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Abstract 

For compact W-Shapes with an ECCS residual stress distribution pattern, the stiffness reduction 

that results from yielding of the cross-section due to uniaxial bending and axial loading are studied 

in detail. Major and minor axis bending under axial compression and tension conditions are 

investigated. Three-dimensional m-p-surface plots of a W8x31 are used to discuss the stress 

states around the perimeter of the surfaces and the reduced stiffness for each of the loading 

conditions. Figures are provided for the stiffness reduction from initial yield up to the fully plastic 

conditions for the axial compression and axial tension conditions. The m-p-surface plots are used 

to develop an idealized material model for direct implementation in MASTAN2. The El-Zanaty and 

Kanchanalai benchmark frames are modeled using the new material model. The results compare 

very closely with published results of the same frames under similar loading conditions. 

Discussion is provided regarding the proposed material model for practical use. 

 

1. Introduction 

The in-plane behavior of steel frames with compact doubly-symmetric beam-columns that are 

subjected to major and minor axis bending have been shown to exhibit significant differences in 

their response based on plastic hinge and plastic zone analyses (Attalla 1994; Ziemian et al. 2002). 

Frames of this type with little to no redundancy can be very sensitive to the refinement of the 

inelastic analysis procedure employed (White et al. 1991; Ziemian et al. 1997). Recent research 

has focused on developing improved empirical relationships to account for the reduction in 

stiffness that occurs due to yielding of the beam-column’s cross-section (Zubydan 2011; Kucukler 

et al. 2014, 2016). The objective of this paper is to present the findings from a detailed fiber 

element model investigation of the stiffness reduction that develops as a result of yielding in the 

flanges and web over the full range of moment and axial load combinations from initial yield to 

the fully plastic condition. Considering both major and minor axis bending under axial 

compression and tension conditions, analytical expressions are presented to determine the moment 

and axial load combinations at the initial onset of yielding and when the section becomes fully 

plastic. Discussion is provided on how the equations can be used to develop an idealized material 

model for use as tangent modulus values in the nonlinear analysis program MASTAN2. The paper 

discusses how the material model is readily useable for any compact W-Shape and assumed 

maximum residual stress condition. 
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2. Fiber Element Model 

The stiffness reduction (that results from yielding of the cross-section due to bending and axial 

load was studied in detail for W-Shapes with an ECCS residual stress pattern (1984) as depicted 

in Fig. 1. For a given normalized moment m (M /Mp), axial load p (P /Py), and residual stress ratio 

cr (r /y), the stiffness reduction was carefully assessed using a detailed fiber element model of a 

W8x31 with cr = 0.3. Throughout the paper p is understood to be positive such that the sign on Py 

matches that of the applied axial load P. Bending about the minor axis is understood to have a 

normalized moment m = M /Mpy, and bending about the major axis is understood to have a 

normalized moment m = M /Mpx. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Residual stress pattern used in the study  

 

A computer program was developed to accommodate a specified number of rows and columns of 

fiber elements in each flange and the web. The angle and location of linear strain distribution were 

varied in specified increments from zero to specified maximums in order to capture the m and p 

conditions at 0.01 increments to at least three significant digits of accuracy. The final model used 

2,046 fiber elements over the cross-section (400 fiber elements in each flange and 1,246 fiber 

elements in the web). This level of discretization was found to be necessary to develop the smooth 

m-p- surface plots throughout in the paper. 

 

3. Axial Compression m-p- Surface Plots 

Using the m and p results with increments of 0.01, over 7,000 data points were used to produce 

the 3D surface plots (m and p combinations of   = 0 outside the boundary were excluded). 

Comparing Fig. 2 with Fig. 3, a triangular shaped plateau of   = 1 is observed for both minor and 

major axis bending conditions; however, the 3D surfaces after initial yield vary quite significantly. 

For the major axis bending condition, the shape of the surface past the initial yield plateau is 

relatively uniform for p between 0 and 0.7. However, for the minor axis bending condition, the 

shape is significantly different depending upon the magnitude of p. For the lower values of p with 

minor axis bending between 0 and approximately 0.2, the loss of stiffness is more gradual for a 

given increment of m beyond initial yield, and for p between 0.2 and 0.7, the loss of stiffness is 

more much rapid for the same increment of m. For the higher values of p between 0.7 and 1 with 

both minor and major axis bending, the surface plots take on a very different shape with a smooth, 
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distinct fold at values of m between 0 and approximately 0.1. For p > 0.7, there is a rapid decrease 

in stiffness to the   = 0 condition, and as the moment approaches zero, the shape of the curve is 

convex for minor axis bending and is concave for major axis bending. 

