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Abstract 

In this paper a new method, the constrained finite element method is applied for the modal 

decomposition of thin-walled members. With the help of this method the thin-walled member 

can be enforced to deform in accordance with some predefined criteria. In stability analysis, thus, 

it becomes straightforward to directly study various buckling types, for example flexural 

buckling, flexural-torsional buckling, distortional buckling, etc., as desired by the user. The main 

focus of the paper is on the special feature of the method that modal decomposition can be 

performed for non-uniform members, too, more specifically, for any members built of from 

prismatic segments. The connecting segments can have different cross-sections. Moreover, the 

segments can be constrained into different deformation modes, that is the enforced deformations 

may vary from segment to segment. In the paper the constrained finite element method is briefly 

presented first, then numerical examples are shown where either the cross-section and/or the 

constraining is changing along the member length.  

 

 

1. Introduction 

The complex behavior of thin-walled members can beneficially be characterized as the 

interaction of various simpler phenomena. This is the reason why the deformations of a thin-

walled beam or column member are frequently categorized into simpler, yet practically 

meaningful deformation classes: global (G), distortional (D), local-plate (L), shear (S) and 

transverse extension (T) modes, based on some characteristic features of the deformations. In 

many practical cases it is the G, D and L modes there are most important, other modes, even 

though if they are characterized by smaller displacements, sometimes have crucial importance, 

e.g., in the torsional behavior of hollow sections.  

 

In case of thin-walled members, due to their high slenderness, instability phenomena have 

pronounced importance. In many cases the buckling takes place in a complex form, and the 

decomposition of the complex buckling shape into simpler classes has been found to be useful 

for capacity prediction and appears either implicitly or explicitly in current thin-walled design 

standards, too. For critical load calculation of thin-walled beams or columns the constrained 

finite strip method (cFSM) was proposed as a tool, see Ádány and Schafer (2008) or Ádány and 
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Schafer (2014a,b). It is based on the semi-analytical finite strip method (Cheung 1976, Hancock 

1978), but mechanically defined constraints are applied which can enforce the member to deform 

in accordance with a desired deformation, e.g. to buckle in flexural, lateral-torsional, or 

distortional mode. Another popular method that is able perform modal decomposition is the 

generalized beam theory (GBT), see e.g. Silvestre et al. (2011). Though these methods are useful 

tools, they have limitations. One such limitation is that they cannot properly handle cross-section 

changes. Though there have been various attempts to extend GBT or FSM for members with 

holes, which can be considered as a special type of cross-section change, e.g. Eccher et al. 

(2009), Casafont et al. (2011), Cai and Moen (2015), Casafont et al. (2015), it is fair to say that 

FSM and GBT are developed principally for prismatic members. 

 

Lately a novel decomposition method, the constrained finite element method (cFEM) has been 

proposed, see Ádány (2016a,b,c,d), Ádány et al (2016), Visy and Ádány (2017), Ádány (2017), 

Ádány et al (2017). The new method uses the idea of cFSM, however, the constraining procedure 

is applied for shell finite elements. Since shell finite element method can handle almost any 

practical problem in the realm of thin-walled members, the proposed cFEM can provide a solid 

platform to handle previously unresolved problems, such as the modal decomposition of 

members with cross-section changes, which is in the main focus of the actual paper. 

 

In this paper first the cFEM is briefly summarized, then its application for members with varying 

cross-section is demonstrated by numerical examples. The examples prove the simple 

applicability of cFEM for piece-wise prismatic members, as well as show the potential benefits 

of applying non-uniform constraining along the members length can also be seen.   

 

 

2. cFEM essentials 

 

2.1 Shell finite element for cFEM 

The constrained finite element method (cFEM) is essentially a shell finite element method, in 

which modal decomposition can be performed similarly as in cFSM. First, therefore, finite 

element discretization is necessary, as illustrated in Fig 1.  
 

 
Figure 1: FEM discretization and basic notation 
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Since the constraining procedure that leads to modal decomposition is intended to perform as in 

cFSM, a special shell finite element is necessary. Though unusual in shell finite elements, the 

element of cFEM distinguishes the two perpendicular directions, as illustrated in Fig 1. The two 

in-plane (i.e., u and v) and one out-of-plane (i.e. w) displacement functions are expressed as a 

product of transverse and longitudinal base functions, as follows. 

