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Abstract 

This paper provides an overview of a comprehensive approach for the design of structural steel 
members and systems via an Inelastic Nonlinear Buckling Analysis (INBA) that includes 

appropriate column, beam and beam-column inelastic stiffness reduction factors. The stiffness 
reduction factors are derived from the ANSI/AISC 360 Specification column, beam and beam-
column strength provisions. The resulting procedure provides a relatively rigorous check of 

member design resistances accounting for continuity effects across braced points, as well as lateral 
and/or rotational restraint from other framing including a wide range of types and configurat ions 

of stability bracing. With this approach, no separate checking of the corresponding Specificat ion 
member stability design resistance equations is required. The buckling analysis captures these 
resistances. In addition, no calculation of effective length (K) factors and moment gradient and/or 

load height (Cb) factors, is necessary. The buckling analysis directly captures the fundamenta l 
mechanical responses associated with these design strength factors. This approach is coupled with 

the AISC Direct Analysis Method (the DM), for calculation of the pre-buckling displacement 
effects, to fully satisfy the stability design requirements of the AISC Specification. In addition to 
explaining the method’s key concepts, the paper focuses on validation of the method for capture 

of the lateral-torsional buckling response of general doubly-symmetric I-section beam-columns 
subjected to major-axis bending. Results from the recommended approach and from routine 

application of the DM are compared to the results from test simulation per Appendix 1.3 of the 
AISC Specification.  
 

1. Introduction 

Engineers are accustomed to the use of effective length (K) and stiffness reduction () factors to 

assess the strength of members in the context of the AISC Effective Length Method (the ELM). 
With the ELM, the structure is modeled predominantly as a geometrically perfect, nomina lly 

elastic system. The only consideration of geometric imperfections in the analysis is for gravity-

only load combinations (o = 0.002L). The Direct Analysis Method (DM) improves upon the ELM 

by including the effects of geometric imperfections and reductions in stiffness in the second-order 
structural analysis to determine the load effects. Because of its accuracy in capturing the stability 

                                                 
1 Graduate Research Assistant, Georgia Institute of Technology, <oguzhantogay@gatech.edu> 
2 Professor, Georgia Institute of Technology, <don.white@gatech.edu> 

 



 2 

limit states, the DM may be applied all types of structures. Conversely, the AISC Specificat ion 
disallows the usage of the ELM for stability critical structures having substantial sidesway 

amplification. In addition, with the DM, the calculation of K factors is not necessary. All members 
considered in this method are taken as braced (usually with K = 1) in the resistance calculations.  

 
This paper presents a procedure that combines the qualities of the DM for the calculation of the 
overall load effects with the qualities of an inelastic nonlinear buckling analysis (INBA) to assess 

general prismatic or non-prismatic member resistances including influence of the bracing and 
member end restraints. The INBA method uses all the same requirements for the load-deflect ion 

analysis as in the DM, but replaces the traditional equation-based evaluation of member buckling 
based resistances by an equivalent inelastic buckling analysis solution.  If the INBA procedure is 
conducted for a full structure, or a subassembly of a full structure, it can directly account for 

interactions between adjacent members and between the members and their bracing systems, in 
the determination of the component strengths, including the characteristics of the restraint provided 

to inelastic members from other less yielded members and from elastic bracing. In addition, the 
INBA approach allows for simpler modelling of structures that are loaded predominantly in one 
plane, since a three-dimensional analysis considering out-of-plane imperfections is not required.  

 
This paper first gives an overview of the Inelastic Nonlinear Buckling Analysis (INBA) approach. 

Then, an overview of test simulation studies used to evaluate the INBA and the routine DM is 
provided. Following a discussion of the various methods that are employed, the parameters of the 
study are presented. Finally, an analysis of the data from this study is discussed.  

