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Abstract 

In this paper, a generalized analytical approach for lateral-torsional buckling of simply supported 

anisotropic hybrid (steel-FRP), thin-walled, rectangular cross-section beams under pure bending 

condition was developed using the classical laminated plate theory as a basis for the constitutive 

equations. Buckling of such type of hybrid members has not been addressed in the literature. The 

hybrid beam, in this study, consists of a number of layers of anisotropic fiber reinforced polymer 

(FRP) and a layer of isotropic steel sheet. The isotropic steel sheet is used in two configurations, 

(i) in the mid-depth of the beam sandwiched between the different FRP layers and (ii) on the side 

face of the beam. A closed form buckling expression is derived in terms of the lateral, torsional 

and coupling stiffness coefficients of the overall composite. These coefficients are obtained 

through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into 

a 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different 

geometric and material parameters, like length/height ratio and ply orientation, was investigated. 

The analytical formula is verified against finite element buckling solutions using ABAQUS for 

different lamination orientations showing excellent accuracy. 

 

Keywords: lateral-torsional buckling, stability, thin-walled beam, anisotropic laminated 

composite, hybrid laminated beam, finite element method. 

 

 

2. Introduction 

A thin-walled slender beam subjected to bending moments about the strong axis may buckle by a 

combined lateral bending and twisting of the cross-section. This phenomenon is known as 

lateral- torsional buckling. Theory of thin-walled open section beams including axial constrains 

for isotropic materials was developed by Vlassov (1961). This classical theory neglects the shear 

deformation in the middle surface of the wall so that for the composite beams, the shear 

deformations may significantly increase the displacements and reduce the buckling loads. The 

shear deformation theory for transversely loaded isotropic beams was developed by Timoshenko 

and Gere (1961). 
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Many researchers then started to study the lateral torsional buckling for the laminated composite 

beams using different theoretical approaches and enhancing their work with experimental 

programs and finite element models to validate the theory. Lin et al. (1996) studied the stability 

of thin-walled composite member using the finite element method. Seven degrees of freedom at 

each node for each two nodded elements were used to model the fiber reinforced plastic. The 

seven degrees of freedom are the dependent translations in three perpendicular directions and the 

corresponding rotations in addition to the angle of warping. The stiffness matrices of a beam 

element were used to develop the element shape functions. A number of examples of thin 

walled-open sections were solved, different cross sections like channels, I sections, and Z-section 

were tested as well as different boundary conditions. The study concluded the importance of the 

influence of in-plane shear strain on the critical buckling load for lateral torsional buckling and 

combined torsional and flexural modes. It also minimized the significance of shear strain effect 

on critical buckling when the buckling happens in terms of a flexural mode.  Davalos and Qiao 

(1997) used the non-linear elastic theory to develop a stability solution for lateral-distortional 

buckling for composite wide flange beams based on the principle of total potential energy. A 

fifth-order polynomial shape function was adopted for the displacement field construction. Then, 

the proposed model was validated against two geometrically identical experimental beams 

loaded at mid-span, with different material characteristics. A good agreement was obtained 

against the experimental results and a finite element model. Kollar (2000) presented a stability 

analysis of thin walled composite columns under axial loading conditions. A closed form 

solution was derived using a modified version of Vlasov’s classical theory (1961) for isotropic 

material to account for the composite action. The effect of shear deformation in in-plane 

displacements and in the restrained warping was examined and a shear matrix was formulated in 

addition to the bending matrix. Lee et al. (2002) studied the lateral buckling of composite 

laminated beams. An analytical approach based on the classical lamination theory was derived 

for different boundary conditions and different laminate stacking sequences. The examined 

beams were tested under various loading configurations and various locations. The beams were 

then compared against a one dimensional finite element model under different load 

configurations. The model showed a good agreement against the finite element model of simply 

supported I beam in cases of pure bending, uniformly distributed loads, and central point load. 

