for all considered cellular and castellated columns. 

 

 
Figure 10: Error ∆ between Ncr,abq and Ncr,2T for all considered cellular and castellated columns. 
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In Figure 11, a comparison is made between the numerical values and the formulations proposed 
in literature for cellular and castellated columns. It can be seen that the largest unsafe errors are 
7% smaller than for Ncr,2T, which is definitely an improvement (Tables 4 and 5). However, these 
results are not as good as expected. While the underlying methodology was definitely 
satisfactory, these formulations could be further improved by considering other trial functions for 
the buckled shape, taking into account local bending deformations of the tee section and the web 
post. These unsafe deviations were not noticeable in the original papers due to the limited 
amount of geometries for which they were validated.  
 

 
Figure 11: Error ∆ between Ncr,abq and Ncr,Yuan or Ncr,Gu for all considered cellular and castellated columns. 

 
5.2 New proposed rule (Ncr,Gav) 
Taking into account the large deviations for the three formulations of Ncr considered in the 
previous section, it will now be investigated whether an important amelioration in the results can 
be obtained using the new formulation for Ncr,Gav, which is largely based on the approach used to 
account for the effect of shear deformation on the critical buckling load of  battened columns. As 
already explained in Section 3, this rule was modified to take into account that the intersections 
between the schematized web posts and tee sections have finite dimensions and will behave 
much stiffer. Additional modifications were made by determining the bending stiffness of the 
web post (EIWP) and the tee section (EITS) using modified opening dimensions, represented by a 
factor α for the opening height a* (in EITS) and a factor β for the opening length ℓo

*  (in EIWP). 
These factors were chosen so that a unity value for both would correspond with calculating EIWP 
and EITS using the maximum opening dimensions (the encompassing rectangular opening with 
length ℓo and height a). It was expected that assuming α=β=1.0 would be too conservative, and 
this is confirmed by Fig. 12 and the results in Tables 4 and 5: for the shorter lengths this 
formulation can lead to results that are 6.5 to 8 times too big. Thus, the necessity of using factors 
α and β smaller than one (and larger than zero) is confirmed.  

 
The results from the parametric study were compared with Ncr,Gav using factors α and β which 
could independently vary between 0.45 and 1.0, with intermediate steps of 0.05. Thus, the best 
fitting α and β factors could be determined. For all considered values, the overall minimum error 
∆min, maximum error ∆max, mean error ∆mean, and standard deviation of the error ∆stdev could be 
determined. These values are depicted in Fig. 13 for cellular columns and in Fig. 14 for 
castellated columns. Not all considered α and β values are visible in these figures, as some values 
caused too large deviations to be visible in the Figures (and to be of practical use). It should be 
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pointed out that the equivalent openings dimensions are not formulated in a similar manner for 
cellular and castellated columns (cf. Sections 3.1 and 3.2), which explains their different 
behavior for similar values of α and β. 

 
Table 4: Minimum ∆min, maximum ∆max, mean ∆mean and standard deviation ∆stdev for error ∆ (all cellular 

columns). The row with the selected values of α and β is highlighted in grey. 
 β 

[-] 
α 
[-] 

∆min 

[%] 
∆max 

[%] 
∆mean 

[%] 
∆stdev 

[%] 
Ncr,0 - - -43.3 -2.6 -10.8 7.8 
Ncr,2T - - -39.4 4.0 -3.7 8.2 
Ncr,Gu - - -32.2 4.0 -2.4 6.6 
Ncr,Gav  1.00 1.00 -1.1 558.7 55.3 116.3 
Ncr,Gav  0.80 0.85 -11.9 1.1 -1.7 2.2 
Ncr,Gav  0.80 0.90 -11.4 2.2 -1.2 1.9 
Ncr,Gav  0.80 0.95 -10.7 9.0 -0.5 2.2 
Ncr,Gav  0.85 0.80 -6.6 4.9 -0.4 1.9 
Ncr,Gav  0.85 0.85 -5.8 6.2 -0.0 1.9 
Ncr,Gav  0.85 0.90 -4.8 10.4 0.4 2.1 

 
Table 5: Minimum ∆min, maximum ∆max, mean ∆mean and standard deviation ∆stdev for error ∆ (all castellated 

columns). The row with the selected values of α and β is highlighted in grey. 
 β 

[-] 
α 
[-] 