 
2. Methodology 

 
2.1 Proposed Inelastic Nonlinear Buckling Analysis Approach 
Inelastic Nonlinear Buckling Analysis (INBA) generally is a buckling analysis that considers both 

material nonlinearity and pre-buckling displacements. For general beam-column members, pre-
buckling displacements commonly have a measurable influence on the structural capacity. As 

such, the AISC Specification generally requires the use of a second-order load-deflection analysis 
to determine the load effects. The specific INBA approach proposed by the authors involves the 
use of a DM solution for the pre-buckling load-deflection analysis, but replaces the member 

stability based resistance equations of the Specification by equivalent inelastic buckling analysis 
solutions. The inelastic buckling analysis utilizes stiffness reduction factors that many engineers 

are accustomed to for members subjected to concentric axial loading. However, it also uses 
stiffness reduction factors associated with the Specification lateral torsional buckling equations to 
allow for the evaluation of beam LTB responses. The recommended INBA solution uses a basic 

interpolation between the column and beam inelastic stiffness reduction factors to address general 
beam-column member stability limit states. This approach employs a Thin-Walled Open-Section 

(TWOS) frame element for the buckling calculations.  This element has seven degrees of freedom 
at each joint or nodal location – three translations, three rotations, and one warping degree of 
freedom, which allows for the important consideration of member warping rigidity in the 

evaluation of member stability limit states involving torsion. The INBA solutions presented in this 
paper are conducted using the SABRE2 software (White et al. 2016).  
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2.1.1. Recommended Updates to the AISC/AASHTO Flexural Resistance Equations 
Prior to discussing the details of the INBA procedures, it is essential to discuss an important change 

that is needed to the AISC/AASHTO flexural resistance equations to allow for accurate capture of 
experimental test and advanced test simulation results by the refined inelastic buckling analysis 

procedures.  
 
Subramanian et al. (2016) propose that, in light of additional experimental and advanced test 

simulation data generated since the original calibration of the unified provisions, as well as the 
availability of simple estimates of inelastic LTB effective length factors and the emergence of 

practical capabilities that accurately account for inelastic end restraint effects, several 
modifications of the unified, AISC and AASHTO resistance equations should be considered:  

1. The value of Lp should be taken as 0.63 /t yr E F .  

2. The nominal compression flange stress, at which yielding and geometric imperfec t ion 
effects start to impact the LTB resistance, should be reduced to Fyr (AASHTO) and FL 

(AISC) = 0.5Fyc.  
3. The noncompact web slenderness limit (λrw) should be set as 

 

                               (3.1 2.5 ) , 4.6max 5.7 , min
fc

rw

wc yc ycyc

A E EE

A F FF


  
   

  
  

                          (1) 

 
Subramanian et al. (2016) show that these changes result in a more uniform level of reliability, as 

a function of the LTB slenderness, consistent with the minimum target of   = 2.6 for statically 

determinate beams intended in the AISC LRFD Specification (2016).  
 

In Figure 1, an example beam-column plot for DS-1, a W21x44 rolled section with 144 in unbraced 
length, is provided. This figure shows an example calculation of the results from: 

- Refined test simulations based on Appendix 1.3 of the AISC (2016) Specification using 
one-half of typical nominal residual stresses and geometric imperfections, denoted by the 
term Appendix 1.3*, 

- Direct Analysis Method solutions using Inelastic Nonlinear Buckling Analysis based on 
the AISC (2016) resistance equations modified as discussed above, denoted by the term 

INBA*, 
- Routine DM solutions using the AISC (2016) Specification provisions with the above 

flexural resistance changes recommended by Subramanian et al. (2016), denoted by the 

term DM*  
- Refined test simulations per AISC (2016) using full typical nominal residual stresses and 

geometric imperfections, denoted by the term Appendix 1.3, and 
- Routine Direct Analysis Method solutions using the current AISC (2016) flexura l 

resistance equations, denoted by the term DM. 

 
The nominal residual stresses for rolled I section members and the nominal geometric 

imperfections considered in this work are discussed in Sections 2.2.3 and 2.2.4. Subramanian 
and White (2016) show that reduced nominal residual stresses and geometric imperfections are 
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necessary for advanced test simulation results to provide a close correlation with experimenta l 
test data for I type of cross-sections. 

 
Subsequently, the Appendix 1.3* solution is employed as the benchmark finite element 

simulation in this work. As can be observed from Fig. 1, without modifying the AISC flexura l 
resistance equations, the moment capacity is predicted too optimistically. When the results 
from the Appendix 1.3 solutions (using full nominal residual stresses and geometric 

imperfections) are compared to the DM solutions based on the current Specification flexura l 
resistance equations, the over-prediction by the DM solutions is substantial. 