Yet, the model was not appropriate for pure bending with off-axis fiber orientation due to 

coupling stiffness. Sapkas and Kollar (2002) offered closed form solutions for simply supported 

and cantilever, thin walled, open section, orthotropic composite beams subjected to concentrated 

end moments, concentrated forces, or uniformly distributed load. The solution indirectly 

accounted for shear deformation by adjusting the bending and warping stiffness of the composite 

beams. Qiao and Davalos (2003) formulated an analytical solution for flexural-torsional buckling 

of composite cantilever I beams based on an energy method developed from the non-linear plate 

theory. A good agreement against finite element method was obtained. Furthermore, four 

different cantilever beams were tested experimentally under tip loads to examine the flexural-

torsional response. Also, good agreements were shown against the experimental results. Kotełko 

(2004) presented a theoretical analysis of local buckling which represents material failure. This 

study covered different cross sections of thin walled beams and columns. These cross sections 

varied between lipped and plain channels as well as box-section. This theory matched previous 

theories in a way that it depends on the rigid-plastic model. Yet, it mainly differs by considering 

a constitutive strain-hardening of the used material. This analytical approach is particularly 

useful in the initial phase of design process and may be applied as a simplified design tool at the 
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early stage of design process, including crush-oriented design. Karaagac et al. (2007) tested the 

stability of a cantilever laminated composite beam under static and dynamic conditions. A linear 

translation spring was attached to the beam to control the lateral deformation. The attached 

elastic support location varied between the free end and the mid-span of the beam.  Length-to-

thickness ratio, variation of cross-section in one direction, orientation angle, static and dynamic 

load parameters, stiffness and position of the elastic support were the main variables to study the 

stability of the beam.  Numerical polynomial approximations for the displacements and the angle 

of twist were derived and showed a reasonable accuracy against the finite element method. 

Machado (2010) derived an analytical solution for lateral stability of cross-ply laminated thin-

walled simply supported bisymmetric beams subjected to combined axial and bending loads. The 

presented theory included shear deformability and took into account large displacements and 

rotations; moderate bending rotations and large twisting angles. The proposed solution also 

examined the nonlinear pre-buckling geometrical deformation for more accurate representation 

of the lateral stability conditions. The buckling loads obtained analytically were, in general, in 

good agreement with the bifurcation loads observed in the post buckling response. The study 

concluded that the buckling moments computed from classical theory is overestimated. Also, it 

presented pre-buckling and post buckling displacement curves to relate the stiffness behavior of 

the beam to the applied loads and also to study the fiber orientation against the buckling loads. 

 

In this study, an analytical model applicable to the lateral-torsional buckling of simply supported 

anisotropic hybrid (steel-FRP), thin-walled, rectangular cross-section beams, subjected to pure 

bending is developed. This model is based on the classical plate lamination theory (CPT), and 

accounts for the arbitrary laminate stacking sequence configurations. The analyzed beams consist 

of six layers of fiber reinforced polymer (FRP) sheets and one isotropic steel sheet. The FRP 

sheets have the same thickness and the same characteristics, yet they vary in terms of fiber angle 

orientation. The location of the steel sheet was examined in order to understand its influence on 

the lateral torsional buckling critical moment. A sandwich stacking configuration (ST-I) is 

defined by placing the steel sheet in the mid-thickness of the beam. A sided stacking 

configuration (ST-II) is defined by placing the steel sheet at the side face of the beam. A series of 

FRP angle configurations were determined for comparisons against a finite element model and 

also to compare the different configurations against each other. The finite element model is 

developed in ABAQUS to predict critical buckling moments and compare with the results 

obtained from the analytical model. Also, the length of the beam to its height ratio was examined 

to study the effect of beam size on the lateral torsional buckling resistance. 
 

2. Analytical Formulation 

A simply supported hybrid (steel-FRP) laminated composite beam with length L and a thin 

rectangular cross section is subjected to pure bending at the ends, as shown in Figure 1. The 

beam tends to buckle under a lateral-torsional behavior because of its small thickness. 

The model in this study is based on the classical plate lamination theory, Kollar (1999) and 

Barbero (1999), which is derived from plane stress state, and all the assumptions in classical 

plate theory remain valid for laminated composite thin-walled beams. 

