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Abstract 
Cold-formed steel haunched portal frames are popular structures in industrial and housing 
applications. They are mostly used as sheds, garages, and shelters, and are common in rural 
areas. Cold-formed steel portal frames with spans of up to 30 m (100 ft) are now being 
constructed in Australia. As these large structures are fairly new to the market, there is limited 
data on their performance and inadequate design guidance and recommendations. In the specific 
frame system analyzed herein, the column is partially restrained against twist rotation at an 
intermediate point where the knee brace joining the rafter and column is connected, and is 
otherwise unbraced. Current design guidelines do not directly account for the restraint provided 
by the knee connection and require the determination of the member effective length. Due to the 
variations of the column base stiffness and rotational restraint of the knee connection, the column 
effective length is difficult to quantify. Therefore, a new design method is proposed in this paper 
which eliminates the need to determine the effective length. The design capacity is calculated 
using the Direct Strength Method with inputs from a column buckling energy analysis. Internal 
actions are determined using a calibrated beam finite element model with notional horizontal 
forces, and the interaction equation involving bending and compression is utilized to determine 
the column strength. A reliability check is completed and the results compared to experimental 
frame ultimate loads. It is shown that the frame strength determined from the design method 
presented herein is a suitable method for the design of columns with an intermediate elastic 
torsional restraint in haunched portal frames. 
 
1. Background 
Cold-formed steel haunched portal frames are prevalent structures in industrial and housing uses, 
especially in rural regions of Australia. There is a demand for the construction of larger spans; 
however there is minimal test data on the strength and performance of larger span frames. 
Frames may have braced columns where girts are required for cladding, or unbraced columns 
when the frames are mainly used for shelters over large areas. For larger spans, a knee brace is 
required to transfer the large bending moment from the rafters to the columns. The knee brace to 
column connection, as shown in Fig. 1, creates an intermediate elastic torsional restraint on the 
unbraced column. Although some guidelines exist for cold-formed steel portal frames (ASI 
2014; ECCS 2008), there is no direct guidance on how to account for the effects of the knee 
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connection on frame performance. Additionally, effective lengths are required in the design 
calculations; however due to the semi-rigidity of the column bases and the effect of the knee 
connection, an appropriate effective length is difficult to quantify.  
 
An experimental program was carried out on a series of 13.6 m (44.6 ft) span portal frame 
systems, the layout of which is shown in Fig. 2. The program consisted of 8 tests of frames 
having unbraced columns, with variations in the knee connection sizing, and with applied 
vertical loads only, or applied horizontal and vertical loads. The experiments provided data on 
the ultimate loads of the frames, and on frame overall behavior including failure modes. Column 
base stiffness was also measured, as was the contribution of sleeve stiffeners, and the exact 
material and section properties were measured for use in calibrated finite element models. 
Further details of the experimental program can be found elsewhere (Blum 2017; Blum & 
Rasmussen 2016d). The data from the experiments is used to validate the design method 
presented herein. Methods to determine both the column capacity and the internal actions of the 
frame are discussed, and comparisons between design and experimental ultimate strengths are 
presented. 
 
 

 
Figure 1: Knee to column connection (a) experimental setup with instrumentation, and (b) drawing from front view 

 
 



 
 

3

 
Figure 2: Frame experimental setup 

 
2. Column Capacity 
The nominal member capacity of a member in compression and the nominal member moment 
capacity of a member subject to bending can be calculated through use of the Direct Strength 
Method (DSM). This method is provided in various design codes such as in Section 7 of AS 
4600 (AS/NZS 4600 2005) and in Appendix 1 of AISI (AISI-S100-12 2012). The DSM is a 
method applicable to cold-formed steel compression members and members subject to bending 
for all pre-qualified sections stated in the design codes. The DSM facilitates the calculations of 
the nominal member capacity of a member in compression and the nominal member moment 
capacity, separately. Further details can be found elsewhere (Schafer 2006). 
 
Nominal member design strengths are calculated for local, global, and distortional buckling 
under given loading and support conditions, of which the minimum is the member design 
strength. In order to calculate the global buckling loads, the elastic lateral-torsional buckling 
moment and elastic member buckling load must be determined. A method to determine the 
elastic buckling loads and a subsequent design procedure to calculate frame capacity is presented 
herein. 
 