 

𝑢(𝑥, 𝑦) = 𝑢11𝑁𝑦,1
(1)

𝑁𝑥,1
(2)

+ 𝑢13𝑁𝑦,2
(1)

𝑁𝑥,1
(2)

+ 𝑢21𝑁𝑦,1
(1)

𝑁𝑥,2
(2)

+ 

+𝑢23𝑁𝑦,2
(1)

𝑁𝑥,2
(2)

+ 𝑢31𝑁𝑦,1
(1)

𝑁𝑥,3
(2)

+ 𝑢33𝑁𝑦,2
(1)

𝑁𝑥,3
(2)

 

 

𝑣(𝑥, 𝑦) = 𝑣11𝑁𝑦,1
(1)

𝑁𝑥,1
(3)

+ 𝑣13𝑁𝑦,2
(1)

𝑁𝑥,1
(3)

+ 𝑣31𝑁𝑦,1
(1)

𝑁𝑥,3
(3)

+ 𝑣33𝑁𝑦,2
(1)

𝑁𝑥,3
(3)

+ 

+𝜗𝑧11𝑁𝑦,1
(1)

𝑁𝑥,2
(3)

+ 𝜗𝑧13𝑁𝑦,2
(1)

𝑁𝑥,2
(3)

+ 𝜗𝑧31𝑁𝑦,1
(1)

𝑁𝑥,4
(3)

+ 𝜗𝑧33𝑁𝑦,2
(1)

𝑁𝑥,4
(3)

 

 

𝑤(𝑥, 𝑦) = 𝑤11𝑁𝑦,1
(3)

𝑁𝑥,1
(3)

+ 𝑤13𝑁𝑦,3
(3)

𝑁𝑥,1
(3)

+ 𝑤31𝑁𝑦,1
(3)

𝑁𝑥,3
(3)

+ 𝑤33𝑁𝑦,3
(3)

𝑁𝑥,3
(3)

+ 

+𝜗𝑥11𝑁𝑦,2
(3)

𝑁𝑥,1
(3)

+ 𝜗𝑥13𝑁𝑦,4
(3)

𝑁𝑥,1
(3)

+ 𝜗𝑥31𝑁𝑦,2
(3)

𝑁𝑥,3
(3)

+ 𝜗𝑥33𝑁𝑦,4
(3)

𝑁𝑥,3
(3)

− 

−𝜗𝑦11𝑁𝑦,1
(3)

𝑁𝑥,2
(3)

− 𝜗𝑦13𝑁𝑦,3
(3)

𝑁𝑥,2
(3)

− 𝜗𝑦31𝑁𝑦,1
(3)

𝑁𝑥,4
(3)

− 𝜗𝑦33𝑁𝑦,3
(3)

𝑁𝑥,4
(3)

− 

−𝜗𝑥𝑦11𝑁𝑦,2
(3)

𝑁𝑥,2
(3)

− 𝜗𝑥𝑦13𝑁𝑦,4
(3)

𝑁𝑥,2
(3)

− 𝜗𝑥𝑦31𝑁𝑦,2
(3)

𝑁𝑥,4
(3)

− 𝜗𝑥𝑦33𝑁𝑦,4
(3)

𝑁𝑥,4
(3)

 

 

The elementary base functions are given as: 

 

𝑁𝑥,1
(2)

= 1 −
3𝑥

𝑎
+

2𝑥2

𝑎2
       𝑁𝑥,2

(2)
=

4𝑥

𝑎
−

4𝑥2

𝑎2
      𝑁𝑥,3

(2)
= −

𝑥

𝑎
+

2𝑥2

𝑎2
 

 

𝑁𝑥,1
(3)

= 1 −
3𝑥2

𝑎2
+

2𝑥3

𝑎3
   𝑁𝑥,2

(3)
= 𝑥 −

2𝑥2

𝑎
+

𝑥3

𝑎2
     𝑁𝑥,3

(3)
=

3𝑥2

𝑎2
−

2𝑥3

𝑎3
    𝑁𝑥,4

(3)
= −

𝑥2

𝑎
+

𝑥3

𝑎2
 

 

