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Abstract 
This paper presents an analytical study of the ultimate strength of tapered plate girders under 
combined bending and shear. A finite element model subjected to uniform bending stress without 
shear and to uniform shear stress without bending is developed. Standard imperfection models 
are applied to the girder model. The model is validated using available test results on web 
tapered girders. A parametric study is performed to investigate the effect of major design 
parameters such as web and flange slenderness, tapering angle, tapered panel aspect ratio on the 
ultimate buckling strength under combined shear and bending loads. The results are then used to 
develop simplified formulae which represent the interactive relationships of bending and shear 
for all possible magnitude and direction combinations.  
 
1. Introduction 
 
Web tapered girders are usually used in bridges to achieve economy by varying the web depth 
according to variation of the bending moments and shear forces resulting from applied loads. 
This variation leads to lighter design than conventional prismatic girders. Current design codes, 
e.g., AASHTO (2010), are based on theoretical and experimental research on prismatic girders. 
Theoretical solutions of plate buckling problems are based on the simplifying assumptions of 
simply supported plate panels. These solutions do not consider the real boundary conditions at 
the web-flange and web-stiffener connections which are known from experimental investigations 
to be somewhere between simply supported and fixed depending on the relative slenderness of 
the flange and the stiffener. Finite Element Analysis has been used effectively to obtain the 
elastic buckling stress and the ultimate strength under a wide scope of design variables related to 
applied stresses and actual boundary conditions. Allowance for initial geometric imperfections 
and residual stresses may be easily incorporated in the finite element model. The buckling stress 
is obtained by solving a linear eigen-value problem with the eigen-values representing the 
buckling load factors and the eigen-vectors representing the buckling mode shapes. The ultimate 
strength is obtained by performing a nonlinear inelastic analysis up to the failure load. The finite 
element models used may be a single isolated panel or a complete girder model.  
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There are very few theoretical and experimental investigations into the structural behavior of 
web-tapered girders under shear and/or bending moments, e.g., Mirambell (2000), Real (2010), 
Studer (2013) and Bedynek (2013). Consequently, there are no specific provisions in current 
design codes for the design of tapered girders.   
 
 
2- Girder Model 
 
Neither an all edges simply supported plate, nor a single web panel can realistically represent the 
actual behavior of real plate girders used in practice.  The finite element models used may be a 
single isolated panel or a complete girder model. Numerical solutions obtained from isolated 
single panel models give conservative buckling strength values as compared to results obtained 
from complete girder models, e.g., and Abu-Hamd (2011). Therefore, a multi-panel girder model 
with realistic boundary conditions is used in this study to simulate real girders. 
 
The geometry of the model used in the study is shown in Fig.1, Abu-Hamd (2011), Abu-Hamd et 
al (2014) and El-Dib (2015. The deeper end web depth H1 is fixed in the numerical study at 2 
meters while the smaller end depth H2 is varied between 0.40 meter and 2 meters at 0.40 meter 
intervals to give different tapering angles Φ of 0.20 and 0.4. The tapered segment length is 
varied between 2 and 4 meters at 2 meters intervals to give different tapered panel aspect ratios α 
of 1, and 2, respectively.  
 
 
 

 
 
 
 
 
 
 

Figure 1: Model geometry  
 
ANSYS (2009) was used to develop the finite element model of the tapered girder. All plate 
elements were modeled with an iso-parametric finite strain shell element designated as “Shell 
181” in ANSYS element library. Shell 181 is a four-node shell element with six degrees of 
freedom per node and has geometric and material nonlinearities capabilities. It is well suited for 
linear, large rotation, and /or large strain nonlinear applications. In the construction of the finite 
element model, convergence was achieved by using a mesh size in the order of 50 mm for all 
plate elements.  The displacement boundary conditions at the left end were specified to give a 
roller support while the right end was restrained to represent symmetry about the middle vertical 
plane. Lateral torsional buckling was prevented by restraining the movement in the out-of-plane 
direction of all nodes along the web-to-flange connection. The material properties used 
correspond to an elastic-plastic material with Von Mises yield criteria and isotropic hardening. 
The values of the material constants used are Elastic modulus E=210 GPa, yield stress Fy=350 
MPa, and Poisson’s ratio ν=0.3. 
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The loading patterns used are given in Abu-Hamd (2011), Abu-Hamd et al (2014), El-Dib (2015)  
are distributed around the tapered panel in such a way as to produce pure uniform bending or 
shear stresses. The model is also subjected to geometrical and structural imperfections as shown 
in Abu-Hamd (2014). 
 