Figure 2: Minor axis bending and axial compression m-p- surface plot 

Figure 3: Major axis bending and axial compression m-p- surface plot 

 

As depicted in Figs. 4 and 5, there are four unique conditions around the perimeter of the surface 

plots. In the following sections of the paper, equations will be given for the lines around the 

perimeter (except for the blue line). The yellow line indicates the maximum m and p conditions to 

maintain an elastic response with  = 1, and the red line indicates the m and p conditions for a fully 

plastic response with  = 0. The purple line indicates the stiffness reduction under pure 

compression yield conditions when p > 1  cr. The blue line requires a number of equations and 

has been previously published for the minor axis bending condition (Rosson 2016). The major axis 

bending condition requires a similar number of equations, and as will be discussed later, the blue 

line in both figures will not be needed to develop the idealized material model. 
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Figure 4: Minor axis bending and axial compression m-p- surface plot perimeter conditions 

 

Figure 5: Major axis bending and axial compression m-p- surface plot perimeter conditions 

 

3.1 Yellow line (m and p conditions at the limit of  = 1) 

The equation to determine the extent of   = 1 is found in the literature (Attalla et al. 1994, Zubydan 

2011) and is straight-forward to visualize as depicted in Fig. 6. The dashed blue lines represent the 

residual stress distribution, and the shaded region represents the final compression stresses across 

each flange after the bending moment and axial load have been applied. The left side of the diagram 

depicts the accumulation of three stresses: the residual compression stress r, the bending moment 

compression stress m, and the axial compression stress p. The extent of   = 1 is determined 

when the conditions of m and p cause all three compression stresses to sum to y. For a given 

residual stress ratio cr and axial compression load condition p, the maximum moment at which       

  = 1 is maintained is given as  
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𝑚1 =
𝑆𝑦

𝑍𝑦
(1 − 𝑐𝑟 − 𝑝)                                                             (1) 

 

where Sy is the minor axis elastic section modulus and Zy is the minor axis plastic section modulus. 

Since this equation is based only on the accumulation of stress at the end of each flange, the 

assumed shape of the residual pattern does not affect Eq. 1 provided the maximum residual 

compression stress r occurs at the end of the flanges. 

 

The stresses in the flanges of a W8x31 for cr = 0.3 and p = 0.5 are given in Fig. 6. Using Eq. 1, 

compression yielding initiates on the left side when the minor axis bending moment reaches           

m1 = 0.132.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: Minor axis bending stress state in the flanges at the extent of  = 1 for p = 0.5 

 

The maximum moment at which   = 1 is maintained for major axis bending is determined in a 

similar manner and is found to be 
 

𝑚1 =
𝑆𝑥

𝑍𝑥
(1 − 𝑐𝑟 − 𝑝)                                                             (2) 

 

where Sx is the major axis elastic section modulus and Zx is the major axis plastic section modulus. 

Since this equation is based only on the accumulation of stress at the outer edge of the flange, the 

assumed shape of the residual pattern does not affect Eq. 2 provided the maximum residual 

compression stress r occurs at this location. 

 

3.2 Purple line (m = 0 and p > 1 cr) 

The equation to determine the stiffness reduction when m = 0 is found by considering the stress 

state depicted in Fig. 7. The compressive stress p' that satisfies the equilibrium condition for a 

given p and cr condition provides the necessary information to determine the extent of yielding 

over the length hy at the ends of the flanges and over the length 2hy at the center of the web. The 

length hy is determined using Eq. 3 where d = bf for yielding in the flanges and d = dw for yielding 

in the web. 
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ℎ𝑦 =
𝑑

2
(1 − √

1 − 𝑝

𝑐𝑟
)                                                             (3) 

 

To determine the stiffness reduction for a given p and cr condition, the minor axis moment of 

inertia of the remaining cross-section that has not yielded is divided by the original minor axis 

moment of inertia Iy. The relationship for  is found to be  

  

𝜏 =

2(√
1 − 𝑝

𝑐𝑟
)

3

+ 𝜆𝜆𝑜
2√

1 − 𝑝
𝑐𝑟

2 + 𝜆𝜆𝑜
2

                                                  (4) 