𝑁𝑦,1
(1)

= 1 −
𝑦

𝑏
      𝑁𝑦,2

(1)
=

𝑦

𝑏
 

 

𝑁𝑦,1
(3)

= 1 −
3𝑦2

𝑏2
+

2𝑦3

𝑏3
     𝑁𝑦,2

(3)
= 𝑦 −

2𝑦2

𝑏
+

𝑦3

𝑏2
     𝑁𝑦,3

(3)
=

3𝑦2

𝑏2
−

2𝑦3

𝑏3
      𝑁𝑦,4

(3)
= −

𝑦2

𝑏
+

𝑦3

𝑏2
 

 

Therefore, the proposed element has 30 DOF: 6 for u, 8 for v. and 16 for w. Each corner node has 

7 DOF (1 for u, 2 for v, and 4 for w), while there are two additional nodes at (x,y)=(a/2,0) and 

(x,y)=(a/2,b) with one DOF per node for the u displacement. The DOF are illustrated in Fig 2.  

 

 
Figure 2: Nodal DOF of the proposed shell finite element 

(1) 

 (2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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2.2 Constraining a shell element 

The constraints that are embedded in cFSM are discussed in detail in Ádány and Schafer 

(2014a,b). It can be observed that the constraints are formulated by setting various displacement 

derivatives to zero. It can also be observed that the criteria are practically independent of the 

longitudinal shape functions, therefore, the same criteria can be used for cFEM, too. It is also 

important that the introduction of the mechanical criteria must lead to simple relationships in 

between the nodal displacement DOF, since this is a necessary condition if the mechanical 

criteria are intended to be exactly satisfied. The derivation of these relationships are given in 

Ádány (2016a), while here illustrated by a sample. As an example, in case of the no-longitudinal-

extension criterion, the criterion is  

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
= 0 

 

Using the assumed shape functions, the criterion can be written as: 

 

𝑑𝑁𝑥,1
(2)

𝑑𝑥
(𝑢11𝑁𝑦,1

(1)
+ 𝑢13𝑁𝑦,2

(1)
) +

𝑑𝑁𝑥,2
(2)

𝑑𝑥
(𝑢21𝑁𝑦,1

(1)
+ 𝑢23𝑁𝑦,2

(1)
) +

𝑑𝑁𝑥,3
(2)

𝑑𝑥
(𝑢31𝑁𝑦,1

(1)
+ 𝑢33𝑁𝑦,2

(1)
) = 0 

 

Considering Eqs (4)-(7), it is easy to conclude that the actual strain function is linear both in x 

and y. Therefore, the above expression can be written in the form: 

 

𝐶11𝑥𝑦 + 𝐶10𝑥 + 𝐶01𝑦 + 𝐶00 = 0 

 

with the C coefficients as follows: 

 

𝐶11 = −4(𝑢11 − 𝑢13 − 2𝑢21 + 2𝑢23 + 𝑢31 − 𝑢33)/𝑏/𝑎2
 

𝐶10 = 4(𝑢11 − 2𝑢21 + 𝑢31)/𝑎2 

𝐶01 = (3𝑢11 − 3𝑢13 − 4𝑢21 + 4𝑢23 + 𝑢31 − 𝑢33)/𝑏/𝑎 

𝐶00 = −(3𝑢11 − 4𝑢21 + 𝑢31)/𝑎 

 

The longitudinal strain is zero for any x-y if (and only if) all the C coefficients are zero. This is 

satisfied only if 

𝑢11 = 𝑢21 = 𝑢31      and     𝑢13 = 𝑢23 = 𝑢33 

 

Thus, the no-longitudinal-strain criterion is expressed by the simple relationship in between the 

nodal degrees of freedom of the proposed shell element. All the other criteria can similarly be 

handled, see Ádány (2016a).  

 

2.3 Constraining a band 

In cFSM, if the constraints are applied, specific deformation modes are achieved. These special 

modes are essentially independent of the member length, which, in other words, means that the 

deformation modes can be characterized by the deformations of the cross-sections. That is why 

these special deformation modes are frequently referred as to cross-section modes. Since the 

constraining of cFSM and cFEM are essentially identical, the same cross-section modes can be 

achieved in cFEM as in cFSM.  