 

 



4 

 

 
Figure 1: A deformed laminated beam subjected to pure bending (structural coordinate system) 

 

3.1 Kinematics 

Based on the assumptions in the classical plate theory, the displacement components u, v, w 

representing the deformation of a point on the plate profile section are given with respect to mid-

surface displacements u0, v0, and w0 as follows: 

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝑑𝑤0

𝑑𝑥
(𝑥, 𝑦)                                    (1) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧𝛽(𝑥, 𝑦)                                         (2) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦)                                                          (3) 

 

Where 𝛽 =
𝜕𝑤𝑜

𝜕𝑦
 

The strains associated with small displacements from the theory of elasticity are given by 

 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧𝜅𝑥                                                                      (4) 

𝜀𝑦 = 𝜀𝑦
0 + 𝑧𝜅𝑦                                                                      (5)  

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 + 𝑧𝜅𝑥𝑦                                                                 (6)  

where 

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
 , 𝜀𝑦

0 =
𝜕𝑣0

𝜕𝑦
                                                          (7) 

𝜅𝑥 = −
𝜕2𝑤𝑜

𝜕𝑥2
,𝜅𝑦 = −

𝜕𝛽

𝜕𝑦
, and 𝜅𝑥𝑦 = −2

𝜕𝛽

𝜕𝑥
                             (8) 

 

3.2 Stress-Strain Equations 

The stress-strain relation for a layer is derived in the state of plane stress. For an isotropic 

material, the stress-strain relation is as follow: 
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{

σx
σy
τxy
} = [

𝐸̅ 𝐸̅𝜈 0
𝐸̅𝜈 𝐸̅ 0
0 0 𝐺

] {

𝜖𝑥
𝜖𝑦
𝛾𝑥𝑦
}                                                    (9)  

 

where 𝐸̅ =
𝐸

1−𝜈2
 𝑎𝑛𝑑 𝐺 =

𝐸

2(1+𝜈)
 

For anisotropic material, the stress-strain relation in the beam coordinate system is defined as 

follows: 

 

{

σx
σy
τxy
} = [

𝑄̅11 𝑄̅12 𝑄̅16
𝑄̅12 𝑄̅22 𝑄̅26
𝑄̅16 𝑄̅26 𝑄̅66

] {

𝜖𝑥
𝜖𝑦
𝛾𝑥𝑦
}                                                (10) 

Where [𝑄̅𝑖𝑗] are the components of the transformed reduced constitutive matrix which are given 

in standard textbooks like Kollar (1999) and Barbero (1999). 

 

3.3 Force-Strain Equations 

The plate stiffness coupling equations based on Classical Lamination Theory, shown in Figure 2, 

are given as follows. 

{
  
 

  
 
𝑁𝑥 =  0
𝑁𝑦 =  0

𝑁𝑥𝑦 = 0

𝑀𝑥 ≠  0
𝑀𝑦 =  0

𝑀𝑥𝑦 ≠ 0}
  
 

  
 

= ℎ

[
 
 
 
 
 
𝐴11   𝐴12   𝐴16   𝐵11   𝐵12    𝐵16
𝐴12   𝐴22   𝐴26   𝐵12   𝐵22    𝐵26
𝐴16   𝐴26   𝐴66   𝐵16   𝐵26    𝐵66
𝐵11   𝐵12   𝐵16   𝐷11   𝐷12    𝐷16
𝐵12   𝐵22   𝐵26   𝐷12   𝐷22    𝐷26
𝐵16   𝐵26   𝐵66   𝐷16   𝐷26    𝐷66]

 
 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦}

 
 

 
 

                         (11) 

Where  

𝐴𝑖𝑗 = ∑ (𝑄̅𝑖𝑗)𝑘𝑡𝑘                   𝑖, 𝑗 = 1,2,6𝑁
𝑘=1   are called extensional stiffness coefficients 

𝐵𝑖𝑗 = ∑ (𝑄̅𝑖𝑗)𝑘𝑡𝑘𝑧𝑘̅                   𝑖, 𝑗 = 1,2,6𝑁
𝑘=1   are called extension-bending coupling stiffness 

coefficients and 

𝐷𝑖𝑗 = ∑ (𝑄̅𝑖𝑗)𝑘 (𝑡𝑘𝑧𝑘̅
2 +

𝑡𝑘
3

12
 )             𝑖, 𝑗 = 1,2,6𝑁

𝑘=1  are called bending stiffness coefficients 

(𝑄̅𝑖𝑗)𝑘 are the components of the k
th 

layer transformed reduced stiffness matrix in the beam 

coordinate system. 