 

where  = Aw /Af  and o = tw /bf . For W-Shapes in which o
2 is very small compared to 2, a very 

close approximation to Eq. 4 excludes the effect of the web and is given as  

 

𝜏 = (√
1 − 𝑝

𝑐𝑟
)

3

                                                                  (5) 

 

 

 

 

 

 

 

 

 

 

Figure 7: Minor axis bending stress state in the flanges for m = 0 and p = 0.75 

 

The stiffness reduction for the major axis condition is determined in a similar manner and is 

found to be 

 

𝜏 =

𝜆𝜆1
2 [1 − (1 − √

1 − 𝑝
𝑐𝑟

)

3

] + √
1 − 𝑝

𝑐𝑟
[2 + 6(1 + 𝜆1)

2]

𝜆𝜆1
2 + 2 + 6(1 + 𝜆1)2

                              (6) 

 

where 1 = dw /tf . Eqs. 4 through 6 are based entirely on the assumed shape of the residual pattern; 

therefore the shape of the purple lines in Figs. 4 and 5 are unique to the ECCS residual stress 

pattern given in Fig. 1. 
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3.3 Red line (m and p conditions for  = 0) 

Two equations are needed to determine the m and p conditions when   = 0 for both minor and 

major axis bending. For the minor axis bending condition, one equation is needed when the plastic 

neutral axis is inside the web thickness, and the other is needed when it is outside the web 

thickness. Closed-form equations are given in the book by Chen and Sohal (1995); however, the 

same results can be obtained with fewer computations using the constants , o and 1. 

  

         𝑚0  = 1 −
𝑝2(2 + 𝜆)2

(2 + 𝜆𝜆𝑜)(2 + 𝜆1)
                                                   (7) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥
2𝜆𝑜 + 𝜆

2 + 𝜆
                    𝑚0  =

4 − [𝑝(2 + 𝜆) − 𝜆]2

2(2 + 𝜆𝜆𝑜)
                                                    (8) 

 

For the major axis bending condition, one equation is needed when the plastic neutral axis is 

outside the flange thickness, and the other is needed when it is inside the flange thickness. 

 

         𝑚0  = 1 −
𝑝2(2 + 𝜆)2

4𝜆𝑜 + 𝜆(4 + 𝜆)
                                                  (9) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥
𝜆

2 + 𝜆
                  𝑚0 =

(2 + 𝜆1)
2 − [𝑝(2 + 𝜆) − 𝜆 + 𝜆1]

2

4 + 𝜆1(4 + 𝜆)
                               (10) 

 

Eqs. 7 through 10 do not depend upon the assumed shape of the residual pattern; therefore the 

shape of the red lines in Figs. 4 and 5 are unaffected by the ECCS residual stress pattern. 

 

6. Material Model Idealization of m-p- Surface Plots 

Referring to Figs. 2 and 3, and the equations presented for the yellow, purple and red lines in Figs. 

4 and 5, the idealizations in Figs. 8 and 9 were developed for inelastic material model purposes. 

For both minor axis and major axis bending, the extent of the triangular plateau regions at which 

 = 1 is defined by m1 for a given p condition in Eqs. 1 and 2. Based on the previous discussion 

concerning the yellow lines, the shape and extent of the plateau regions are relatively independent 

of the assumed residual stress pattern. Also for both minor axis and major axis bending, the furthest 

extent of the 3D surfaces at which  = 0 is defined by m0 for a given p condition in Eqs. 7 through 

10. Based on the previous discussion concerning the red lines, the shape and extent of  = 0 are 

independent of the assumed residual stress pattern. When m = 0 and p > 1 cr, Eqs. 4 and 6 were 

based on the ECCS residual stress pattern, and thus the purple lines were dependent upon the 

assumed residual stress pattern. Indeed since the fiber element model that was used to develop 

Figs. 2 and 3 used an ECCS residual stress pattern, the shapes of the 3D surfaces between  = 1 

and  = 0 are dependent upon the assumed residual stress pattern. Keeping the portions of Figs. 4 

and 5 where the actual residual stress distribution has little to no effect, and using a linear variation 

for  over the regions where it does have an effect, Fig. 8 was developed for minor axis bending 

and Fig. 9 for major axis bending. In general, this linearization provides a conservative estimate 

for  between the yellow and red lines in Figs. 4 and 5. 
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      Figure 8: Material model for minor axis bending              Figure 9: Material model for major axis bending 