(8) 

(9) 

(10) 

(11) 

 (12) 
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The constraint matrices for a single shell element can be formed on the basis of the relationships 

between the various nodal degrees of freedom (as illustrated above). Once the elementary 

constraint matrices are defined, they can be assembled into a global constraint matrix for 

multiple elements. One way to do this is first to compile constraint matrix for one band of finite 

elements (where ‘band’ is given by Fig. 1), which leads to mode-specific deformation spaces for 

one band. Since these spaces are multi-dimensional, the base functions can be defined in multiple 

(in fact, infinite) ways. A practically useful and easy-to-understand way of defining the base 

function system for a specific deformation mode for one band is to take the cross-section modes 

(identical to the cross-section modes of cFSM), and then to add longitudinal displacement 

distribution with having unit ‘displacements’ and unit ‘displacement-derivatives’ at the end 

sections of the band.  

 

As an example, if the mechanical constraints of the global bending mode (as formulated in 

Ádány and Schafer, 2014a,b) are applied for a band of finite elements, it leads to an 8-

dimensional deformation space. Obviously, this space can be subdivided into a 4-dimensional 

minor-axis bending space, and a 4-dimensional major-axis bending space. In case of the minor-

axis space the cross-section mode is characterized by rigid-body translation (along the major 

axis) and/or rigid-body rotation of the cross-section (around the minor axis). Thus, a possible 

way to create the base system is to set unit translation or rotation at one end of the band, while 

keeping zero translation and rotation elsewhere. The so-constructed base system for the minor-

axis global bending space is demonstrated in Fig 3, by using the coordinate system and global 

displacements as shown in Fig 1. The base system for the major-axis global bending space can 

be constructed in the same way, illustrated in Fig 4. (It is important to underline here that in Figs 

3-6 one single band of finite elements is shown, the length of which is a. The grid is used solely 

to make clearer how the deformed shape looks like.) 

 

It is to observe that rigid-body rotation of a cross-section is associated with a linear warping 

distribution over the cross-section, therefore ‘rotation’ can also be interpreted as a specific 

‘warping distribution’. This approach can readily be applied to construct base system for global 

torsion (see Fig 5) or distortional mode space (see Fig 6), where the characteristic transverse 

cross-section displacements and characteristic warping distributions are set to ‘unit’ and ‘zero’ 

values at the end sections.  

 

    
minor-axis bending minor-axis bending minor-axis bending minor-axis bending 

V=1 at X=0 V=1 at X=a V’=1 at X=0 V’=1 at X=a 

Figure 3: Base system for global minor-axis bending space of a band 
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major-axis bending major-axis bending major-axis bending major-axis bending 

W=1 at X=0 W=1 at X=a W’=1 at X=0 W’=1 at X=a 

Figure 4: Base system for global major-axis bending space of a band 

 

 

    
torsion torsion torsion torsion 

cs_displ=1 at X=0 cs_displ=1 at X=a warping=1 at X=0 warping=1 at X=a 

Figure 5: Base system for global torsion space of a band 

 

 

    
symmetric D symmetric D symmetric D symmetric D 

cs_displ=1 at X=0 cs_displ=1 at X=a warping=1 at X=0 warping=1 at X=a 

Figure 6: Symmetric distortional modes of a band of C section 
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2.4 Constraining a member 

Since the member discretization is necessarily highly regular, and since constraining is 

performed from band by band, there is no any difficulty to place bands one after the other to 

form the member. In doing so, there is no any restriction with regard to cross-section shape or 

constraining, that is bands with different cross-sections and/or bands with different constraints 

can readily be connected. The only requirement is that the member should reasonably be 

modelled by rectangular shell finite elements. 

 

2.5 Constrained buckling analysis  

If FEM is applied to solve linear buckling problems (to get critical loads and buckling shapes), 

we need to construct first the local elastic and geometric stiffness matrices, by considering the 

2D generalized Hooke’s law (for the elastic stiffness matrix) and by considering the second-

order strain terms (for the geometric stiffness matrix). The stiffness matrices can be determined 

analytically. The derivation of the element stiffness matrices is discussed in Visy and Ádány 

(2016). From the local stiffness matrices the member’s (global) stiffness matrices (elastic and 

geometric, Ke and Kg) can be compiled, by transformation to global coordinates and assembly.  