The interaction between shear and bending loads in maintained for all possible loading 
combinations by using the following procedure; see Fig. 2 and 3:  
 
The ray OS is the start value, usually equals Fy, then the iteration proceeds until convergence by 
keeping the value of the angle θ  unchanged until the destination at point F. The ratio of the 
shear to bending stresses is given by the value of tan θ , noting that the coordinates of OF may 
exceed the ultimate strength under pure bending or pure shear, which explains the necessity of 
this technique. In Fig. 3 all the categories given in (Bedynek et al 2013) are represented by the 
types 1 to 4, found by changing the directions of bending and shear forces, which give four 
different combination possibilities. Type 1 contains positive moment and shear stresses, where 
positive moment creates compression in the upper flange; and positive shear, acting upwards on 
the right panel edge creates long tension diagonal (LD). Changing directions and signs of the 
stresses creates Types 2 to 4. These assignments are respected in all the following ultimate 
strength figures.  
 
 
 
   

 
       
   
 
 
 
 
 
 
 
 
 
 
   
                
          
 

             Figure 2: Radial Evaluation                                  Figure 3: Loading combinations 
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2. Ultimate loads under pure stresses 
  
To simplify the representation of the ultimate strength values under combined loading, it is 
convenient to normalize them with respect to the corresponding values under pure strengths, 
which are given in Abu-Hamd et al (2014) and El-Dib (2015).  
 
The ultimate shear buckling strength for the tapered girder can be computed from the AASHTO 
equation for prismatic girders using an equivalent girder depth He given by:  

 
For pure shear creating a tension field on the long diagonal “LD” 
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For pure shear creating a tension field on the short diagonal “SD”  
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where He is the equivalent depth of a prismatic plate used to get the ultimate shear by applying 
the well known method AASHTO (2010); λf = b / (2*tf) is the flange slenderness; α  is the 
aspect ratio between panel length and maximum depth H1; λw = Hw/tw is the web slenderness 
based on maximum depth Hw = H1 as indicated in Fig. 1; Φ  is the tapering angle of inclination; 
tw  is the web thickness; b is the flange breadth; and tf  is the flange thickness. 
 
To determine the ultimate load of tapered web girders under uniform bending stresses with a 
reasonable accuracy, the following approximate equation developed in El-Dib (2015) can be 
used  to represent both cases of Positive and Negative Moment Loading (PL and NL), creating 
compression in the upper or lower flange respectively: 
 

( )( )wf
y

ult

F
F λλΦ 001.002.015.1tan25.01 −−+= .                            (3) 

 
3. Model Validation 
 
The developed finite element model has been validated by comparing its results with some 
available analytical and experimental results. Fig. 4 shows the comparison with the analytical 
solution based on Timoshenko (1936) for the case of a rectangular plate with λw    = 100, 140, 
200. Fig. 5 shows the comparison with the analytical model developed by Abu-Hamd (2011) for 
tapered girders with λw    = 100, 140, 200 under pure bending stresses. Table 1 shows a 
comparison with test results given by Bedynek et al (2013) by assuming small imperfections and  
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Fig. 4. Comparison with Timoshenko (1936) for Rectangular Plate with α = 0.667, φ = 0.0 
and  λw    = 100, 140, 200 
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Fig. 5. Comparison with Abu-Hamd (2011) for Rectangular Plate with α = 1, φ = 0.5 and  
λw    = 100, 140, 200 
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using the present models as shown in Abu-Hamd et al (2014b) and El-Dib (2015). The test 
specimens were subjected to support shear in addition to bending moments at mid span.  

 
 

 Table 1: Comparison with (Bedynek et al 2013) 

Girder 
FEM with Res 
(Bedynek) 

Test Results  
(Bedynek) FEM with Res 

Vu (kN) Vu (kN) Vu (kN) 
A 600 800 800   3.9 180 15 408.5 392.0 407.1 
B 500 800 1200 3.9 180 15 340.6 320.5 337.7 
C 480 800 800   3.9 180 15 403.8 388.2 404.4 
D 600 800 800   3.9 180 15 421.3 425.3 420.7 

 
The results in Figs. 4 and 5, and all the following plots, are designated according to the following 
classification: 

a) Flange slenderness (CF for compact flange, NCF for non-compact flange and SF for 
slender flange); 

b) Type of failure (C for elastic critical-, RC for relative critical-, U for ultimate load and 
RU for relative ultimate values); 

c) Panel aspect ratio α; 
d) Tapering (tan Φ); and  
e) Web slenderness (Hw/tw),  

Note that relative interaction values are normalized w.r.to  either to pure bending or to pure 
shear. The comparison show close agreement between test results and analytical results from the 
present model. 
       