 

Using a linear variation in stiffness between the elastic condition of  = 1 and the fully plastic 

condition of  = 0 is also consistent with the approach taken by Ziemian and McGuire (2002) to 

represent the variation in stiffness in a linear manner over the length of the element. The following 

two equations are given for the linear variation in stiffness for both minor axis and major axis 

bending. For a given m and p condition, the stiffness reduction  can be easily evaluated based on 

the m0 and m1 values from Eqs. 1, 7 and 8 for minor axis bending, and Eqs. 2, 9 and 10 for major 

axis bending. 

 

𝜏 =
𝑚0 − 𝑚

𝑚0 − 𝑚1
                                                                (11) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥ 1 − 𝑐𝑟                        𝜏 = (
1 − 𝑝

𝑐𝑟
) (1 −

𝑚

𝑚0
)                                                         (12) 

 

Example 1  

Determine the stiffness reduction  of a W8x31 (cr = 0.3) with minor axis bending m = 0.3 and 

axial compression load p = 0.6. 

 = 0.5839   Sy = 9.27 in3 

o = 0.0356   Zy = 14.1 in3 

In order to determine , first evaluate 

 

1 − 𝑐𝑟 = 1 − 0.3 = 0.7                                                          (13) 
 

Since p < 0.7, Eq. 11 will be used, and both m1 and m0 will be evaluated. 

Eq. 1 is used to obtain m1. 

 

𝑚1 =
9.27

14.1
(1 − 0.3 − 0.6) = 0.0657                                            (14) 
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In order to determine m0, first evaluate 

 
2𝜆𝑜 + 𝜆

2 + 𝜆
=

2(0.0356) + 0.5839

2 + 0.5839
= 0.254                                         (15) 

 

Since p > 0.254, Eq. 8 is used to obtain m0. 

 

 𝑚0 =
4 − [0.6(2 + 0.5839) − 0.5839]2

2(2 + 0.5839 × 0.0356)
= 0.759                                 (16) 

 

Substituting m1 and m0 into Eq. 11, the stiffness reduction  is 

 

𝜏 =
0.759 − 0.3

0.759 − 0.0657
= 0.66                                                     (17) 

 

Example 2  

Determine the stiffness reduction  of a W8x31 (cr = 0.3) with major axis bending m = 0.2 and 

axial compression load p = 0.8. 

 = 0.5839   Sx = 27.5 in3 

1 = 16.39  Zx = 30.4 in3 

Since p > 0.7, Eq. 12 will be used, and only m0 will be evaluated. 

In order to determine m0, first evaluate 

 
𝜆

2 + 𝜆
=

0.5839

2 + 0.5839
= 0.226                                                 (18) 

 

Since p > 0.226, Eq. 10 is used to obtain m0. 

 

𝑚0 =
(2 + 16.39)2 − [0.8(2 + 0.5839) − 0.5839 + 16.39]2

4 + 16.39(4 + 0.5839)
= 0.237           (19) 

 

Substituting m0 into Eq. 12, the stiffness reduction  is 

 

𝜏 = (
1 − 0.8

0.3
) (1 −

0.2

0.237
) = 0.10                                        (20) 

 

4. Axial Tension m-p- Surface Plots 
Using the same model with 2,046 fiber elements, and the ECCS residual stress pattern with cr = 

0.3, the stiffness reduction for the axial tension condition was studied in the same manner as above. 

The 3D surfaces in Figs. 10 and 11were developed using m and p increments of 0.01. Comparing 

Fig. 10 with Fig. 11, the familiar triangular shaped plateau of   = 1 is observed only for the major 

axis bending condition; the minor axis bending condition has a more complex plateau region. 

Comparing Fig. 2 with Fig. 10 for minor axis bending, and Fig. 3 with Fig. 11 for major axis 

bending, the shape of the 3D surface past the initial yield plateau is similar only for the major axis 

bending condition. The surfaces are significantly different for minor axis bending under the axial 
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compression conditions in Fig. 2 versus the axial tension conditions in Fig. 10. The plateau region 

in Fig. 10 has three distinct ridges and covers a larger area than the plateau region in Fig. 2. The 

loss of stiffness in Fig. 10 is more gradual for conditions of p < 0.3, but for higher values of p the 

loss of stiffness is more rapid for a given increment of m. For p > 0.7, there is a rapid decrease in 

stiffness to the   = 0 condition, and as the moment approaches zero, the shape of the curve is 

convex for both minor axis and major axis bending. 