2.1 Bending 
For the design of members subject to bending, the elastic lateral-torsional moment, Mo, is 
required. This is typically calculated in Section 3 of AS/NZS 4600, where Mo is the elastic 
buckling moment. For doubly symmetric sections bent about the x-axis, the elastic buckling 
moment is defined in Eq. 1, where Cb is the coefficient to account for the moment distribution in 
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the unbraced segment, A is the area of the full cross-section, rol is the polar radius of gyration of 
the cross-section about the shear center, foy is the elastic buckling stress in an axially loaded 
compression member for flexural buckling about the y-axis (as defined in Eq. 2), and foz is the 
elastic buckling stress in an axially loaded compression member for torsional buckling, as 
defined in Eq. 3. The elastic buckling stresses (foy and foz) are dependent on the material 
properties of Young’s modulus (E) and shear modulus (G), the geometric properties A, rol, the 
radius of gyration about the y-axis (ry), the torsion constant (J), and the warping constant (Iw), 
and the effective lengths for buckling about the y-axis (ley), and for twisting, (lez). 
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The effective lengths of the column, ley and lez, are unknown as it is difficult to quantify the 
effects of the knee connection on column effective lengths. Additionally, with this method, 
modifications to the knee brace connection (KBC), such as using a thicker bracket to connect the 
knee brace to the column, could only be reflected in modifying the effective lengths. Design 
codes currently do not explicitly state how to incorporate the effects of the intermediate torsional 
restraint of the knee to column connection on the calculated effective lengths of the column. 
 
Previous work has been completed on the calculation of buckling loads of columns with an 
intermediate elastic torsional restraint through an energy method approach (Blum & Rasmussen 
2016a), where the column buckling load can be determined by minimizing the total energy of the 
column. The total energy of the column is the sum of the flexural, torsional, and warping strain 
energies stored in the column, the potential energy associated with the internal axial force N and 
bending moment M, the work done by the forces acting at the knee brace connection, and the 
spring energy stored in the KBC connection plate. As the knee brace moves out of plane of the 
frame, it causes the column to move laterally (v-direction) and twist (ϕ-direction), and acts as a 
directed load (Ings & Trahair 1987). Therefore, the work at the knee connection is the forces at 
the knee connection (Fv and Fu) multiplied with the displacements through which they act (vkc 
and ukc), as given in Eq. 4 where vk and ϕk are the lateral displacement of the column and the 
column twist, respectively, at the location of the knee connection, ds is the distance from the load 
application point to the shear center of the column, θ is the angle between the column and the 
knee brace, Lk is the length of the knee brace, and F is the force in the knee brace. Further 
derivations are given elsewhere (Blum & Rasmussen 2016a). 
 

   skkskkkcukcvk dFLdvFuFvFW 22 sin21    (4) 

 
The knee brace to column connection plate acts as a torsional spring to the column and helps to 
restrain the column against twist at the connection. The strain energy stored in the plate is given 
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in Eq. 5, where kϕ is the torsional stiffness of the plate and Δθkc is the total rotation of the plate. 
The plate stiffness is calculated using plate bending theory (Timoshenko & Gere 1989) where the 
plate is bent in only one direction, and as the KBC bracket is composed to two plates bolted 
together, the plate stiffness is double that of a single plate. The double-plate stiffness is 
calculated in Eq. 6, where h is the plate height, b is the plate width, E is Young’s modulus, tk is 
the thickness of a single KBC connection plate, ν is Poisson’s ratio, and D is the plate flexural 
rigidity. The total rotation of the plate, Eq. 7, is the sum of the column rotation at the knee, ϕk, 
and the rotation due to the knee brace movement. 
 