4. Parametric Study 
 
By assuming β = OF/OS as the ultimate load multiplier (Fig. 5) the iteration starts usually with 
OS = Fy and converges at OF = β.Fy. Thus 
 

θβ cos.F/F yM,u = , and                                                        (5) 
                            θβ sin.F./Q yQ,u =580 .                                                     (6) 

 
The evaluation scope includes the following parameters, α = 1.0 to 2.0; tan Φ = 0.0 to 0.5; flange 
slenderness from 8 to 18; and web slenderness 100 and 140. Plots of relative ultimate loads are 
placed close to the plots of ultimate loads for direct comparison. Convergence is achieved by 
using an element size of 40 – 60 mms.  
 
All plots maintain the arrangement of the loading types as designated in Fig. 3. From Abu-Hamd 
et al (2014b), selected plots for elastic interaction are demonstrated in Fig. 6. The following plots 
in Figs. 7 to 10 present the ultimate (U), and the relative ultimate (RU). 
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(a) Critical and Relative Critical Values for  λw    = 140 

           

 

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

-1.20 -0.80 -0.40 0.00 0.40 0.80 1.20

 Fcr/Fy

 q
cr

/.5
8F

y

SL

NC

C

  

 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Fb/Fcr

q/
qc

r

SL

NC

C

 
                   

(b) Critical and Relative Critical Values for  λw    =  200 
 

Figure 6: Selected Elastic Interaction Diagrams for α = 1.0,  tan Φ  =  0.5,   
Abu-Hamd et al (2014) 
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(a) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.5 
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(b) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.25 
 

        
-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Fult/Fy

Q
ul

t/0
.5

8 
Fy

FSL 8
FSL 13

         -1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

Fb/Fult

Q
/Q

ul
t

FSL 8
FSL 13

 
                                 

(c) Ultimate  and Relative Ultimate Values for  tan Φ  =  0 
 

Figure 7. Ultimate bending and shear interaction (α = 1.0, λw  = 100) 
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(a) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.5 
 

  -1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Fult/Fy

Q
ul

t/0
.5

8 
Fy

FSL 13
FSL 18
FSL 8

     -1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

Fb/Fult

Q/
Qu

lt

FSL 13
FSL 18
FSL, 8

 
     

(b) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.25 
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(c) Ultimate  and Relative Ultimate Values for  tan Φ  =  0 

                  
            

Figure 8: Ultimate bending and shear interaction (α = 1.0, λw  = 140) 
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(a) Ultimate  and Relative Ultimate Values for   tan Φ  =  0.25 
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                 (b) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.125 
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(c) Ultimate  and Relative Ultimate Values for  tan Φ  =  0 

 
Figure 9: Ultimate bending and shear interaction (α = 2.0,  λw  = 100) 
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(a) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.25 
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(b) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.125 
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(c) Ultimate  and Relative Ultimate Values for  tan Φ  =  0.0 

 
Figure 10: Ultimate bending and shear interaction (α = 2.0, λw  = 140) 
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The results of the parametric  study are plotted on Fig. 7 to 10. By inspecting the results, we can 
make the following remarks: 

• The flange stiffness remarkably affects the web interaction ultimate resistance, by 
resisting the web deformations outside its plane. 

• A compact flange may increase the interaction ultimate resistance (up to 30%), when 
bending prevails, but the increase is quite limited in cases with significant shear. 

• Increasing the angle of tapering increases in general the ultimate interaction resistance of 
the tapered web, especially in loading Type 1, where the moment stresses reduce the 
effect of shear. 

• As for λw ≤ 100, the failure in this zone is often due to local buckling of the slender 
flanges that are attached to a stocky web plate.  

• The main differences that distinguish ultimate load behavior from elastic buckling are the 
effect of post buckling and the development of tension fields, the later is noticed even in 
cases with small amounts of interacting shear stresses. 

• When representing the relative interactive results, the plots show that the flange 
slenderness, as a parameter, almost disappear and becomes irrelevant. We find this 
phenomenon in elastic buckling, as well as in ultimate loads. Thus, the formulae of the 
approximate solution do not include the flange slenderness  λf. 

• The tapering inclination tan Φ  is the major parameter that governs the ultimate load. 
Those cases with the same tapering inclination, for any aspect ratio α, provide almost the 
same relative interaction relationship.  

• To determine the elastic interactive buckling, the bowing of the Eigen-shape, and the 
elastic stiffness matrix, are found to determine the buckling load. Accordingly the 
direction of the bending stresses determines whether to reduce the effect of the shear 
stresses, as found in loading Types 1 and 3, or to increase it, as given in loading Types 2 
and 4.   

• As for the determination of the ultimate interactive load, the shear stress, once it becomes 
significant, creates a tension field. This action made the interaction strong as in loading 
Type 1, but not in case of loading Type 3. Note that Type 3 loading is important for the 
design of bridge girders with continuous spans. 

• The post buckling of the tapered web plate makes the slender plates less sensitive to 
imperfections, although the selected geometrical imperfection values are conservative. 