Figure 10: Minor axis bending and axial tension m-p- surface plot 

 

Figure 11: Major axis bending and axial tension m-p- surface plot 

 

As depicted in Fig. 12, there are three unique conditions around the perimeter of the plateau for 

minor axis bending and axial tension conditions. The yellow, magenta and orange lines indicate 

the maximum m and p conditions to maintain an elastic response with  = 1, and the red line 

indicates the m and p conditions for a fully plastic response with  = 0. The purple line indicates 

the stiffness reduction under pure tension yield conditions when p > 1  cr. As before, the blue line 

requires a number of equations, and it will not be included here due to space limitations. 
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Figure 12: Minor axis bending and axial tension m-p- surface plot perimeter conditions 

  

4.1 Yellow line with minor axis bending (m and p conditions at the limit of  = 1) 

The first equation of the three where the limit of  = 1 is reached occurs when compression yielding 

initiates at the ends of the flanges due to relatively high bending moments and low axial tension 

conditions. For the axial tension condition p ≤ cr, the maximum moment at which   = 1 is 

maintained is given as  

 

𝑚1 =
𝑆𝑦

𝑍𝑦
(1 − 𝑐𝑟 + 𝑝)                                                            (21) 

 

4.2 Magenta line with minor axis bending (m and p conditions at the limit of  = 1) 

Under lower bending moments and higher axial tension conditions, the second equation occurs 

when tension yielding initiates at the ends of the flanges. For the axial tension condition cr < p ≤ 

1  cr (1 + o)/(1  o), the maximum moment at which   = 1 is maintained is given as  

 

𝑚1 =
𝑆𝑦

𝑍𝑦
(1 + 𝑐𝑟 − 𝑝)                                                            (22) 

 

4.3 Orange line with minor axis bending (m and p conditions at the limit of  = 1) 

Under relatively low bending moments and high axial tension conditions, the third equation occurs 

when tension yielding initiates in the web at the intersection with the flanges. For the axial tension 

condition 1  cr (1 + o)/(1  o) < p ≤ 1  cr, the maximum moment at which   = 1 is maintained 

is given as  

 

𝑚1 =
𝑆𝑦

𝜆𝑜𝑍𝑦
(1 − 𝑐𝑟 − 𝑝)                                                        (23) 
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4.4 Purple line with minor axis bending (m = 0 and p conditions for 0 <  < 1)  

To determine the stiffness reduction under pure tension yield conditions, the minor axis moment 

of inertia of the remaining cross-section that has not yielded is divided by the original minor axis 

moment of inertia Iy. The shape of the purple line in Fig. 12 is unique to the ECCS residual stress 

pattern given in Fig. 1. As with Eq. 5, the relationship for  excluding the effect of the web is given 

as 

 

𝜏 = 1 − (1 − √
1 − 𝑝

𝑐𝑟
)

3

                                                      (24) 

 

4.5 Red line with minor axis bending (m and p conditions for  = 0) 

Two equations are needed to determine the m and p conditions when   = 0. Eqs. 7 and 8 derived 

for the axial compression condition are the same as that for the axial tension condition. 

 

As depicted in Fig. 13, there is only one line at the ridge of the plateau for the major axis bending 

and axial tension conditions. The yellow line indicates the maximum m and p conditions to 

maintain an elastic response with  = 1, and the red line indicates the m and p conditions for a fully 

plastic response with  = 0. The purple line indicates the stiffness reduction under pure tension 

yield conditions when p > 1  cr. As before, the blue line will not be included for the same reasons 

as previously stated. 