  221 kcs kU    (5) 
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Combining these energy components yields the total energy of the column, as given in Eq. 8. 
Column displacement fields for v and ϕ must be quantified. Displacements at various locations 
along the length of the column were measured during experiments (Blum & Rasmussen 2016d) 
and the resulting approximate displacement functions of the column are given in Eqs. 9 and 10. 
As the displaced shape was measured from the experiments, the effects of the column semi-rigid 
base connections are inherently included. The column buckling load can be solved by 
minimizing the total energy of the column, δVT = 0, and for non-trivial solutions, Eq. 11 must be 
solved. Measured dimensions, thicknesses, and material properties of the column and KBC 
brackets were used in the analysis, as were internal forces N and M distributions from a validated 
finite element beam model, which is described elsewhere (Blum & Rasmussen 2016a). Results 
from the energy analysis are within a 10% overestimation of the experimental ultimate loads 
(columns failed by elastic lateral-torsional buckling) indicating that the energy method approach 
was a viable method for determining column buckling loads for this type of structure (Blum 
2017). 
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The elastic column buckling load, Pcr, determined from the energy analysis, is the axial load 
applied to the column at buckling. The column buckling is dominated by the bending moment, 
and therefore the maximum bending moment in the column when P=Pcr is the critical bending 
moment, Mcr, which is the elastic buckling moment of the column. The relationship between Pcr 
and Mcr is described elsewhere (Blum & Rasmussen 2016a). Therefore, in lieu of calculating Mo 
as shown in Eq. 1 from Section 3 of AS/NZS 4600, the energy analysis can be utilized, and 
therefore Mo = Mcr. This method eliminates the need to determine effective lengths of the 
column, and considers the effects of the torsional spring at the knee connection through the 
geometric and material properties of the KBC connection bracket in Eq. 6, as well as 
incorporates the semi-rigidity of the column base connection. 
 
2.2 Compression 
For the design of members subject to compression, Noc must be determined, as given in Eq. 12, 
where foc is the least of the elastic flexural, torsional, and flexural-torsional buckling stresses, and 
is typically calculated in Section 3 of AS/NZS 4600. For doubly-symmetric sections not subject 
to flexural or flexural-torsional buckling, foc is taken as the minimum of fox, as given in Eq. 13, 
and foy. Therefore, the effective lengths lex, and ley are required. As these effective lengths are 
difficult to quantify, it would be difficult to accurately determine the elastic compressive 
buckling load. In the energy method approach to determine column buckling, the critical column 
axial load, Pcr was determined considering the simultaneous presence of axial force and bending 
moment, which resulted in the critical compression force, Pcr, and bending moment, Mcr in the 
column. However, if bending and compression capacities are considered separately, the value of 
Pcr thus calculated is not the critical buckling load of the column for compression only. 
 
 ococ fAN   (12) 
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The column elastic critical buckling load can be determined through an Euler buckling analysis, 
as given in Eq. 14, where L is the length of the column and k is the effective length factor. A 
buckling analysis was completed in MASTAN2 (McGuire et al. 2000) with a base spring applied 
to the column with an average stiffness as determined from the experiments, and with the 
measured elastic modulus and cross-section dimensions (Blum & Rasmussen 2016c). The Euler 
buckling load was calculated to be (Pcr)Euler=765 kN (172 kip) with an effective length factor 
k=0.936. Therefore, instead of calculating Noc as given in Eq. (12) where foc is calculated 
according to Section 3 of AS/NZS 4600, Noc = (Pcr)Euler can be utilized. 
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2.3 Capacity Results 
Now that the critical elastic lateral-torsional buckling moment (Mcr) and critical elastic flexural 
column buckling load (Noc = (Pcr)Euler) have been determined, the Direct Strength Method can be 
employed to calculate the capacity of the column in bending and in compression. 
 
For the capacity in bending, four input values are needed: the elastic lateral-torsional buckling 
moment Mo, the nominal section moment capacity My as given in Eq. 15 where Zf is the full 
section modulus of the extreme fiber at first yield and fy is the yield stress, and the elastic 
buckling moments, Mol and Mod, for local and distortional buckling, respectively. Mol and Mod are 
given in Eqs. 16 and 17, where the local and distortional buckling stresses, fol and fod, can be 
determined through a finite strip analysis with applied bending stresses on the column cross-
section through software such as CUFSM (Li & Schafer 2010) and ThinWall (Papangelis & 
Hancock 1995). Further details can be found elsewhere (Schafer 2006). The section modulus Zf 
is calculated from the measured column dimensions, and fy is taken as the measured yield stress 
from the experiments (Blum & Rasmussen 2016c). 
 
 yfy fZM   (15) 

 olfol fZM   (16) 

 odfod fZM   (17) 

  
The critical bending moments, Mcr, for the columns in each experiment were calculated using the 
energy analysis described previously and are given in Table 1. Following the Direct Strength 
Method for Mo=Mcr and the values determined for fol and fod from a finite strip analysis with the 
measured column dimensions, the member moment capacity, Mb, is calculated for each column 
and is given in Table 1. Mb is the minimum of the member moment capacities for lateral-
torsional buckling (Mbe), local buckling (Mol) and distortional buckling (Mod). For all columns, 
Mb was controlled by lateral-torsional buckling. 
 