 

 
Figure 1: DS-1 (W21x44) L=144 in, Uniform Primary Moment Current versus Recommended 

 

2.1.2 Column Inelastic Stiffness Reduction Factor a  

The column inelastic stiffness reduction factor (a) is derived from AISC Specification column 
equation. This derivation is presented in detail by White et al. (2016).  

 

If inelastic column buckling controls the overall behavior,  0.390u

c ye

P

P

 
  

 

 

 

                                                         2.724 lnu u
a
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P P

P P


 

  
    

 

  (2) 

For 0.390u

c ye

P

P

 
  

 

, where elastic buckling controls the behavior,  

                                                             1a     (3)  

 

where: Pu = Required axial strength 
            Pye = Cross-section plastic axial strength (Pye = Ae Fy) 
            Г = Applied load ratio 

            ϕc = Resistance factor for compression 
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In the 2016 AISC Specification, slender cross-section elements under uniform axial compression 
are calculated with a unified effective width approach. Therefore, the member effective area (Ae) 

is used in the τa calculations instead of the gross area (Ag). This results in the following column 
net stiffness reduction factor (SRF)  

 

                                                                     0.9 x 0.877 x e
a

g

A
SRF

A
    (4) 

 

This stiffness reduction factor is applied to EIx, EIy, ECw and GJ. 
 
2.1.3 Beam Inelastic Stiffness Reduction Factor τltb 

The beam lateral torsional buckling stiffness reduction factor, τltb, is derived in a manner similar 
to τa. The following discussion summarizes the corresponding equations in a concise generalized 

form. Regardless of the I-section member type, if the member satisfies ,b L

yc

R F
m

F
  

 

 1ltb                                                                    (5) 

 

 where u

b yc

M
m

M


 , Mu is the required flexural strength, Myc represents the moment at yielding of 

the extreme fiber in the compression flange, and ϕb is the resistance factor for flexure. The term 
Rb is the web bend buckling strength reduction factor, equal to 1.0 for a compact and noncompact 

web sections and less than 1.0 for slender web sections. 
 

If a compact or noncompact web member satisfies . ,b max LTBL

yc b yc

MF
m

F M




    

 

                                              
4 2

2

2 2 26.76 2

ltb

yc

Y X

F
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E

 
  

  
   

  (6) 

 

whereas, if a slender web member satisfies ,b L b max

yc b yc

R F M
m

F M




   

                                    

2

1.1 1.1
h
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
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  
                    

                                                    (7) 
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The corresponding generalized net inelastic stiffness reduction factor is  

SRF = 0.9 Rb τltb  (8) 

This net stiffness reduction factor is applied to EIy, ECw and GJ. 
 

In the above limits on the usage of Eqs. 6 and 7, 
 

                                                                   . 0.9 b max LTB b pc ycM R R M                                                 (9) 

 
This expression is the generalized “plateau strength” of the LTB curve, equal to 0.9Mp if the cross-
section has a compact web, where Mp is the section plastic moment. In addition, the term Rpc is 

equal to Rh for hybrid slender web sections, where Rh is the hybrid cross-section factor defined in 
AASHTO (2015). In this case, Eq. 9 becomes 0.9RbRhMyc. 

 
Furthermore, in Eq. 6, 
 

                                         

1
1

1.95
1

pc p p ycr

t t tL

pc yc

m

R L L FL
Y m

r r r EF

R F

  
           

                  

                          (10) 

and  

                                                                     
2 xc oS h

X
J

                                                                (11) 

 

Lastly, the term u

b yc

M
m

M


  can be written generally as 

 

                                                     max

max max.



 


 u b

b pc

b b LTB

M M
m R R

M M
                                                          (12) 

 
where 
 

                                                   max max. . .min , ,b b LTB b n FLB b n TFYM M M M                                     (13) 

 
is the maximum possible flexural resistance considering all the applicable limit states of lateral 

torsional buckling, flange local buckling, and tension flange yielding. The terms .b n FLBM  and 

.b n TFYM are the flange local buckling and tension flange yielding design resistances. The term 

.b n LTBM is referred to by the AISC Specification as the compression flange yielding resistance. 
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2.1.4 Beam-Column Stiffness Reduction Factor 

When the member is under both axial and flexural loading, the a and ltb equations are calculated 

using the unity check (UC) values instead of the Pu /c Pye and Mu /bMmax ratios. White et al. 