𝑧𝑘̅ is the depth from the middle surface to the centroid of the kth layer, and tk is the thickness of 

k
th

 layer of the hybrid beam. 

Knowing the zero components of externally applied forces and moments for the pure bending 

condition from Figure 1, which are expressed in Eq. 11, the stiffness matrix can be simplified 

and dimensionally reduced to an effective 2x2 stiffness matrix by using the static condensation 

technique:  

 

{
𝑀𝑥

𝑀𝑥𝑦
} = ℎ [

𝐷𝑌   𝐷𝑌𝑇
𝐷𝑌𝑇    𝐷𝑇

] {
𝜅𝑥
𝜅𝑥𝑦

}                                           (12) 

where 
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[
𝐷𝑌   𝐷𝑌𝑇
𝐷𝑌𝑇   𝐷𝑇

] = [
𝐷11   𝐷16
𝐷16   𝐷66

] − [

𝐵11   𝐵16
𝐵12   𝐵26
𝐵16   𝐵66
𝐷12   𝐷26

]

𝑇

[

𝐴11   𝐴12   𝐴16   𝐵12
𝐴12   𝐴22   𝐴26   𝐵22
𝐴16   𝐴26   𝐴66   𝐵26
𝐵12   𝐵22   𝐵26   𝐷22

]

−1

[

𝐵11   𝐵16
𝐵12   𝐵26
𝐵16   𝐵66
𝐷12   𝐷26

] 

 

DY is the effective hybrid (steel-FRP) composite lateral stiffness coefficient, DT is the effective 

hybrid composite twisting stiffness coefficient, and DYT is the effective hybrid composite lateral-

twisting coupling coefficient. In most cases, where the layers are symmetric, anti-symmetric, 

cross-ply, special angle ply, DYT coefficient will be zero. However, for the generally anisotropic 

cases, DYT coefficient is not zero and will play a significant role in determining the buckling 

moments of the beams. 

 

 
Figure 2: Force and moment resultants on a beam based on classical plate theory (laminated coordinate system). 

 

Referring to Figure 1 (structural coordinate) and Figure 2 (laminated coordinate), the bending 

moment My in structural coordinate is replaced by Mx in laminate coordinate. On the other hand, 

the shear moment, Mxy, in laminate coordinate is in the opposite direction of twisting moment in 

the structural coordinate system and is found by Kollar (1999) to be T= -2 Mxy. Table 1 shows 

the relation of moment components in structural coordinate and laminate composite coordinate. 
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Table 1 relation of moment components in structural coordinate and laminate composite coordinate 

The structural coordinate (deformed axes) Laminate composite coordinate 

 

 

 

 
 

Substituting the curvatures in terms of displacement and rotation in Eq. 8 into Eq. 12, and 

writing the moments in structural coordinates systems, the following relation will be obtained 

 

{
𝑀𝑦′

−𝑀𝑇
} = ℎ [

𝐷𝑌   2𝐷𝑌𝑇
2𝐷𝑌𝑇   4𝐷𝑇

] {
−
𝑑2𝑤

𝑑𝑥2

−𝛽′
}                                                 (13) 

 

3.4 Equilibrium Equations: 

Figure 1 shows the components of external moments before and after deformation and is 

obtained as follows: 

External moments in un-deformed configuration (original axes): 

 

𝑀𝑧 = 𝑀𝑜 (Applied Moment)                                             (14a) 

𝑀𝑇 = 𝑀𝑦 = 0                            (14b) 

External moments in the deformed configuration (deformed axes): 

 

𝑀𝑧
′ = 𝑀𝑧 = 𝑀𝑜                             (15a) 

𝑀𝑦
′ = 𝛽𝑀𝑜                     (15b) 

𝑀𝑇 = 𝑀𝑥
′ =

𝑑𝑤

𝑑𝑥
𝑀𝑜                                   (15c) 

The following system of differential equation is obtained after substituting the external moments 

from Eq. 15b and c into Eq. 13: 

 

{
𝛽𝑀𝑜 

−
𝑑𝑤

𝑑𝑥
𝑀𝑜
} = ℎ [

𝐷𝑌   2𝐷𝑌𝑇
2𝐷𝑌𝑇    4𝐷𝑇

] {
−
𝑑2𝑤

𝑑𝑥2

−𝛽′
}                                        (16) 