Table 1: Critical buckling loads and nominal member moment capacity for column 

Test 
Mcr Mb 

kNm (kip-ft) kNm (kip-ft) 

1, 2, 3, 4 19.4 (14.3) 19.4 (14.3) 
5 26.2 (19.3) 26.1 (19.2) 
6 23.4 (17.3) 23.4 (17.3) 

7, 8 25.7 (19.0) 25.7 (19.0) 

 
For the capacity in compression, four input values are needed: the elastic compression buckling 
load Noc, the nominal compression yield capacity Ny as given in Eq 18, and the elastic 
compression buckling loads Nol and Nod, for local and distortional buckling, respectively, as 
given in Eqs. 19 and 20. The local and distortional buckling stresses for compression, fol and fod, 
can be determined through a finite strip analysis with applied compression on the column cross-
section through software such as CUFSM (Li & Schafer 2010) and ThinWall (Papangelis & 
Hancock 1995). The area A is calculated from the measured column dimensions, and fy is taken 
as the measured yield stress from the experiments. 
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 yy fAN   (18) 
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Following the Direct Strength Method for Noc=(Pcr)Euler and the values determined for fol and fod 
from a finite strip analysis with the measured column dimensions, the member compression 
capacity, Nc, is calculated. Nc is the minimum of the member compression capacities for flexural, 
torsional or flexural-torsional buckling (Nce), local buckling (Ncl) and distortional buckling (Ncd). 
For the specific column analyzed Nc=267 kN, and was controlled by local buckling. 
 
3. Internal Actions 
3.1 Calibration of FEM 
A finite element model (Fig. 3) was created in MASTAN2 (McGuire et al. 2000) composed of 
2D beam elements, as is common practice in industry, to determine internal actions of the 
column. The dimensions of the model were the centerline dimensions of the test frame, and 
measured dimensions of the cross section and material properties were utilized. Column base 
springs were included in the model and had the average base stiffness for all experiments with 
applied vertical loading only, or with the spring stiffness matching each experiment for applied 
wind and vertical loading, as given elsewhere (Blum & Rasmussen 2016b; Blum & Rasmussen 
2016c). Previous studies have determined that the column base stiffness had a large impact on 
frame ultimate load when wind loading was considered, but not for applied vertical loads only 
(Blum & Rasmussen 2016e). Connections between the column to rafter, knee to column, and 
knee to rafter were pinned. Because of the effective triangle formed between the knee, column, 
and rafter at the eaves connection, the true spring stiffness of the eaves connection had minimal 
impact. However, the effect of the in-plane bending stiffness of the apex connection had to be 
investigated. 
 

 
Figure 3: Beam element model of portal frame 
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A total of 24 kN (5.4 kip) vertical load was applied to the beam element model, and a second 
order elastic analysis was completed, for various apex spring stiffness values. The maximum 
bending moment in the column, which occurs at the knee connection, was recorded for each 
case. A plot of the maximum column moment for each apex stiffness value is shown in Fig. 4. A 
pinned apex connection results in a 24.1 kNm (17.8 kip-ft) maximum bending moment in the 
column, while a fixed apex connection has a maximum column bending moment of 18.9 kNm 
(13.9 kip-ft), which is a 21.6% decrease. Increasing the apex stiffness from pinned up to a 
stiffness of approximately 35 kNm/deg (25.8 kip-ft/deg) results in a sharp decrease in the 
maximum column moment. Therefore, the apex connection stiffness must be determined to 
produce a beam element model which accurately determines the frame bending moments. 
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Figure 4: Maximum column bending moment vs. apex stiffness 