(2016) shows a close correlation between the corresponding INBA predicted strengths and I-
section beam-column resistances. In addition, it is recommended that the UC equations in the 
INBA solutions should be based on the cross-section type: 

 
1. When the section has slender plates under axial compression, or noncompact or slender 

plates under flexural compression, 
 

UC = Pu /c Pye + Mu/b Mmax  (14a) 

 
2. Otherwise, the UC equations are taken from the AISC 2016 Specifications as 

 

            UC = Pu /c Pye + 8/9 Mu /b Mmax            for Pu /c Pye > 0.2                      (14b) 

            UC = Pu /2c Pye + Mu/b Mmax                   for Pu /c Pye < 0.2 (14c) 
 

Given the above equations the beam-column SRF is interpolated between the corresponding 
column and beam values using the following equation: 

 

 0.9 0.877 0.91
90 90

e
a b ltbo o

g

A
SRF R

A

 
 

   
       
   

 (15) 

 

where ζ, is calculated as  
 

                                                       
max

/
tan

/

u c ye

u b

P P
a

M M






 
  

 
                                                                       (16)

  
The above beam-column stiffness reduction factor is applied to ECw, EIy and GJ. 
 

2.2 Design Assessment by Test Simulation  
In this paper, test simulation solutions based on AISC (2016) Appendix 1.3, using reduced residual 

stresses and geometric imperfections from commonly employed values, are employed as the “gold 
standard” for evaluation of the results from the recommended DM solutions using INBA as well 
as the solutions from routine DM solutions. As stated previously, this type of test simula t ion 

solution, is denoted by Appendix 1.3*. In addition, the terms INBA* and DM* highlight the fact 
that these solutions are based on modified AISC 2016 flexural resistance equations per 

Subramanian et al. (2016). In the following subsections, the attributes of the AISC Appendix 1.3* 
calculations employed in this study are detailed. 
 

2.2.1 Finite Element Model  
The ABAQUS 6.14 (Simulia 2014) finite element analysis software is employed to model the 

members considered in these study. In all cases, a full nonlinear shell finite element solutions using 
the S4R element is used to model for both webs and flanges. The S4R is a four node quadrilate ra l 
large strain shell element formulation. The mesh is generated with 12 elements for the width of 
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the flanges, and 20 elements for the web depth. The shell element aspect ratio is chosen 
approximately 1.0 in the web to calculate the number of the elements along the member lengths.  
   
2.2.2 Material Properties 

Homogenous material properties are used for all the members with the yield stress (Fy) of 50 ksi, 
and the modulus of the elasticity (E) of 29,000 ksi. The material properties Fy and E are multip l ied 
by 0.9, as required by AISC 2016 Appendix 1.3. The factored properties are denoted by Fy* and 

E*. For the yield plateau of the material, the tangent stiffness is modeled as E/1000 up to ten times 
the yield strain (εy). After this point, the strain hardening modulus is taken as E/50. At the levels 

of the strains that are observed in the test simulations, true stress versus log strain and engineer ing 
stress versus engineering strain are essentially the same.  
 

2.2.3 Residual Stresses 
Residual stress patterns of one‐half the commonly-assumed Lehigh pattern (Galambos and Ketter 
1959) for rolled sections and the Best‐fit Prawel (Kim (2010)) pattern for welded sections are 

provided in Figs. 2 and 3. These residual stresses are recommended by Subramanian and White 
(2016) as appropriate values necessary for close correlation with lateral torsional buckling 

experimental test results.  
 

  
Figure 2: One-Half of Lehigh Residual Stress Pattern, for Rolled I-Sections 

 

 

Figure 3: One-Half of Best-Fit Prawel Residual Stress Pattern, for Welded I-Sections 
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2.2.4 Geometric Imperfections 
The test simulations are based on out-of-straightness patterns with one-half of the AWS 

(2010)/AISC Code of Standard Practice (COSP) (2016) geometric imperfection tolerance values 
unless noted otherwise. Subramanian and White (2016) show that these reduced geometric 

imperfections are necessary for close correlation with experimental results.  
 