−ℎ𝐷𝑌
𝑑2𝑤

𝑑𝑥2
− 2ℎ𝐷𝑌𝑇𝛽

′ = 𝛽𝑀𝑜                                             (17) 

-2ℎ𝐷𝑌𝑇
𝑑2𝑤

𝑑𝑥2
− 4ℎ𝐷𝑇𝛽

′ = −
𝑑𝑤

𝑑𝑥
𝑀𝑜                                         (18) 

 

Writing Eq.17 and Eq.18 in terms of 
d2w

dx2
 and equating the two expressions, the following 

relationship can be obtained. 

 

Y’ 

X’ Z’ 

T 
Mz’ 

My’ 

Y 

X Z 

Mxy Mz 

Mx 

𝑀𝑧
′  =  𝑀𝑧 

𝑀𝑦
′  =  𝑀𝑥  

  𝑇 = −2𝑀𝑥𝑦  
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1

ℎ𝐷𝑌
[−2ℎ𝐷𝑌𝑇𝛽

′ − 𝛽𝑀𝑜] =
1

2ℎ𝐷𝑌𝑇
[−4ℎ𝐷𝑇𝛽

′ +
𝑑𝑤

𝑑𝑥
𝑀𝑜]                        (19) 

 

Differentiating Eq.19 with respect to x and rearranging the resulting expression in terms of  
d2w

dx2
 , 

Eq.20 will be obtained. 

 
𝑑2𝑤

𝑑𝑥2
= −

2𝐷𝑌𝑇

𝐷𝑌
𝛽′ +

4ℎ

𝑀𝑜
[𝐷𝑇 −

𝐷𝑌𝑇
2

𝐷𝑌
] 𝛽′′                                     (20) 

Equating the left hand side of Eq.19, which is equal to 
d2w

dx2
  in Eq. 17, and the right hand side of 

Eq.20, the resulting expression reduces to a second order ordinary differential equation with 

constant coefficients, which can be solved analytically. 

 

𝛽′′ +
𝑀𝑜

2

4ℎ2[𝐷𝑌𝐷𝑇−𝐷𝑌𝑇
2]
𝛽 = 0                                         (21) 

setting 𝜅2 =
𝑀𝑜

2

4ℎ2[𝐷𝑌𝐷𝑇−𝐷𝑌𝑇
2]

 , yields an equation similar to the isotropic condition when the 

warping effect is neglected. 

 

𝛽′′ + 𝜅2𝛽 = 0                       (22) 

 

The general solution for this type of differential equation is known to be: 

 

𝛽 = 𝐴𝑠𝑖𝑛(𝑘𝑥) + 𝐵𝑐𝑜𝑠(𝑘𝑥)                                             (23) 

 

Applying boundary condition for pure bending as 𝛽(0) = 𝛽(𝐿)  = 0, the critical buckling 

moment is obtained according to the following equation. 

 

𝑀0𝑐𝑟 =
𝜋ℎ

𝐿
√4(𝐷𝑌𝐷𝑇 − 𝐷𝑌𝑇

2 )                                      (24) 

 

The critical moment for isotropic beam was obtained by Timoshenko and Gere (1961) as 

follows: 

 

 M0cr =
π

L
√EIy𝐺𝐽                     (25) 

 

where 𝐽 =
1

3
ℎ𝑡3 

For an isotropic material where DYT = 0, the following relation is obtained. 

 

𝐸𝐼𝑦 = 2ℎ𝐷𝑌 (Lateral stiffness coefficient)                             (26) 

𝐺𝐽 = 2ℎ𝐷𝑇   (Torsional stiffness coefficient)                           (27) 

 

3. Numerical Analysis (FEA) 

The finite element method in the commercial software, ABAQUS/Standard (implicit) was used 

to simulate the problem in this study. The model was first created by using 3D planar shells. The 

shells were assembled based on the stacking arrangement that was used in the analytical solution. 
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The global x-axis was used along beams length, but the local coordinate system was used based 

on the orientation of the fibers in each ply.  

