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Abstract 

I-girder systems with relatively long spans and narrow widths are susceptible to a system 

buckling failure mode that is relatively insensitive to the spacing between cross frame or 

diaphragm braces. This global buckling mode is of particular concern during deck placement and 

can compromise the safety and/or constructability of steel bridge systems. This paper presents 

computational studies on the nonlinear behavior of a variety of steel I-girder systems. A number 

of geometric factors affecting the nonlinear buckling behavior of I-girder systems such as the 

shape and distribution of the imperfection along the length as well as the girder curvature were 

investigated. The process of cross frame installation was simulated to investigate the impact of 

the installation process of the braces on the resulting behavior. The results demonstrate that the 

susceptibility of the system mode of buckling to 2
nd

 order amplification is significantly reduced 

compared to the “critical-shape imperfection”. The initial girder imperfection was significantly 

altered by fit-up of cross frames and the likely imperfection pattern afterwards. The FEA results 

demonstrate that the “critical shape” imperfection that has been used for stability bracing of cross 

frame systems may not be likely to occur in practice. The results of this study provide insight 

into adequate limits on second-order displacement amplification of I-girder systems under 

transverse non-composite loading.  

 

1. Introduction 

I-Girder systems that have relatively long spans and a narrow width are susceptible to a failure 

mode involving the lateral-torsional movement of the girder system as a structural unit. The 

failure mode is referred to as either global lateral buckling or system buckling and is analogous 

to the lateral-torsional buckling mode (LTB) of individual girders which occurs between the 

intermediate bracing. However, the system mode of buckling of the girder system has a buckling 

mode shape usually consisting of a half-sine curve along the span length between the bridge 

supports and is relatively insensitive to the spacing between intermediate cross frames or 

diaphragms.  

 

The critical stage for the system mode of buckling usually occurs during the deck placement 

where the steel girder system must support the entire loading before the concrete deck has cured.  

Although historically not considered by design specifications, this mode of structural failure has 
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increasingly drawn attention due to bridge failures over recent decades such as the collapse of 

the Marcy Pedestrian Bridge during concrete deck placement (Yura and Widianto 2005). Yura et 

al. (2008) outlined the results of analytical and numerical studies of simply-supported twin I-

girder systems and developed a simplified expression for the elastic global buckling resistance of 

the simply-supported twin I-girder system under non-composite loading: 

 

 

 
(1) 

 

This expression reveals that the resistance of the girder systems to the global lateral buckling 

primarily results from the warping stiffness of the girder system. The moment resistance Mg 

calculated by Eq. (1) represents the total capacity of the girder system and should be compared 

with the sum of the maximum girder moments across the width of the system. As with many 

global instabilities, the system buckling mode does not occur in a sudden manner as described by 

a mathematical bifurcation, but rather, is usually preceded by excessive second-order 

amplification of lateral-torsional displacements. A number of closely-spaced 2- and 3-girder 

systems have experienced problems during deck pours, severely compromising the safety and 

constructability of bridge systems. Nevertheless, the elastic critical buckling load given by Eq. 

(1) serves as a theoretical upper limit and an important indicator of the structural susceptibility to 

the second order global displacement amplification (Sanchez and White 2012). The AASHTO 

specifications (2015) included Eq. (1), along with a 50% limitation for the sum of the moments 

to mitigate excessive second order amplifications. 

 
Figure 1. Force vs Lateral Displacement Curves for Different Shapes (Han and Helwig 2016) 

 

In an earlier study (Han and Helwig 2016), parametric finite element analyses were performed 

extending the study of the elastic global buckling capacity from simply-supported I-girder 

systems to continuous I-girder systems. Nonlinear buckling analyses were carried out to 

investigate the impact of the cross-sectional shape of imperfection on the susceptibility of an 

imperfect simply-supported twin I-girder system to the second-order displacement amplification 

as shown in Fig.1. The “critical-shape” of the imperfection was the same as reported in Wang 
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and Helwig (2005) and consists of a straight bottom flange with a lateral sweep of the top flange. 

However, in recent studies, the likelihood of such an imperfection to occur in practice is 

somewhat questionable. Although this imperfection is a viable shape of the steel girder without 

intermediate braces, cross frames are fabricated with a very specific geometry. The erectors 

depend on the cross frames to help control the geometry and often must pull the girders into 

place using chains or drift pins as the cross frames are fit into place. Obviously, the cross frames 

will play an important role in the final geometry of the erected steel girder system and it is 

therefore important to consider this final geometry when evaluating the girder behavior from the 

perspective of the system buckling mode during placement of the concrete bridge deck.  

Therefore, the likely girder imperfection pattern after cross-frame installation needs further 

study, which is one of the goals of the study outlined in this paper.   