Flange tilt and web out-of-flatness patterns are obtained by elastic eigenvalue buckling analysis of 

the members with the out-of-plane displacements restrained at the top and bottom flange-web 
juncture points, and with the members being subjected to uniform axial compression. Given the 

resulting buckling modes, the flange tilt and web-out-flatness are isolated and scaled to one-half 
the tolerance values as illustrated in Fig. 4. 
 

 
Figure 4: Web Out-of-Flatness and Flange Tilt Imperfection 

 
The resulting flange tilt and web out-of-flatness imperfections are combined with a flange sweep 

that is applied at web-flange juncture points. If the flange under consideration is subjected to 
flexural compression, a sinusoidal flange sweep is applied to the flange in flexural compression.  
For a flange that is in flexural tension, zero sweep (IF = 0) is applied if the net force in the flange 

is tension (Fig. 5). Otherwise a flange sweep between zero to Lb/2000 is applied as a linear function 
of IF. This handling of the sweep in flexural tension is illustrated by the IF factor shown in Fig. 6.  

 

 

Figure 5: Applied Imperfections (One-Half of the AWS/AISC COSP Flange Sweep Tolerance) 

 

 
Figure 6: IF (Tension Flange Sweep Scale Factor) Calculation 
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3. Beam-Column Validation Studies 

As noted in the introduction, this paper assesses the accuracy of two Direct Analysis Method 

solutions. One is referred to routine Direct Analysis Method and uses the AISC stability based 
resistance equations, and the other is an explicit inelastic buckling analysis to determine buckling 

based resistances. The proposed Inelastic Nonlinear Buckling Analysis (INBA*) procedure as well 
as the routine DM procedure are evaluated for prediction of the lateral torsional buckling resistance 
of a wide range of doubly-symmetric I-section members.  

 
In the following presentations, a post-fix “*” is appended to the names INBA and DM to emphasize 

that these calculations are all based on modified AISC flexural resistance equations recommended 
by Subramanian et al. (2016). In addition, the post fix “*” is also appended to Appendix 1.3, to 
emphasize that the test simulation solutions are based on one-half the residual stresses and 

geometric imperfections. 
 

3.1. Load Configurations and Cross-Sections  
Three different loading configurations are examined in this work. First, uniform primary moment 
cases with nine prismatic cross-sections are tested (Fig. 7). Second, moment gradient cases using 

the same prismatic cross-section set are evaluated (Fig. 8). Lastly, various W21x44 beam-columns 
subjected to uniformly distributed lateral load are studied (Fig. 9). A total of 609 + 588 + 63 = 

1260 test simulations are conducted.  
 

 
Figure 7: Uniform Primary Moment Load Configuration  

 
Figure 8: Moment Gradient Load Configuration 

 
Figure 9: Uniformly Distributed Lateral Load Configuration 

 
All the members are flexurally and torsionally simply-supported at their ends and they have no 

intermediate lateral bracing. As such, their effective lengths Lcx = Lcy = Lcz are all equal to their 
laterally unbraced length L. Subramanian et al. (2016) and Togay et al. (2016) compare the results 
of INBA solutions to a relatively comprehensive database of I-section flexural tests involving 

various loading and end restraint conditions. Nine different cross-sections are considered in this 
study as summarized by Table 1. Members with short, intermediate and long unbraced lengths are 

considered for each of these sections.  
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Table 1: Doubly-Symmetric I-sections considered in validation studies (bf = 6.5 in, dw = 19.8 in).  