∆min 

[%] 
∆max 

[%] 
∆mean 

[%] 
∆stdev 

[%] 
Ncr,0 - - -27.1 -2.2 -8.5 4.7 
Ncr,2T - - -22.2 4.1 -1.7 4.4 
Ncr,Gu - - -15.2 4.2 -0.2 2.8 
Ncr,Gav  1.00 1.00 -2.9 709.6 33.7 91.0 
Ncr,Gav  0.45 0.7 -10.5 2.8 -1.2 1.8 
Ncr,Gav  0.45 0.75 -8.4 2.9 -1.1 1.8 
Ncr,Gav  0.45 0.8 -7.1 6.3 -0.8 1.8 
Ncr,Gav  0.5 0.7 -10.3 2.8 -1.0 1.7 
Ncr,Gav  0.5 0.75 -8.2 3.3 -0.9 1.7 
Ncr,Gav  0.5 0.8 -6.3 6.5 -0.6 1.8 
Ncr,Gav 0.55 0.7 -10.1 4.4 -0.8 1.8 
Ncr,Gav 0.55 0.75 -8 4.5 -0.6 1.8 
Ncr,Gav  0.55 0.8 -5.5 6.8 -0.4 1.8 

 
 

 
Figure 12: Error ∆ between Ncr,abq and Ncr,Gav for all considered cellular and castellated columns (α=β=1). 
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Figure 13: Minimum ∆min, maximum ∆max, mean ∆mean and standard deviation ∆stdev for error ∆ between Ncr,abq and 

Ncr,Gav (cellular columns). 
 

 

 

 
Figure 14: Minimum ∆min, maximum ∆max, mean ∆mean and standard deviation ∆stdev for error ∆ between Ncr,abq and 

Ncr,Gav (castellated columns). 
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Overall, Figs. 13 and 14 illustrate that ∆min, ∆max and ∆mean increase with increasing values of α 
and β. This is expected, as the formulation grows more conservative with increasing equivalent 
opening sizes. However, the standard deviation of the error ∆stdev display a clear minimum. For 
cellular columns, this minimum corresponds with values of β of 0.8 and 0.85, while α is about 
0.8. For the castellated columns, this minimum corresponds with values of β of 0.45, 0.5 or 0.55, 
while α is about 0.75. Detailed values of ∆min, ∆max, ∆mean and ∆stdev for these α and β values are 
listed in Tables 4 and 5. These errors are certainly more acceptable than those obtained for all 
earlier considered Ncr formulations. Although the results for some combinations of α and β lie 
very closely together, the selection for the optimal α and β factors was made by aiming for equal 
magnitudes of the maximum and minimum error. For cellular members it is proposed to use 
α=β=0.85, and for the castellated members it is proposed to use α=0.8 and β=0.5. The obtained 
errors ∆ obtained for the selected α and β factors are depicted in Fig. 15 for all considered 
columns. Compared with the other considered (existing) formulations, the match with the 
numerical results has been considerably improved. 
 
In the proposed formulation, a weighted average approach was used for the overall strong-axis 
bending stiffness of the column (cf. section 3.3). The good fit of this approach is visible for the 
intermediate and longer lengths in Fig. 15, for which the effect of the shear flexibility is less 
substantial. 
 

 
Figure 15: Error ∆ between Ncr,abq and Ncr,Gav for all considered cellular and castellated columns (α=β=0.85 for the 

cellular columns; β=0.5 and α=0.8 for the castellated columns ). 
 
6. Conclusions 
In this paper, different formulations for the critical flexural buckling load about the strong axis 
Ncr of cellular and castellated columns were examined numerically. The goal of these 
formulations was to take into account the effect of the web openings, which mainly increased the 
shear flexibility of the web, decreasing the critical buckling load. Compared with analytical 
values obtained for unperforated columns of the same geometry, the numerically obtained values 
of Ncr could be up to 40% smaller. 
 
For both cellular and castellated columns, formulations for Ncr that should take into account the 
shear deformation of the web post were already described in literature. While an extensive 
numerical check of these proposals demonstrated that the unsafe deviations were somewhat 
decreased, the decrease was not substantial enough. For small lengths, the obtained formulation 
was still too unsafe. 
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Based on an adaptation of the existing formulation of Ncr for battened columns, the authors 
formulated an approach that included the local bending deformations around the web openings. 
By considering different options for the equivalent opening size used to determine the local 
bending stiffness of the web post and tee sections, a best-fitting equivalent opening size could be 
determined for the cellular and castellated columns. The deviations following this approach were 
found to be very acceptable (max. 6.5 % error). The effect of the local shear deformations of the 
web posts and tee sections is assumed to be implicitly included in the best fitting equivalent 
opening. 
 
In further research, the formulation for the elastic critical buckling load Ncr can be used in a 
study of the strong-axis buckling resistance NRd, considering geometric nonlinear behavior, 
imperfections and plasticity of the steel. While the current paper focused on the effect of the 
modified geometry of the cellular or castellated columns on buckling behavior, in this future 
research the imperfections will also be altered. This is due to the modification of the residual 
stress pattern that takes place during the production process.  
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