The boundary conditions for this beam were applied as follows. The four corners of the beam, 

shown in Figure 3, were constrained from moving in z-direction. One end of the beam was 

pinned at mid-height restraining it from all displacements, and a roller was applied at mid-height 

of other end of the beam to restrain displacement in the y-direction only, as shown in the Figure 

3. 

 
Figure 3 applied load and boundary conditions 

 

A linear shell-edge load was applied at both ends of the beam as tension and compression 

stresses to create a pure bending moment condition in the beam, as shown in Figure 3. Each edge 

was partitioned into two parts to apply shell-edge load linearly in the desired direction. The 

following relation was used to determine the magnitude of the linear load. 

 

Fx= 20y              (28) 

 

There is no load applied at the mid-height of the edge and the load increases linearly by 20y, 

which will act as a pure bending moment when applied as compression above the mid-height and 

as tension below the mid-height. 

 

 
Figure 4: Applied shell element type (S8R) and mesh (element size along beam axis: 2.5 mm)  

 

The beam was meshed with a standard quadratic quadrilateral shell element type of S8R (8-node 

doubly curved thick shell element with reduced integration) using six degrees of freedom per 

node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and h = 100 mm 

gives a total number of 29297 nodes and 9600 elements, as shown in Figure 4. 

 

The eigenvalue buckling analysis in Abaqus solver, which is a linear perturbation procedure, 

determines the eigenvalue of the buckling mode. Abaqus extracts the eigenvalues and 

eigenvectors for symmetric stiffness matrices only. In order to make the stiffness matrix of the 

model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical 

moment, based on the Abaqus user guide, the lowest eigenvalue is multiplied by the moment 

u=v=w=0 at mid-height v=0 at mid-height y 

F=20y 
w=0 

w=0 

w=0 

w=0 
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which was applied at the ends of the beam in combined tension and compression line edge 

loading. 

 

𝑀0𝑐𝑟 = 𝜆𝑀0                         (29) 

 

Where M0 is calculated from applied linear edge load. 

 

4. Results 

4.1 Material properties and stacking sequences 

An anisotropic hybrid (steel-FRP) composite beam is made by stacking six layers of the FRP of 

lamina properties shown in Table 2 at different fiber orientations and one layer of isotropic steel 

sheet given in Table 3. The thickness of each layer along with steel sheet is the same, yet it varies 

in terms of fiber orientation. The orientation of fiber in each layer can be randomly picked, 

including common laminate types such as symmetric laminates, antisymmetric laminates, 

balanced laminates, and so on. Two stacking configurations were considered in order to place the 

steel sheet: (i) sandwich stacking (ST-I) where the steel sheet is placed at mid-depth of the beam 

and (ii) sided stacking (ST-II) where the steel sheet is placed in the front face of the beam. The 

stacking sequence starts from the back of the beam to the front of the beam to follow the same 

order used for typical laminated plates, Figure 5. For example, [30/-30/90/ST/30/-30/90] means 

that the first ply has an angle of 30 degrees from the x-axis of the beam is placed in the back of 

the beam counter clockwise (towards the y-axis) and the other layers follow with the same order 

through the positive z-axis, and ST indicates the location of isotropic steel sheet in the mid-

depth. Figure 5 shows the stacking sequence of the laminates and location of steel sheet. 

Different length to height ratios of (5, 10, 20, and 50) were also studied which will be presented 

later. 
Table 2: Material 1 (FRP) properties used the in laminates 

Material  FRP 

E11 142730 MPa 

E22 13790 MPa 

v12 0.3   

v21 0.028985   

G12 4640 MPa 

G13 4640 MPa 

G23 3030 MPa 

 

Table 3: Material 2 (Steel) properties used the in laminates 

Material  FRP 

E11 200000 MPa 

E22 200000 MPa 

v12 0.3   

v21 0.3   

G12 76923.08 MPa 

G13 76923.08 MPa 

G23 76923.08 MPa 
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Figure 5: The stacking sequence of the laminate and location of steel sheet (ST-I) 

 

4.2 Buckling Results 

For the lateral-torsional buckling of thin-walled rectangular laminated composite beams under 

pure bending conditions, an analytical approach is presented as well as FEA results. Figure 6-9 

show the buckling results for different stacking sequences based on the proposed analytical 

formulation and also results from FEA model. Fig. 6 and 7 show the results of ST-I (sandwich) 

configuration and ST-II (sided) configuration of 18 different laminate-fiber orientation for beam 

length to height ratio of 5. Similarly, Fig. 8 and 9 show the results of ST-I configuration and ST-

II configuration of 18 different laminate-fiber orientation for beam length to height ratio of 20. 