 

Once the global stiffness matrices are established, linear buckling problem needs the solution of 

the following generalized eigen-value problem: 

 

𝐊𝐞𝚽 − 𝚲𝐊𝐠𝚽 = 𝟎 

with 

𝚲 = diag < λ1 λ2 λ3 … λ𝑛𝐷𝑂𝐹 >         and    𝚽 = [𝛟𝟏 𝛟𝟐 𝛟𝟑 … 𝛟𝒏𝑫𝑶𝑭] 
 

where λ𝑖  is the critical load multiplier and 𝛟𝒊  is the associated buckling shape, and nDOF 

denotes the number of degrees of freedom. 

 

If model decomposition is to be performed, first the base system must be defined, as illustrated 

previously. The base system is to be summarized in the R constraint matrix, the column vectors 

of the matrix being the modal base vectors of those sub-fields that are intended to be considered. 

With the help of the constraint matrix the FEM displacement field d (including the eigen-

buckling mode 𝛟) may be constrained to any modal dM deformation space via 

 

𝐝 = 𝐑𝐌𝐝𝐌 

 

where RM is a constraint matrix, which is the matrix representation of the constraining criteria, 

and ‘M’ might be G, D, L, S or T, or, in fact, ‘M’ might mean any combination of base vectors 

from any spaces. When constrained buckling analysis is performed, Eq (15) should be 

substituted into Eq (14), which leads to 

 

𝐑𝐌
T𝐊𝐞𝐑𝐌𝚽𝐌 − 𝚲𝐑𝐌

T𝐊𝐠𝐑𝐌𝚽𝐌 = 𝟎 

 

which is another generalized eigen-value problem, given in the reduced M modal deformation 

space. 

(13) 

(14) 

(15) 

(16) 
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3. Demonstrative examples 

 

3.1 Example 1 

Example 1 is about the buckling of a simple compressed member. The member has a square 

hollow cross-section, and is assumed to be connected by welded gusset plates and bolts at both 

member ends. The cross-section dimension is 100×100 mm (mid-line dimensions), the plate 

thickness is 2 mm, the length is 1300 mm. The gusset plate is 140 mm wide and 10 mm thick, 

centrally positioned w.r.t. the SHS section, and goes 200 mm beyond the end of the SHS 

member. The material of both the SHS member and the gusset plates is regular steel, with 

E=210 000 MPa, =0.3 and G=80 769 MPa.  

 

Two bolts are assumed at both gusset plates, centrally positioned, 60 and 140 mm distance from 

the end of the SHS member. The bolts provide restraints. It is assumed that the gusset plates are 

fully restrained against lateral movement (i.e. perpendicularly to the plane of the plate) at the bolt 

positions, while elastically restrained in the plane of the plate. The elastic restraint is considered 

by a linear spring with assuming various stiffness values from 10 kN/mm to 10
5
 kN/mm. It is 

also assumed that the bolts do not provide rotational restraint for the gusset plate. 

 

The member is loaded by a concentric compression force of 1 kN. The force is transmitted by the 

bolts, assumed to be equally distributed between the two bolts.  

 

First the buckling behavior of the SHS member is analyzed. The member is considered to be 

restrained by the end joints, including the gusset plates and the bolts (represented by springs). 

From modal decomposition point of view, therefore, the deformations of the SHS member are 

constrained into various spaces, while the gusset plates are unconstrained. In this way the 

supports conditions of the SHS member are realistically modelled, still, the modal decomposition 

capability of cFEM can lead to pure global, pure distortional or pure local buckling modes and 

critical forces. Some results are shown in Fig 7 (note, in all the cases first modes). For the given 

member configuration it is obviously the local plate buckling which is governing. Distortional 

buckling is possible, but at a high critical force level (which is typical in case of rectangular 

hollow sections). The global buckling is practically flexural buckling due to the high torsional 

rigidity of hollow sections. Obviously, the global critical force is highly dependent on the 

member length; in the actual case the member is relatively short, therefore the critical values are 

relatively high. Depending on the end joints, the lowest critical force might belong to in-plane 

(i.e., in the plane of the gusset plate) or to out-of-plane flexural buckling. If the bolts are assumed 

to provide highly rigid restraints against the in-plane translation of the gusset plate, the in-plane 

global critical force value is fairly high, however, as soon as smaller rigidity is assumed to be 

provided by the bolts, the in-plane flexural buckling force becomes smaller (while the other pure 

critical forces are practically unaffected by these springs). 