Case Description tf     

(in) 

tw    

(in) 

Afillets 

(in2) 

bf/2tf dw/tw 

1 W21x44 Section 0.4500 0.3500 0.22 7.22 56.57 

2 Equivalent Welded Section 0.4500 0.3500 0.00 7.22 56.57 

3 Noncompact Web 0.4500 0.1787 0.00 7.22 110.80 

4 Slender Web 0.4500 0.1238 0.00 7.22 160.00 

5 Noncompact Flange 0.2708 0.3500 0.00 12.00 56.57 

6 Noncompact Flange & Noncompact Web 0.2708 0.1787 0.00 12.00 110.80 

7 Noncompact Flange & Slender Web 0.2708 0.1238 0.00 12.00 160.00 

8 Slender Flange & Noncompact Web 0.1806 0.1787 0.00 18.00 110.80 

9 Slender Flange & Slender Web 0.1806 0.1238 0.00 18.00 160.00 

 
3.2.  Example Results 
Beam-column interaction plots that compare the INBA* and DM* results with the Appendix 1.3* 

solutions are provided in Toğay and White (2016). The plots are provided for all the cases for the 
uniform primary and the moment gradient loading conditions shown in Table 1. For the uniformly 

distributed loading, only the DS-1 (W21x44 rolled section) is studied. To illustrate a typical beam-
column interaction plot, the DS-2 uniform primary moment case with L = 144 in (DS-2-UM-L144) 
length is selected (Fig. 10).  

 

 
Figure 10: Example Beam-Column Interaction Plot (DS-2 Moment Gradient Loading with 156 in Unbraced Length) 

 
3.3 Error Calculation Procedure 
For evaluation of each method, a normalized beam-column plot is used. In this plot, the 

normalization is performed using the Appendix 1.3* maximum axial strength (Psim ,max) and 
maximum flexural strength (Msim,max) values (Fig. 11).  
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Figure 11: Normalized Beam-Column Interaction Plot (Example Case: DS-1 L = 144 in Uniform Moment Loading) 

 

Using five equally spaced radial lines on the normalized interaction plot, the percentage errors in 
the DM* and INBA* solutions, relative to the Appendix 1.3* solutions, are calculated as  

 

  (%) 100
a

error
r

 
  
 

 (17) 

 

where r is the distance from origin to the Appendix 1.3* result, and a is the distance between either 

Appendix 1.3* and INBA* results or Appendix 1.3* and DM* results. 
 

The 0o line corresponds to the flexural (beam) loading case, while the 90o line corresponds to the 
pure axial compression case. The error plots are generated with the error values from Eq. 17 for 
each of the cross-section cases and load combinations. These plots are provided in Toğay and 

White (2016). An example error plot for DS-3 with 144 in unbraced length and uniform moment 
loading is provided in Fig. 12.  

 

 
Figure 12: Error Plot (Example Case: DS-3 L = 60 in Uniform Moment Loading) 
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In Figs. 13 and 16, and Table 2, the corresponding errors for uniform primary moment, moment 

gradient and uniformly distributed load are provided, respectively. 
 

4. Data Analysis 

The uniform primary moment and moment gradient load combinations are studied for all the cross-
section types listed in Table 1. For the uniformly distributed load combination, only the DS-1 cases 

with three different lengths are considered.  The members are examined using Appendix 1.3* (test 
simulation studies), INBA* (the DM combined with inelastic nonlinear buckling analysis using 

Specification based stiffness reduction factors), and DM* (the AISC (2016) DM provisions). The 
recommended flexural resistance modifications from Subramanian and White (2016) are 
employed with the INBA and DM solutions, and the recommended modifications to typical 

residual stresses and geometric imperfections by these authors are employed with the Appendix 
1.3 solutions, as denoted by the “*” symbol shown with the names. In the following subsections, 

Figs. 13 and 16 are provided to show the statistical analysis of the percent error along each of the 
radial lines presented in Fig. 10. The percent error values of each method are calculated with 
respect to the Appendix 1.3* test simulation results.  

 
In Figs. 13 and 16, box and whiskers style format statistical analysis plots are provided for the 

uniform primary moment and moment gradient cases. In these plots, the black “x” inside the boxes 
represents the mean of each data set. The bottom and top of the light grey and dark grey boxes 

represent the first ( 1Q ) and third ( 3Q ) quartile points, respectively. The bottom whisker end point 

is calculated as 1 1.5Q IQR  , while the top whisker end point is at 3 1.5Q IQR  . In these 

equations, IQR is the interquartile range, calculated as 3 1Q Q . In addition, the solid horizonta l 

lines inside the boxes represent the median value of the data sets. Outlier data points, defined as 
data points outside the whiskers, are presented as dots in the plots. 