 

In addition, although Eq. (1) provides a good solution for prismatic, doubly-symmetric girder 

systems that are simply supported, most steel girder systems have greater geometric 

complexities.  Many girder systems are non-prismatic and are continuous over multiple supports. 

In addition, some of the girders have mild degrees of horizontal curvature, which will 

significantly affect the behavior of the system. Therefore, an in-depth study of the nonlinear 

buckling behavior of such systems is prudent. This paper outlines computational studies 

consisting of:  

 

1) A simulation of the cross frame installation process for girder systems with a variety of 

initial imperfection distributions to provide insight into how the initial girder imperfection 

is altered by the fit-up of cross frames and the likely imperfection distribution of the fully 

erected steel girder system;  

2) Investigations of the geometric factors that affect the nonlinear buckling behavior of I-

girder systems such as cross-sectional shape of imperfection, distribution of imperfection 

along the length, and girder curvature; and,  

3) Developing proper limits on second-order displacement amplification of I-girder 

systems as a function of the geometry of the system. 

 

2. Finite Element Model 

Three-dimensional FE Analyses were performed utilizing ANSYS Ver. 14.5 (2015) for this 

study to investigate the non-linear buckling behavior of narrow I-girder systems. The material 

model of the steel was assumed linear elastic, with the Young’s Modulus E = 29,000 ksi and 

Poisson's ratio ν = 0.3.  
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Figure 2. FE Model of a Two-span Twin I-girder System and Buckled Shape 

 

The steel girders were modelled using 8-node shell elements (SHELL281) for the flange and web 

plates as well as transverse stiffeners. The shell elements possess three translational and three 

rotational degrees of freedom at each node. This element has quadratic displacement shape 

functions, which are suited to model either straight or horizontally-curved girder geometries. A 

finite-element model of a two-span continuous I-girder system and the buckled shape in the 

system mode is depicted in Fig. 2. 

 

A standard prismatic cross section was used for all analyses as illustrated in Fig. 3(a). It is 

comprised by two 14 in. × 1.5 in. flanges and a 56 in. × 0.625 in. web plate, resulting in a flange-

to-depth ratio of ¼, which is representative of the geometries often used in bridge design practice 

(Stith 2010). As shown in Fig. 3(b), each flange was modeled with an element on either side of 

the web and four elements through the depth of the web plate.  

 

 
Figure 3. (a) Standard Cross Section (b) Tension-only Cross Frame 
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Despite the fact that most cross frame types consist of either X-type (2 diagonals) or K-type 

cross frames, the single diagonal “tension-only” Z-type cross frame was used for the finite-

element model, as shown illustrated in Fig. 3(b). This cross frame was selected for simplicity and 

the layout of the cross-frame does not have any impact on the global buckling mode. Although a 

recent research study (Battistini et al. 2016) indicates the stiffness reduction caused by the 

eccentric connection of the single angles, it is not necessary for this model since truss elements 

with no eccentricity were used in the model.  The cross frame was modeled using the properties 

of L4×4×1/2 steel angles with a sectional area of 3.75 in
2
. The spacing between the cross frames 

was 20 ft. for all analyses. This cross frame configuration ensures that the individual girders 

were adequately braced in the trial elastic analyses. The steel angles that comprise the cross 

frames were modeled using the 3D space truss element LINK180. The braces share the 

coincident nodes with shell element at the girder and cross frame interfaces. The girder cross 

sections were free to warp at the supports. These assumptions are consistent with previous 

research studies of steel girder buckling (Helwig 1994; Quadrato 2010; Battistini et al. 2016). 

 

3. Cross-frame Installation Simulation 

The previous study (Han and Helwig 2016) that investigated the critical shape of imperfection of 

a simply-supported twin girder system found the worst-case to occur when the bottom flange is 

perfectly straight and the top flange has a lateral sweep of L/1000, where L is the span length.  

This shape is consistent with the findings of Wang and Helwig (2005) that studied the critical 

shape imperfection for torsional bracing provided by cross frames.  However, this critical shape 

assumes that the cross frames will “fit” into the structure allowing the bottom flange to stay 

straight while the top flange has a lateral sweep.  In reality, cross frames are fabricated with a 

very controlled geometry in which the two diagonals are essentially the same length, as are the 

top struts.  In general, the only discrepancy in the cross frame geometry from the desired 

geometry are the “girder drops” which represent the desired girder cambers as well as other 

limitations the specific bridge geometry that may occur during erection (bridge support skew, 

horizontal curvature, etc.). As a result, although the girders will possess a specific imperfection 

within common fabrication tolerances, the cross frame geometry will often be very close to a 

“perfect fit”.  The erector will actually depend on the cross frames to assist in maintaining the 

bridge geometry.   