The same comparison was held for beam length to height ratios of 10 and 50. Based on the 

results obtained, there is an excellent agreement between the proposed analytical formulation and 

FEA for all the orientations with an error that does not exceed 3.5% except for the zero fiber 

orientation. The largest error observed is 8.7% (Figure 6) for the 0/0/0/ST/0/0/0 case, which 

buckled in a distortional mode rather than lateral-torsional mode, which will be explained in 

details later in this paper, Fig. 18. 

 

5. Parametric Study 

5.1 Effect of Length/height ratio 

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to study their 

effects on the lateral-torsional buckling of simply supported laminated thin-walled rectangular 

cross-sectional hybrid beams. The results show that there is a significant drop in the value of the 

buckling moments as the L/h ratio increases. The relation between buckling moment and L/h 

ratio is defined to be a power function which can be written in Eq. 30. 

 

                                                  𝑀𝑐𝑟 = (𝑀𝑐𝑟)𝑖 ∗ (
𝐿

ℎ
)𝑖(

𝐿

ℎ
)−1                                                        (30) 
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Figure 6: Buckling moments at different stacking sequences: tk=0.1 mm for each layer, L/h=5, and ST-I 

configuration 

 

 
Figure 7: Buckling moments at different stacking sequences: tk=0.1 mm for each layer, L/h=5, and ST-II 

configuration 
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Figure 8: Buckling moments at different stacking sequences: tk=0.1 mm for each layer, L/h=20, and ST-I 

configuration 

 

 
Figure 9: Buckling moments at different stacking sequences: tk=0.1 mm for each layer, L/h=20, and ST-II 

configuration 
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Where (𝑀𝑐𝑟)i is the initial calculated value of buckling moment from Eq. 30 with a given (
𝐿

ℎ
)𝑖 

ratio for a specific laminate stacking sequence. 

 

 

 
Figure 10: Effect of L/h ratio on the critical moment based on analytical formula for three different layups and layer 

thickness of 0.1 mm and ST-I arrangement. 

 

 
Figure 11: Effect of L/h ratio on the critical moment based on analytical formula for three different layups and layer 

thickness of 0.1 mm and ST-II arrangement. 

 

By knowing the value of buckling moment in a selected laminate, Eq. 30 helps to calculate the 

buckling moment for different L/h ratios. Figure 10 show the effect of L/h ratio on the buckling 

moment for three different orientation sequences of ST-I type for  [0/0/0/ST/0/0/0], [30/-

30/30/ST/30/-30/30], and [60/-60/60/ST/60/-60/60] and ST-II type for [0/0/0/0/0/0/ST], [30/-

30/30 /30/-30/30/ST], and [60/-60/60 /60/-60/60/ST]. Eq. 30 is limited to the analytical formula 

and is not applicable to the FEM results. There is a noticeable discrepancy between the analytical 

and numerical results in the cases of [0/0/0/ST/0/0/0] and [0/0/0/0/0/0/ST] laminates as the ratio 

of L/h decreases, as shown in Figure 13 and 14. This discrepancy is related to the fact that the 
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beam with zero fiber orientations buckles numerically in a distortional mode, in which the lateral 

angle of curvature at a certain section transverse the beam is not constant, rather than a lateral-

torsional mode, in which the lateral angle of curvature remains constant for a certain section 

transverse to the beam, Fig. 12. Nevertheless, Figure 13 and 14 clearly show that the analytical 

and numerical buckling moments match almost exactly as the L/h ratio increases beyond 5 for 

both stacking sequences. It is obvious that in both analytical and FEM the buckling moments 

increase as the L/h ratio decrease because of the larger height of the beam to resist against 

lateral-torsional buckling. 
 