 
4.1 Uniform primary moment load combinations 

In this section, the results for members with cross-sections listed in Table 1 are presented for the 
uniform primary moment (UM) load combinations (Fig. 7). The statistical results for the percent 
errors are provided by the box and whiskers plot in Fig. 13.  
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Figure 13: Comparison of INBA* and ELM/DM* versus Appendix 1.3 solutions for Uniform Primary Moment 

Load Configuration 

 
The main finding from Fig. 13 is that, for all the axial compression and moment combinations, the 

average and median of the data sets are greater than zero, which corresponds to the conservative 
prediction for these cases. For 0o (uniform primary moment only) and 90o (axial compression only) 

cases, the INBA* solutions and DM* solutions match exactly with one another. The derivation of 
the column and beam stiffness reduction factors of the INBA* procedure ensures this. 
 

The LTB strengths of DS-8 and DS-9, cross-sections with slender elements (Table 1), are defined 
as outliers in Fig. 13 for the 0o and 18o data sets. This is caused by the flange local buckling (FLB) 

limit states equations of the AISC Specification, which are captured by the INBA* or DM* 
solutions, being significantly conservative. An example case for DS-8 with 60 in unbraced length 
is provided in Fig. 14. The conservatism of the AISC FLB equations for these cases is due to the 

lack of consideration of the corresponding physical post-local buckling of the compression flange.  
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Figure 14: Example Slender Section Case with Uniform Primary Load Configuration (DS-8) 

 

In addition, the maximum unconservative error in this data set is measured as 9%. The one 
unconservative outliner case, DS-1 with 24 in. length, is at 15.49% (Fig. 15). Although, one might 
expect the equivalent welded section (DS-2) provides lesser capacity than the rolled section (DS-

1), it is observed that the capacity of the DS-1 is smaller than DS-2 for that particular length. This 
smaller capacity is mainly caused by the residual stress effects that are used in the test simulations. 

With the patterns that are used, the Lehigh residual stress pattern is actually more critical. The 
reason for this behavior is that the Lehigh pattern is based on light column-type sections where the 
web tends to be entirely in residual tension. With that type of residual stress distribution, the section 

has a net residual compression force in the flanges, which tends to be relatively damming. In 
addition, it can be argued that the Lehigh residual stress pattern is not representative of beam type 

wide flange sections. Subramanian and White (2016) show other more representative patterns, 
including a summary of past research measurements, but recommended the use of the Lehigh 
pattern with the reduced magnitude residual stresses as a single nominal pattern that can be applied 

for all rolled wide-flange shapes. 
 

 
Figure 15: DS-1 L=24 in, Uniform Primary Moment Beam-Column Interaction Curve 

 
For 90o cases, with only axial compression, the percent error values show a large variation. This 

is mainly caused by the use of only one column curve in the AISC provisions. Using more than 
one column curve would require more than one τa equation, but it would improve the results for 

both columns and beam-column.   
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The point having a significant change in slope in the beam-column interaction plots is referred as 
“knee point”. For the 18o case, which corresponds to the “knee” region, the INBA* solution shows 

closer correlation than DM*. The INBA* linear interaction equation for UC values helps to reduce 
unconservative errors in beam-column resistances (Fig. 10).  

 
The intermediate angles (36o, 54o, 72o) of the beam-column interaction curves show that, INBA* 
provides closer correlation with the Appendix 1.3* solutions.  

 
4.2 Moment Gradient Tests  

In this section, the cross-sections in Table 1 are tested for moment gradient (MG) load 
combinations (Fig. 8). The statistical results of percent error values are provided by the box and 
whiskers plot in Fig. 16.  

 

 
 

 
 
 

Figure 16: Comparison of INBA* and DM* versus Appendix 1.3 solutions for Moment Gradient Load 

Configuration 

 

For all data sets in moment gradient load configurations, the mean and average values of the 
INBA* solutions show a closer match with the Appendix 1.3* results than the DM* solutions.  The 

intermediate angles (18o, 36o, 54o, 72o) of the beam-column interaction curves show similar 
behavior to the corresponding uniform primary moment results. The average and mean values of 
the INBA* solutions are closer to zero than the DM* solutions for all the beam-column cases.  