 

In the actual example it is not only the SHS member, but also the gusset plate can buckle. If the 

deformations of the SHS member are totally filtered out (e.g., by allowing only rigid-body 

displacements of the SHS member), while the deformations of the gusset plates are allowed 

constrained or unconstrained, then the buckling behavior of the gusset plates can directly be 

analyzed. Fig 8 shows two cases: local-plate buckling is shown on the left, while pure flexural 

buckling on the right (note, in both cases first modes are shown). For the actual configuration the 
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flexural-type buckling might take place only at a rather high force level, but the plate-like 

buckling is associated with a critical force level comparable to that of the SHS member itself. 

 

 

  
Fcr = 245.2 kN Fcr = 4509.0 kN 

pure L ( unconstrained) pure D 

  
Fcr = 1612.7 kN Fcr = 5297.8 kN 

pure G, out-of-plane pure G, in-plane, spring 10
5
 kN/mm  

  
Fcr = 4167.8 kN Fcr = 1438.2 kN 

pure G, in-plane, spring 10
3
 kN/mm pure G, in-plane, spring 10 kN/mm  

Figure 7: Example 1, pure G, D and L buckling of the SHS member 
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Fcr = 338.7 kN Fcr = 3369.2 kN 

plate buckling  (pure L  unconstrained) flexural buckling (pure G) 

Figure 8: Example 1, buckling of the gusset plate 

 

 

3.2 Example 2 

Example 2 is discussing the buckling behavior of a lipped channel member, which is 

strengthened by plates connecting the two flange lips at discrete intervals. A possible model of 

the strengthened segment is a rectangular hollow section, thus, the member to be analyzed here 

consisted of lipped channel and RHS segments placed one after the other. 

 

The dimensions of the considered lipped channel sections are as follows: web depth is 150 mm, 

flange width is 100 mm, lip length is 15 mm, thickness is 2 mm, and member length is 1200 mm. 

The material is regular steel, with E=210 000 MPa, =0.3 and G=80 769 MPa.  

 

Strengthening plates are applied, the thickness of which is equal to that of the lipped channel 

(i.e., 2 mm), while the width is 40 mm. The material is regular steel. The number of 

strengthening plates varies, but the plates are always evenly distributed along the member length.  

The member is supported in a globally and locally hinged way at its end cross-sections. 

Concentric compression forces are applied at the member ends, uniformly distributed over the 

end cross-sections.  

 

Critical loads are calculated by applying various constraints to the member. Table 1 summarizes 

the calculated critical loads, while Figs 9-11 show some buckled shapes.  

 

If the deformations are constrained into the L space, see first row of Fig 9 and the last column of 

Table 1, the strengthening plates have negligible effect on the behavior, which is dominated by 

the buckling of the web due to the longitudinal compressive stresses. 

 

In Fig 9 minor-axis flexural buckling samples are also shown, calculated by constraining the 

whole member into G space, or, more specifically, to those sub-space of G space which is 

defined by the minor-axis bending modes. Though the presence of strengthening plates slightly 

increases the critical load value, the behavior is hardly affected. The increased critical load value 

is due to the slightly increased bending stiffness and the slightly modified stress distribution. As 
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the numbers of Table 1 show, the maximum critical force increase is approx. 10 % for this actual 

example, even if a fairly large number of strengthening plates is considered. 