 
Figure 12: Buckling shapes showing distorsional buckling mode and lateral-torsional buckling mode for ST-I 

arrangement 

 

 
Figure 13 Comparison of buckling results obtained from analytical solution and FEM for the [0/0/0/ST/0/0/0] (ST-I) 

laminate and layer thickness of 0.1 mm by changing L/h ratio 
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Figure 14: Comparison of buckling results obtained from analytical solution and FEM for the [0/0/0/0/0/0/0/ST] 

(ST-II) laminate and layer thickness of 0.1 mm by changing L/h ratio 

 

5.2 Effect of stacking sequence (ST-I and ST-II) 

The previous sections of this paper discussed the accuracy of the proposed analytical solution for 

hybrid beams against the finite element method for lateral-torsional buckling. Also, the effect of 

beam’s size was examined against the buckling moment. In this section, and after verifying the 

accuracy of the solution, the two different stacking techniques are studied. Fig. 15 shows the 

ratios of the critical lateral torsional buckling moments for ST-II and ST-I for different fiber 

orientations. The figure shows ratios bigger than one, which lead to the conclusion that the ST-II, 

in which the steel sheet is at the side of the beam, has a higher resistance against lateral torsional 

buckling than the ST-I, in which the steel sheet is in the middle, for all examined fibers 

orientations. 

 

 
Figure 15: Normalized ST-II/ST-I vs the stacking sequence with L/h = 5 and L/h = 20 
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5.3 Effect of fiber angle orientation 

As shown in Figure 6. The stacking sequences considerably affect the buckling moments if the 

dimensions of the beam are kept the same. The lowest value for the critical buckling moment is 

obtained when the fiber is perpendicular to the beam length while the highest critical value is 

obtained for the balanced angle-ply stacking sequence of 30 degrees which is the maximum 

critical moment among the possible stacking sequences selected for Figure 6. Furthermore, a 

comparison was held to study the effect of fiber angle on critical buckling load. The orientation 

[θ/-θ/θ/ST/θ/-θ/θ] (degree) for ST-I and [θ/-θ/θ/θ/-θ/θ/ST] (degree) for ST-II were examined with 

the change in layup angle of 0 to 90 with an increment of 5 degrees, Fig.16 and 17. The optimal 

maximum critical moment is obtained for the balanced angle-ply layup to be around 2100 N.mm 

for layup [20/-20/20/20/-20/20/ST]. 

 

 

 
Figure 16: Variation in critical buckling moment with the change in layup angle of 0 to 90 at an increment of 5 

degrees. (+) Analytical and (●) FEM; layer thickness of 0.1 mm and L/h of 5, ST-I 

 

6. Conclusions 

In this study, the lateral-torsional buckling of simply supported anisotropic hybrid (steel-FRP), 

thin-walled, rectangular cross-section beams under pure bending condition was investigated. 

Based on the assumptions made and the results obtained, an excellent accuracy is observed for a 

variety of stacking sequences. The applicability of this analytical formulation is proved by 

comparing the obtained results with FEM results. The study followed the classical laminated 

plate theory with all considered assumptions and determined an effective lateral-torsional-

coupling stiffness matrix. 

 

Based on the study, the stability of the laminated beams under pure bending is greatly affected 

by the length/height ratio of the beam. The critical buckling moment was inversely proportional 

to the length/height ratios with a power function. The lowest L/h ratio yields to the highest 

critical buckling moment. The importance of the stacking sequence, which does not affect the 

dimensions of the beam, is seen to greatly influence the stability of the beam. The ST-II stacking 
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type, in which the steel laminate is on the side of the beam, shows a higher resistance than the 

ST-I, in which the steel sheet is located at mid-thickness of the beam. 

 

 
Figure 17: Variation in critical buckling moment with the change in layup angle of 0 to 90 at an increment of 5 

degrees. (+) Analytical and (●) FEM; layer thickness of 0.1 mm and L/h of 5, ST-II 

 

The fiber angle orientation was proven to be a critical variable against the lateral torsional 

buckling. The critical buckling moment of balanced angle-ply fiber lamination of about [20/-

20/20/20/-20/20/ST] is found to reach the maximum value, among this class of layups, because 

of its maximum lateral and torsional effective stiffness. The minimum critical buckling moment 

obtained from [90/90/90/ST/90/90] was found to be due to orienting the fibers in the y-direction, 

thus reducing the lateral and torsional effective stiffness.  
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