• The rectangular web plate is implied in the investigation, when the value of tan Φ  is 
taken as zero.  

 
5. Approximate Solution 
 
The following formulae are found adequate to represent the interaction relationships of the 
ultimate load under combined bending and shear acting on tapered plate girders. The 
comparative results are found in Figs. 13 to 15. The symbols T1 to T4 represent the type of load 
combination as designated in Fig. 3. Noting that Type 1 is common in simple span girders (Fig. 
11) and Type 3 represent the support panel in continuous girders (Fig. 12). Types 2 and 4 are 
only used in other special cases of loading.  
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Figure 11: Example Type 1 
          
 
 
 
 
 
 
         
 

Figure 12: Example Type 3 
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where Mi and Qi are the relative interaction bending- and shear stresses; Mult and Qult are bending 
and shear ultimate pure stresses as given in Eqs. 1 to 4; and 
 

Φ tan 42.0A += .                                                         (8) 
 
This type is characterized by increasing the shear resistance due to moment as clearly indicated 
for loading Type 1 in all plots, noting that no use can be made for Mi or Qi values above 1.0 for it 
gives two results and the least one must be taken (T1 and tan Φ =0.5).  For Types (2) and (4) 
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where  Mi and Qi are the relative interaction bending and shear stresses; Mult and Qult are bending 
and shear ultimate pure stresses as given in Equations. 1 to 4; and  
 

          Φ tan -2.0B = .                             (10) 
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Note that these two types show a reduction in the shear resistance due to moments, by increasing 
the shear effect and are of minor importance in practical design applications. For Type (3) 
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where, Mi and Qi are the relative interaction bending- and shear stresses; 
 

     2.0C = ,                     (12) 
 
Mult = Fult, and Qult are the bending and shear ultimate pure stresses as given in Eqs. 1 to 4.  
 
 
Comparison with the results of applying these equations are plotted in Figs. 13 to 17.It is clear 
that the proposed equations can be used to represent the interaction relations between shear and 
bending for tapered girders. 
 
The results of all investigated cases are reusable, either directly from the respective plot, or by 
evaluating the simplified empirical formulae. The basic results of loading cases of pure shear and 
bending stresses are necessary to calculate the relative interaction capacity of tapered web plates. 
These values are available in Eqs. 1, 2 and 3. It is recommended that design codes consider 
explicitly the design of the tapered plate girders including their four types of loading.  
 
 

               
         (a) α =1.0, φ = 0.5, λw = 100,140                         (b) α =1,2, φ = 0.25, λw = 100,140                    

     
Figure 13: Proposed Ultimate Bending and Shear Interaction Formula for Case T1 
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         (a) α =1.0, φ = 0.5, λw = 100,140                     (b) α =1,2, φ = 0.25, λw = 100,140                    

     
 

Figure 14: Proposed Ultimate Bending and Shear Interaction Formula for Case T2 
 
 

     
           (a) α =1.0, φ = 0.5, λw = 100,140                               (b) α =1,2, φ = 0.25, λw = 100, 140 
 

Figure 15: Proposed Ultimate Bending and Shear Interaction Formula for Case T3 
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 (a) α =1.0, φ = 0.5, λw = 100,140                               (b) α =1,2, φ = 0.25, λw = 100,140 
  

Figure 16: Proposed Ultimate Bending and Shear Interaction Formula for Case T4 
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Fb/Fult

Q/
Qu

lt

Appr

 
 

Figure 17: Proposed Ultimate Bending and Shear Interaction Formula for Prismatic 
Girders for  α =1,2, λw = 100,140 
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6. Conclusion  
 
The current investigation determine the ultimate load of a tapered web plate girder under the 
combination of  pure bending and shear stresses, calculated using finite elements. Geometrical 
imperfections and residual stresses are included in the analysis. It is necessary to calculate first 
the elastic buckling and use its mode shape to include the geometrical imperfections. The 
rectangular web plate is within the scope of the present analysis, because it is represented by the 
special case “tan Φ = 0”. 
 

We can numerically investigate and analyze the following problems: 
 
• The elastic stability of a tapered web plate girder under pure shear stresses. 
• The ultimate loading capacity, considering structural imperfections of a tapered web plate 

girder under pure shear stresses. 
• The elastic stability of a tapered web plate girder under pure bending stresses. 
• The ultimate loading capacity, structural imperfections of tapered web plate girder under 

pure bending stresses. 
• The elastic stability of a tapered web plate girder under combined bending and shear 

stresses. 
• The ultimate loading capacity, considering structural imperfections of a tapered web plate 

girder under combined bending and shear stresses. 
 

A simplified analytical procedure is given, in form of empirical formulae, along with detailed 
plots, to reuse the results of each of the above mentioned and studied items. 
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