 
Table 1: Example 2, critical loads  

strengthening 

plate number 

minor-axis buckl 

critical load 

flexural-tors buckl 

critical load 

distortional buckl 

critical load 

plate buckling 

critical load 

 N/mm
2
 N/mm

2
 N/mm

2
 N/mm

2
 

0 2142.8 760.4 194.5 175.0 

1 2204.7 809.1 314.2 175.0 

2 2235.6 1767.1 635.2 175.0 

3 2267.7 2967.6 1161.3 175.0 

4 2301.0 4154.7 1920.1 175.0 

5 2335.3 5046.2 2955.8 175.0 

 

 

  
cr = 175.0 N/mm

2
 cr = 175.0 N/mm

2
 

  
cr = 2142.8/mm

2
 cr = 2235.6 N/mm

2
 

Figure 9: Example 2, minor axis flexural buckling and local plate buckling samples 

 

 

Unlike minor-axis flexural buckling or local plate buckling, the distortional buckling and 

flexural-torsional buckling are significantly influenced by the strengthening plates.  Fig 10 shows 

distortional buckling shape samples for various number of strengthening plates, when the whole 

member is constrained into D space. Even though both C and RHS sections have distortional 

modes, they are not compatible, i.e., when a C and RHS segment is connected longitudinally, it 

is not possible to have distortional behavior for both the C and RHS member. Considering that 

the pure distortional critical force of a C section is much lower than that of a RHS of otherwise 

similar dimensions, what happens in this actual example is, hence, that the RHS segments remain 

practically rigid, while the C segments show the classic distortional deformations, see Fig 10. 

From the viewpoint of the lipped channel member, therefore, the application of a strengthening 

plate is more-or-less equivalent with the application of a clamped support. The strengthening 

plates reduce the characteristic length of the buckling waves: the more strengthening plates are 

applied, the smaller the buckling wave length is. Accordingly, the distortional critical values go 

up drastically with the introduction of strengthening plates. 
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cr = 194.5 N/mm

2
 cr = 314.2 N/mm

2
 

  
cr = 635.2 N/mm

2
 cr = 1920.1 N/mm

2
 

Figure 10: Example 2, distortional buckling samples 

 

 

In case of flexural-torsional behavior, the constraining is not evident. Flexural-torsional behavior 

requires (in this example) major-axis flexure and torsion about the longitudinal axis of the 

member. Both these modes are typically categorized as global, more precisely, shear-free global, 

when the cross-sections remain rigid and there is no in-plane (membrane) shear in any plates of 

the member. While major-axis flexure exists for both C and RHS, torsion mode exists only for C, 

since torsion of a closed cross-section requires shear deformations. There is one exception, 

however, when the whole member (or segment) is rotated as a rigid body. When the whole 

member has a closed cross-section, the rigid-body displacement of the member must be 

prevented by the supports, but if the member is consisted of segments with different cross-

sections, then a segment might displace as a rigid body. In this example, therefore, the member is 

constrained as follows: C-shaped segments are constrained into global major-axis bending and 

global torsion space, while closed segments are constrained into global major-axis bending and 

rigid-body torsion space.  

 

 

  

cr = 760.4 N/mm
2
 cr = 809.1 N/mm

2
 

  
cr = 1767.1 N/mm

2
 cr = 4154.7 N/mm

2
 

Figure 11:  Example 2, flexural-torsional buckling samples 
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The resulting critical values are summarized in Table 1, while buckled shapes are shown in 

Fig 11. The general tendency is that: the larger the number of strengthening plates, the larger the 

critical load value is. The increase of critical load value is rather significant.  

 

 

3.3 Example 3 

Example 3 is essentially identical to Example 2. The only difference is that shear deformations 

are allowed. In-plane (membrane) shear deformations are considered for two reasons: (1) in-

plane shear deformations do exist, hence, it is more realistic to consider them, (2) in the actual 

example it might be too optimistic to assume that the strengthening plates are connected to the 

lips in a perfectly rigid way (e.g., if the connection is made by screws, some flexibility of the 

connection cannot be avoided).  

 

Since the effect of strengthening plates is almost negligible in case of minor-axis flexural 

buckling and local plate buckling, only distortional and flexural-torsional behavior will be 

discussed here. In order to study the importance of the shear rigidity of the strengthening plates, 

3 material models are considered for the strengthening plates: (1) isotropic material, (2) 

orthotropic material with shear modulus 1/10
th

 of that of the isotropic material, and (3) (2) 

orthotropic material with shear modulus 1/1000
th

 of that of the isotropic material (i.e., material 

with an almost negligible shear rigidity). 