 
The INBA* and the DM* solutions are slightly different for the flexure only case on the moment 

gradient loading conditions (0o line on Fig. 11). The moment gradient factor of Cb is the main 
reason for this difference. The Cb that is employed in the moment gradient case DM* solutions is 
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provided by Salvadori (1956). This equation is used in the DM* solutions since it gives a better 
lower-bound for the LTB resistance for these cases (1.75) than the AISC Eq. F1-1 value of 1.67. 

As it can be observed from Fig. 1, the INBA* solutions provide better correlation with Appendix 
1.3* solutions. This is because the INBA* solutions work directly with the inelastic SRF values 

along the member lengths. 
 
The extreme conservative results for 0o cases is from the slender sections (DS-8 and DS-9). Figure 

16 shows that influence of the FLB limit states on the resistance of the cross-section, as an 
example. The outliers are observed for the DM solutions in the data sets of 36o and 54o. One of the 

outlier cases is presented in Fig. 17. 
 

 
Figure 17: Example Slender Section Case with Moment Gradient Load Configuration (DS-8) 

 

If the accuracy of the FLB provisions were to be improved, the use of Eqs. H1-1 (Eqs. 14b and 
14c) is still conservative relative to the Appendix 1.3* results. The INBA* results give better 
correlation with this change (Fig. 18). 

 

 
Figure 18: DS-8 L=144in, Moment Gradient Loading with Modified FLB strength  

 

3.3 Uniformly Distributed Lateral Load Configuration  
In this section, DS-1 (W21x44) is examined for uniformly distributed lateral load combinations 
with uniform axial compressions (Fig. 8). The error values related to this loading configurat ions 

are listed in Table 2. The findings for uniform primary moment load cases and moment gradient 
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loads are consistent with the uniformly distributed lateral load cases. For the smallest member 
length of 90 in, the INBA* results shows very close correlation with the Appendix 1.3* results. 

 
As in the moment gradient load studies, there is a difference between INBA* and DM* solutions 

for pure flexure cases. This difference is mainly caused by the moment gradient factor of Cb. The 
Cb equations that is used for the moment gradient load configuration is not suitable to use in the 
uniformly distributed loading case since its moment diagram is not linear. The Cb equation used 

in these cases is obtain with the AISC Eq. F1-1 developed by Kirby and Nethercot (1979). Table 
2 shows that using the INBA* approach provides a better correlation with the Appendix 1.3* 

solutions.  
 

Table 2: DS-1 Uniformly Distributed Loads (W21x44 rolled section) Percent Error Values 

                        L= 90 in   L = 156 in                    L = 204 in 

Line 

Angle(o) 

INBA* Chapter 

C* 

 INBA* Chapter 

C* 

 INBA* Chapter 

C* 

0 -6.59 -11.40  -14.27 -16.12  -15.74 -15.12 

18  -4.37 -11.61  -12.15 -13.00  -11.92 -9.91 

36 -2.74 -3.48  -9.92 -2.66  -8.64 1.08 

54 -1.22 2.60  -7.24 4.60  -4.73 8.78 

72 3.18 7.33  -4.13 8.44  0.08 12.91 

90 6.95 6.95  1.63 1.63  5.82 5.82 

 

4. Conclusions 

This paper evaluates the ability of routine Direct Analysis (DM) solutions, and an advanced form 

of the DM that uses Inelastic Nonlinear Buckling Analysis (INBA) to predict the strength of a 
large number of doubly symmetric prismatic I-section member. The INBA procedures provides a 
more general and more rigorous handling of all types of bracing, end restraint and continuity 

effects.  
 

A large number of simulation studies are conducted to show that inelastic nonlinear buckling 
analysis with stiffness reduction factors derived from the AISC Specification provisions provides 
a close correlation with test simulation studies. The combined use of recommended modificat ions 

to the AISC/AASHTO flexural equations by Subramanian and White (2016) and the use of 
reduced geometric imperfections and residual stresses in test simulation procedures produces a 

close correlation between the DM, INBA and test simulation solutions. Subramanian et al. (2016) 
show improved correlation of corresponding solutions with a large data set of experimental test 
results.  
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