 
In lieu of experimental data on the apex connection stiffness, the apex connection was modeled 
with shell elements in ABAQUS (ABAQUS 2014) to determine an apex spring stiffness to 
incorporate in a beam element model. The apex model included the apex brackets and 664 mm 
(26.1 in) long sections of the rafter, as shown in Fig. 5. These rafter sections were long enough to 
replicate the bending moment at the apex connection in the full frame tests, but short enough to 
limit the effects of rafter bending. The ends of the rafters were connected to a thick plate using a 
surface-to-surface tie constraint, and the plates were defined as rigid bodies. Boundary 
conditions were applied to the end plates at rigid body reference nodes to prevent movement 
vertically and out-of-plane. Out-of-plane restraints were applied to the rafters at the locations of 
the purlin brackets, and at the center of the apex bracket. A horizontal restraint was applied at the 
center of the apex bracket to prevent rigid body motion. Bolts connecting the apex brackets to 
the rafters were modeled as described elsewhere (Blum & Rasmussen 2016e). Moments were 
applied to the rigid body reference nodes to load the connection in bending. Downward 
deflections were recorded at the centerline of the rafters for a 100 mm (3.94 in) length starting at 
the end of the apex brackets. The starting point was chosen to avoid local effects of the 
connection, and the 100 mm length was chosen to be long enough to obtain a characteristic 
rotation while short enough to limit the effects of rafter bending. The deviation of the recorded 
deflections from the assumed deflections of a fully rigid connection is the rotation of the apex 
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connection. The rotations from each side of the connection were combined to determine a 
moment-rotation relationship for the entire apex connection, and is shown in Fig. 6. 
 

 
Figure 5: Model of apex connection used to determine apex stiffness 

 
The moment-rotation relationship of the apex connection is essentially linear up to an applied 
moment of 18 kNm (13.3 kip-ft). No failure was observed in the apex connections during the full 
scale experiments. Therefore, it is assumed that the connection remained in the elastic range 
during the experiments and consequently the elastic stiffness was used in the beam element 
models. A linear regression was fitted though the elastic region of the moment-rotation plot of 
the apex connection, and the resulting spring stiffness was determined to be 27 kNm/deg (19.9 
kip-ft/deg). 
 
The apex spring was added to the beam element model, and a second order analysis was 
completed. The apex vertical deflection was recorded and compared to the load versus apex 
vertical deflections for the experiments with applied vertical load only. The model with the apex 
spring (k=27 kNm/deg) had fairly good agreement with the experiments, especially in the 
vicinity of ultimate loads. (The apex stiffness determined from the ABAQUS model assumed no 
bolt-slip in the connection. Bolt holes were sized 2 mm (0.08 in) in diameter larger than the 
diameter of the bolt. The theoretical rotation due to maximum bolt slip could be calculated and 
used to determine a reduced apex connection stiffness. However, the effects of bolt-slip were not 
evident in the experiments, a reduced apex stiffness would not result in an improved match to the 
experimental data. Therefore, the apex stiffness of 27 kNm/deg was determined to be suitable for 
use in the beam element model). 
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Figure 6: Moment vs. rotation of apex stiffness from the finite element model 

 
3.2 Notional Horizontal Forces 
Notional horizontal forces are used in the analysis of nominally perfect rectangular frames to 
consider the effects of initial frame sway (Ziemian 2010). If the frame has an initial sway and the 
column of length L is out-of-plumb a distance of x, a horizontal load equal to the applied vertical 
load at each frame level multiplied by the notional load coefficient of x/L can be applied to the 
nominally perfect frame. It has been shown that the notional horizontal force applied to the 
nominally perfect rectangular frame causes the same deflections as a rectangular frame with an 
initial sway and no notional horizontal force (Ziemian 2010). To test if this same method could 
be applied to haunched portal frames, two models in MASTAN2 were created, one with nominal 
frame dimensions and a notional horizontal force applied at the eave equal to 1/310 of the 
vertical load, and another model with an initial frame sway equal to L/310 and vertical load only. 
Both frames had the same column base stiffness (equal to the average base stiffness for all 
experiments), a rigid apex connection, and pinned connections at the eaves and knee brace to 
column and rafter connections. A vertical load of 28 kN (6.3 kip) was applied at the nodal 
locations shown in Fig. 3 to both models, and the vertical deflections at the apex and horizontal 
deflections at the eaves were recorded at various load increments. There was a 0.1% difference 
in apex vertical deflections between the two models, and a 0.09% difference in eaves horizontal 
deflections. Therefore, the same notional horizontal load method used for rectangular frames can 
be applied towards haunched portal frames, and is shown in Fig. 7. 
 