 

In case of distortional buckling, the deformations are constrained into the union of D and S 

spaces, considering primary and secondary S spaces, too. Note, primary S space is built up from 

shear bending spaces, shear torsion space, and shear distortion space, see Ádány (2013), Ádány 

and Schafer (2014a,b). The calculated critical loads (i.e., lowest values) are summarized in Table 

2, where the corresponding values from Example 2 are also repeated to make the comparison 

easier. Some buckled shapes are presented in Fig 12 (first row). As both the numerical values 

and buckled shapes suggest, the closed segments do not mean any more a clamped support for 

the C segments, consequently, the member is more flexible and the critical values are 

considerably smaller w.r.t. the ones in Example 2. The reduction of the critical load (compared to 

those of Example 2) is dependent on the parameters, but for the actual example it is in between 

5% and 30% for the cases with strengthening plate(s). Though the consideration of shear 

deformations, especially together with reduced shear rigidity, has considerable effect on the 

behavior and on the critical load values, still, the strengthening plates are very effective in 

increasing the distortional buckling load. 

 

 
Table 2: Example 3, critical loads for distortional buckling 

strengthening 

plate number 

no shear with shear 

G=E/2/(1+) 

with shear 

G=E/2/(1+)/10 

with shear 

G=E/2/(1+)/1000 

 N/mm
2
 N/mm

2
 N/mm

2
 N/mm

2
 

0 194.5 192.9 192.9 192.9 

1 314.2 297.6 286.6 279.4 

2 635.2 572.3 546.6 528.6 

3 1161.3 986.3 934.2 901.3 

4 1920.1 1529.9 1436.8 1381.3 

5 2955.8 2201.3 2062.9 1987.4 
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cr = 286.6 N/mm

2
 cr = 1436.8 N/mm

2
 

  

cr = 742.6 N/mm
2
 cr = 2315.6 N/mm

2
 

Figure 12: Example 3, buckling with shear samples, G=E/2/(1+)/10 
 

 

Table 3 summarizes the critical load values for flexural-torsional buckling, while some buckled 

shapes are shown in Fig 12. It is evident that the consideration of sear deformations makes the 

member considerably more flexible. The reduction of the flexural-torsional critical load 

(compared to those of Example 2) is dependent on the parameters, but for the actual example it is 

in between 8% and 46% for the cases with strengthening plate(s). Though the consideration of 

shear deformations, especially together with reduced shear rigidity, has considerable effect on 

the behavior and on the critical load values, still, the strengthening plates are very effective in 

increasing the flexural-torsional buckling load. 

  

 
Table 3: Example 3, critical loads for FT buckling 

strengthening 

plate number 

no shear with shear 

G=E/2/(1+) 

with shear 

G=E/2/(1+)/10 

with shear 

G=E/2/(1+)/1000 

 N/mm
2
 N/mm

2
 N/mm

2
 N/mm

2
 

0 760.4 737.4 737.4 737.4 

1 809.1 743.7 742.6 742.3 

2 1767.1 1284.7 1216.4 1192.9 

3 2967.6 1918.3 1768.3 1715.9 

4 4154.7 2544.1 2315.6 2234.2 

5 5046.2 3117.1 2836.7 2735.4 

 

 

 

4. Summary 

In this paper the constrained finite element method has been applied to solve buckling problems 

of members with non-uniform cross-sections. Through the numerical examples the modal 

decomposition capability of the method has been demonstrated for piece-wise prismatic thin-

walled members. cFEM makes it possible to build a single realistic shell model (e.g., including 

realistic support conditions), while still to utilize modal decomposition. The results also show the 

potential benefit of applying varying constraints along the member length: this allows calculating 
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the critical load value directly to a certain type of buckling in a certain part of the member. Thus, 

unlike in a regular shell finite element buckling analysis, it is not necessary to check hundreds of 

mostly interacted buckling modes to find a desired mode, but this desired mode can be found in 

way which is more direct, more objective, and more efficient. 
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