Figure 13: Major axis bending and axial tension m-p- surface plot perimeter conditions 

 

4.6 Yellow line with major axis bending (m and p conditions at the limit of  = 1) 

This condition occurs when tension yielding initiates at the center edge of the flange. For a given 

residual stress ratio cr and axial tension load condition p, the maximum moment at which   = 1 is 

maintained is given as  

 

𝑚1 =
𝑆𝑥

𝑍𝑥
(1 − 𝑐𝑟 − 𝑝)                                                            (25) 
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4.7 Purple line with major axis bending (m = 0 and p conditions for 0 <  < 1) 

To determine the stiffness reduction for a given p and cr condition, the major axis moment of 

inertia of the remaining cross-section that has not yielded is divided by the original major axis 

moment of inertia Ix. The final expression is similar to Eq. 6 and is given as 

 

𝜏 =

𝜆𝜆1
2 (√

1 − 𝑝
𝑐𝑟

)

3

+ √
1 − 𝑝

𝑐𝑟
[2 + 6(1 + 𝜆1)

2]

𝜆𝜆1
2 + 2 + 6(1 + 𝜆1)2

                             (26) 

 

4.8 Red line with major axis bending (m and p conditions for  = 0) 

Two equations are needed to determine the m and p conditions when   = 0. Eqs. 9 and 10 derived 

for the axial compression condition are the same as that for the axial tension condition. 

 

4.9 Minor axis and major axis bending comparisons 

Figs. 14 and 15 illustrate the effects of axial compression versus axial tension on the reduced 

stiffness using three values of p = 0.2, 0.6 and 0.8. As illustrated in Fig. 14 for a given minor axis 

bending moment m, the reduced stiffness  is quite different for the same magnitude of p in 

compression versus tension. However, as illustrated in Fig. 15, this degree of discrepancy does not 

exist for the major axis bending condition. As previously mentioned, the shape of the 3D surfaces 

and the curves in Figs. 14 and 15 are dependent upon the assumed ECCS residual stress pattern. 

Thus the discrepancies and similarities between the compression and tension results are unique to 

this assumed residual stress condition. Since the shape of the plateau regions of  = 1 for both the 

compression and tension conditions are relatively independent of the residual stress pattern, the 

discrepancies with the minor axis bending condition and the similarities with the major axis 

bending condition are predicted to exist for other assumed residual stress patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Minor axis bending m- curves for p = 0.2, 0.6 and 0.8 
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Figure 15: Major axis bending m- curves for p = 0.2, 0.6 and 0.8 

 

5. Comparative Examples 

The El-Zanaty (1980) and Kanchanalai (1977) benchmark frames have been used by several 

researchers as comparative examples to test the ability of their method to capture the effects of 

distributed plasticity on a frame that has little capacity to redistribute forces once yielding has 

initiated (King et al 1992; Attalla et al 1994; Ziemian et al 2002; Kucukler et al. 2016).   

 

5.1 Stiffness matrix used for modeling the distributed plasticity  

Since the bending moments usually vary along the length of the beam-column, the stiffness 

reduction over the member length must also be accounted for when yielding occurs. An easy and 

effective way of accomplishing this is to assume the tangent modulus varies linearly over the 

length of the element. In practice, the error introduced by this assumption is reduced by using 

multiple elements along the length of the beam-column. The closed-form stiffness matrix 

developed by Ziemian and McGuire (2002) was chosen for this study because the  values from 

Eqs. 11 and 12 can be used directly for the a and b terms in Eq. 27. The tangent modulus is defined 

to be Etm =  E. Since the normalized modulus is Etm /E, then a =  using the m and p conditions at 

the start of the element, and b =   using the m and p conditions at the end of the element. 

 

[𝑘] =
𝐸𝐼𝑦

𝐿

[
 
 
 
 
 
 
 
 
12

𝐿2
(
𝑎 + 𝑏

2
)   −

6

𝐿
(
2𝑎 + 𝑏

3
)  − 

12

𝐿2
(
𝑎 + 𝑏

2
)   −

6

𝐿
(
𝑎 + 2𝑏

3
)

                            4 (
3𝑎 + 𝑏

4
)        

6

𝐿
(
2𝑎 + 𝑏

3
)          2 (

𝑎 + 𝑏

2
)

                                                         
12

𝐿2
(
𝑎 + 𝑏

2
)       

6

𝐿
(
𝑎 + 2𝑏

3
)

            𝑆𝑦𝑚.                                                                 4 (
𝑎 + 3𝑏

4
)]
 
 
 
 
 
 
 
 

                                (27) 
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5.2 El-Zanaty portal frame 

The stiffness matrix given in Eq. 27 is already a part of the nonlinear material capabilities of 

MASTAN2 (2015). The computer program also contains incremental analysis routines for 

modeling the nonlinear geometric behavior. Eq. 27 with the corresponding  values from Eqs. 11 

and 12 for the W8x31 were used in the nonlinear material subroutine of MASTAN2. Eqs. 1 and 2 

were used as the limit on the extent of   = 1, and Eqs. 7 through 10 were used as the boundaries 

for   = 0. 