Notional loads were included in the 2D frame analysis to represent the effects of initial 
imperfections in the nominally vertical columns, as specified in various design codes ((AISC 
360-10 2010) and (AISI-S100-07 2007)). The AISI standard specifies a notional horizontal load 
coefficient of 1/240, which is based on measured out-of-plumb data of cold-formed steel storage 
racks (Sarawit & Pekoz 2007). The AISC standard specifies a notional load coefficient of 1/500, 
which represents the maximum tolerance on column story out-of-plumb. The draft 2016 revision 
of AS/NZS 4600 includes an appendix on analysis methods, which specifies an initial notional 
horizontal force of 1/200 with additional reduction factors dependent on the height of the 
columns and the number of columns in a row. For the frame system tested in the accompanying 
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experiments (Blum & Rasmussen 2016c; Blum & Rasmussen 2016d), the horizontal notional 
load coefficient is calculated as 1/270 according to the draft revision of AS/NZS 4600. 
Alternatively, the horizontal notional load can be determined based on measured frame 
imperfection data from the experiments. The average frame sway, which was previously 
measured from the experiments (Blum & Rasmussen 2016c), is L/310, and therefore a horizontal 
notional load coefficient of 1/310 was applied to the model. 
 

w
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(x/L)V

w

Lr

L

x

(a) (b)
 

Figure 7: Notional load model (a) frame with column sway x, and (b) straight frame with notional horizontal load 
 
3.3 Determination of Internal Actions 
The notional horizontal load was applied at the eave connection between the column and apex on 
one column to produce a destabilizing effect. A second-order elastic analysis was performed. 
The internal actions of bending moment and compression on the column at the knee connection 
were recorded, as this was the location of maximum bending moment. The bending moment 
distribution along the column was similar for frames with applied wind and vertical loads as 
those with vertical loads only. Therefore, for wind loaded frames, the 5 kN (1.1 kip) wind load 
was applied to the model at the eave connection in addition to the notional horizontal force and 
the vertical loads, and the internal actions of the column at the knee connections were recorded. 
 
4. Design Procedure and Results 
The columns are designed as beam-columns as they support large bending moments. For 
combined axial compression and bending about the x-axis, the interaction equation shown in Eq. 
21 is utilized to calculate the column capacity. The member capacities Mbx and Nc were 
calculated using the Direct Strength Method outlined in Section 2.3. The capacity reduction 
factors for bending, ϕb, and for members in compression, ϕc, were taken as 1.0 since measured 
section and material properties were considered, and thus reduction factors to account for the 
variability of section and material properties were not required. The internal actions Mx* and N* 
were determined from the 2D finite element model for various load levels. The applied vertical 
load at which Eq. 21 holds true is the capacity of that frame, as the columns were the critical 
members and failed before the rafters or knee braces. 
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The frame capacity for all experiments was determined by this method and the results are 
presented in Table 2. Overall, the design capacity slightly overestimates the experimental frame 
ultimate vertical load, with a maximum overestimation of 7.94%. The frame in experiment 3 was 
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significantly stronger than predicted. It is not obvious what caused the strength increase for that 
frame, as the ultimate vertical load for experiment 3 was greater than a frame with fully rigid 
bases, as specified elsewhere (Blum & Rasmussen 2016e). Therefore, that experiment can be 
considered an outlier. At frame capacity, the bending moment term of the interaction equation is 
equal to 0.96, which indicates that the column capacity is strongly dominated by bending. The 
energy method approach provides an upper bound for column buckling loads, and becomes more 
accurate with more precise displacement fields used in the analysis. The displacement fields 
given in Eqs. 9 and 10 were determined from four measured displacements along the column 
height, and were therefore not exact displacement fields. Column buckling loads calculated with 
the energy method approach overestimated the experimental column buckling loads within 10% 
(Blum & Rasmussen 2016a). This buckling load was then used in the Direct Strength Method to 
calculate the capacity of the column, and therefore the overestimation of the column buckling 
load through the energy method approach contributed to the overestimation of the frame design 
capacity.  
 

Table 2: Comparison of frame ultimate vertical loads 

Test 
Experiment Design Capacity 

% Difference 
kN (kips) kN (kips) 

1 21.8 (4.90) 23.0 (5.17) 5.50 
2 22.8 (5.13) 23.0 (5.17) 0.88 
3 19.5 (4.38) 14.8 (3.33) -24.1 
4 13.3 (2.99) 13.4 (3.01) 0.75 
5 29.8 (6.70) 30.2 (6.79) 1.34 
6 17.5 (3.93) 18.4 (4.14) 5.14 
7 29.8 (6.70) 29.8 (6.70) 0.00 
8 18.9 (4.25) 20.4 (4.59) 7.94 

 
In order to produce conservative design capacities, a reliability analysis can be completed to 
determine the reduction required of Mcr from the energy method approach to meet a target 
reliability index. The method for such an analysis is given in Chapter F “Tests for Special Cases” 
in the AISI specification (AISI-S100-12 2012) and the equation is presented in Eq. 22 where Cϕ 

is the calibration coefficient, Mm, Fm, and Pm are the mean values of the material factor, 
fabrication factor, and professional factor, respectively, VM, VF, and VP are the coefficients of 
variation of the material factor, fabrication factor, and professional factor, respectively, CP is the 
correlation factor, VQ is the coefficient of variation of the load effect, and βo is the target 
reliability index. The values for Cϕ and VQ are given as 1.52 and 0.21 for LRFD, and the values 
for Mm, VM, Fm, and VF are given in Table F of the standard as 1.05, 0.10, 1.00, and 0.05 for a 
member with combined axial load and bending. Pm and VP are calculated from the results given 
in Table 2 as the ratio of tested strength (experimental results) to calculated strength (design 
capacity).  As experiment 3 is considered an outlier, the sample size is n=7 and CP is calculated 
as ((1+1/n)(n-1))/(n-3)=1.71, as given in Chapter F. Resistance factors are given as ϕb = 0.90 for 
bending and ϕc = 0.85 for compression. There is no designated resistance factor for beam-column 
members, but as the column in this case is dominated by bending, ϕ = 0.90 is used. Mcr from the 
energy analysis is reduced and the design procedure outlined previously is followed. From the 
results, values of Pm and VP are calculated for each reduction level, and the resulting reliability 
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index, β, is determined through Eq. 22. The results of the design capacity by reducing Mcr by 5% 
and 10% are shown in Table 3, and the resulting values of Pm, VP, and β are given in Table 4.  
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Table 3: Design capacity of frames for various Mcr reduction levels 

Test 
Experiment Ultimate 
Capacity, kN (kip) 

Design Capacity, kN (kip) 

5% Mcr reduction 10% Mcr reduction 

1 21.8 (4.90) 21.8 (4.90) 20.8 (4.68) 
2 22.8 (5.13) 21.8 (4.90) 20.8 (4.68) 
4 13.3 (2.99) 12.2 (2.74) 11.2 (2.52) 
5 29.8 (6.70) 29.0 (6.52) 27.6 (6.20) 
6 17.5 (3.93) 17.0 (3.82) 15.9 (3.57) 
7 29.8 (6.70) 28.4 (6.38) 27.0 (6.07) 
8 18.9 (4.25) 19.1 (4.29) 17.8 (4.00) 

 
The target reliability index for structural members is βo = 2.5 for LRFD. As shown in Table 4, a 
5% reduction in Mcr determined from the energy analysis archives this target index. Therefore, 
the design method outlined herein presents a viable method to determine frame ultimate loads for 
haunched portal frames with intermediate elastic torsional restraints on the unbraced columns, 
subject to a 5% reduction on the critical bending moment calculated from the energy analysis. 
 

Table 4: Target reliability index for various Mcr reduction levels 

% Mcr reduction Pm VP β 

0 0.97 0.029 2.25 
5 1.03 0.033 2.51 

10 1.10 0.041 2.73 

 
5. Conclusions 
A method to determine frame ultimate vertical loads for haunched portal frames with an 
intermediate elastic torsional restraint on the unbraced columns was presented. The column 
capacity was determined through an energy method approach to determine the critical bending 
moment in the column and was then used in the Direct Strength Method provided in cold-formed 
steel design codes (AISI-S100-12 2012; AS/NZS 4600 2005). This method does not require the 
determination of effective length factors, which can be difficult to quantify due to the semi-
rigidity of the column bases and the partial torsional restraint at the knee connection. Column 
internal actions were determined through a 2D beam finite element model which was calibrated 
with column base stiffness data obtained from experiments and was validated with frame 
experimental results. It was shown that the notional horizontal force method used for rectangular 
portal frames is applicable to haunched portal frames as well. As the energy method typically 
overestimates the column buckling load, a reliability analysis was completed, and it was 
determined that a 5% reduction of the critical bending moment calculated from the energy 
analysis is required to achieve a target reliability index of 2.5 for members. Therefore, the design 
method presented herein is a suitable method to calculate frame ultimate vertical loads for 
haunched portal frames with an intermediate elastic torsional restraint on the unbraced columns. 
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