  

The El-Zanaty portal frame as depicted in Fig. 16 was modeled using four elements for all three 

members. The conditions of p = 0.4 and 0.6 were investigated by first applying the full vertical 

load P, then the lateral load was applied in increments up to its maximum value of H. The 

normalized lateral load deflection curves for each condition of p are given in Fig. 16 for both minor 

axis and major axis bending conditions.  

 

Figure 16: Load deflection curves for El-Zanaty’s portal frame with p = 0.4 and 0.6 

 

Table 1: Maximum lateral load and deflection values for El-Zanaty’s portal frame 

                  Minor Axis                Major Axis 

  p /L HL/2Mp /L HL/2Mp 

Proposed Model 0.4 0.022 0.37 0.019 0.32 

  0.6 0.012 0.11 0.010 0.09 

Attalla et al. (1994) 0.4 0.020 0.32 0.018 0.32 

  0.6 0.006 0.05 0.009 0.10 

King et al. (1992) 0.4 n.a. n.a. 0.018 0.32 

  0.6 n.a. n.a. 0.010 0.11 

Ziemian et al. (2002) 0.4 0.020 0.39 n.a. n.a. 

  0.6 0.008 0.09 n.a. n.a. 

                n.a. = not available  
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The maximum lateral load and deflection values for p = 0.4 and 0.6 in Fig. 16 are also presented 

in Table 1. Comparing the proposed model results with the maximum values from previously 

published studies of the same frame indicate that the  values from Eqs. 11 and 12, and the stiffness 

matrix from Eq. 27, provide a very effective means of modeling the spread of plasticity of frames 

up to collapse for both minor axis and major axis bending. 

 

5.3 Kanchanalai frame with leaning column 

The Kanachanalai leaned frame as depicted in Fig. 17 was modeled using four elements for all 

three members. The limit load conditions were investigated for both minor axis and major axis 

bending. The full vertical load P was applied first, then the lateral load H was applied in increments 

up to its maximum value. The results from analyzing the frame with the proposed material model 

at six different values of P are compared with Kanachanalai’s results. As indicated in Fig. 17, the 

results compare very closely for both minor axis and major axis bending. 

Figure 17: Comparison of proposed model results with Kanchanalai’s leaned frame  

 

6. Conclusions 

This research focused on developing a deeper understanding of the stiffness reduction that occurs 

in W-Shapes with an assumed ECCS residual stress pattern and yielding of the cross-section that 

occurs due to uniaxial bending and axial loading conditions. The study included both minor axis 

bending and major axis bending, as well as axial compression and axial tension conditions. A 

detailed model of a W8x31with 2,046 fiber elements and cr = 0.3 was used to develop three-

dimensional m-p- surface plots for each condition. The tension condition surface was similar to 

the compression condition only for major axis bending. For minor axis bending, the shape of the 

surface was very different between the tension and compression conditions. The m and p 

conditions around the perimeter of the surfaces were studied in detail and analytical expressions 

were given for each of the loading conditions at the limit of  = 1 and  = 0. The equations for the 

extent of  = 1 were found to be dependent only on the location of the maximum residual stresses  
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and not on the actual distribution of stresses throughout the flanges and web. The equations for      

 = 0 are not empirical approximations, but instead they rely upon the actual dimensions of the    

W-shape. 

 

The m-p- surface plots were used as a basis to develop a nonlinear material model for practical 

use. The shape of the surfaces between  = 1 and  = 0 were found to be dependent on the assumed 

residual stress pattern. Therefore for this reason, and for consistency with the assumed linear 

variation in stiffness over the length of the element, a linear variation in reduced stiffness over the 

surface was used for the material model between the initial yield and fully plastic conditions. The 

material model was used as normalized tangent modulus expressions in MASTAN2, and it was 

found to provide results that were in close agreement with published results for the El-Zanaty and 

Kanachanalai benchmark frames. The material model is based on reasoning that is consistent with 

what is known about the effects of the residual stresses in W-shapes. It provides a straightforward 

and relatively easy to use material model when conducting a nonlinear analysis of planar steel 

frames with compact W-shapes. Although the paper used a W8x31with cr = 0.3, the material model 

can accommodate any W-shape and assumed maximum value of residual stress. 
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