 

One of the goals of the study discussed in this paper was to determine the behavior of the girders 

as cross frames are installed into an imperfect girder system. The cross frames were then built to 

fit the imperfect girders geometrically to maintain the critical cross-sectional shape of 

imperfection. Because cross frames are usually fabricated in a rectangular shape in practice and 

their ability to resist in-plane distortion is typically far greater than the torsional rigidity of a 

girder, the resulting geometry will likely be much different than the “critical shape”. During 

cross frame installation, the girders will usually be forced into place using a combination of 

chains, drift pins, and other erection equipment.  A simulation of the cross frames installation 

process for a simply-supported twin I-girder system during the process of girder system erection 

was carried out to investigate the impact of cross frame fit-up on the initial girder imperfections 

and the likely cross-sectional shape of imperfection after the installation. 
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Figure 4. Plan View of Twin I-girder Sequence of Cross Frame Fit-up 

 

As depicted in Fig. 4, a load-deflection analysis was performed on a simply-supported twin 

girder system that spanned 120 ft. with a girder spacing of 7 ft. It has a standard girder section 

and a single wave imperfection distribution along the length with a maximum value Δ0 = L/1000 

= 1.44 in. at mid-span.  
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Figure 5. Different Cross-sectional Shapes Considered 

 

As illustrated in Fig. 5, four cross-sectional shapes labeled S1-S4, which include S1 - “pure 

sweep”, S2 - “Partial Critical Shape”, S3 - “Critical-Shape”, and S4 - “Asymmetric Critical 

Shape” types, were considered in the analyses. The simulation of the cross frame installation 

process was modeled in 4 steps as illustrated in Fig. 6. 

 

Step 1: The twin girders with geometric imperfections were built and two end cross frames 

(Number 1 and 7) were attached in the girders directly because the imperfection is zero at 

the supports.  

Step 2: The two girders were pulled straight by applying displacement loads at the location 

where a cross frame was to be installed.  

Step 3: The cross frame was attached to the girders with the “perfect” geometry established 

in Step 2.   

Step 4: The previously-applied displacement restraints were removed at this location after 

the cross frame fit-up and thereby the girder is released. The girder system was then 

allowed to displace to the position of equilibrium between the “imperfect girder” and 

“perfect cross frame”. 

 

Steps 2 through 4 were then repeated for each subsequent cross frame until the full erection 

process was simulated.   
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Figure 6. Load Steps of Cross Frame Fit-up Simulation 

 

For the analysis discussed in this example, the cross-frame fit-up process progressed for cross 

frames 2 to 6 (Figure 4). The parameters for cross-sectional shapes of imperfection at mid-span 

after the installation were compared with the initial values as provided inError! Reference 

source not found. Table 1. It is evident that lateral displacement values for top and bottom 

flanges of both girders had converged after the cross frame installation for all four cross-

sectional shapes. A reasonable explanation would assume that the cross-sectional imperfection of 

an individual girder might be decomposed into a lateral and a rotational component. The cross 

frame fit-up tended to diminish the rotational components at each location while the lateral 

components of the two girders approach to a median value due to displacement compatibility. 

Focusing on Shape S3, which has been identified as the “critical shape” that tends to result in the 

largest second order amplification, the initial and final imperfection before and after the 

installation of the cross frames are markedly different.  The initial imperfection prior to 

installation of the cross frames had a lateral sweep of 1.44” (L/1000) at the top flange with a 

straight bottom flange. After installation of all of the cross frames both flanges had nearly the 

same lateral sweep with a value near L/2000 which is 0.72”.  The resulting imperfection is very 

close to a “pure sweep”.  As a result, the critical shape imperfection for the system buckling 

mode should more likely be the case of a “pure sweep” of L/1000, which is the S1 imperfection. 

As a result, in the remainder of this paper, only the “pure sweep” type cross-sectional shape S1 is 

considered for the non-linear analyses, since the three other imperfection shapes produced 

smaller imperfections in the fully erected girder system.   
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Table 1. Girder flange displacements before and after the cross frame installation 

  S1 S2 S3 S4 

  Δtop (in.) Δbot (in.) Δtop (in.) Δbot (in.) Δtop (in.) Δbot (in.) Δtop (in.) Δbot (in.) 

Girder 1 
Before 1.44 1.44 1.44 0.72 1.44 0.00 -1.44 0.00 

After 1.44 1.44 1.10 1.06 0.75 0.69 0.00 0.00 

Girder 2 
Before 1.44 1.44 1.44 0.72 1.44 0.00 1.44 0.00 

After 1.44 1.44 1.10 1.06 0.75 0.69 0.00 0.00 

Note: Δtop = Lateral displacement of top flange; Δbot = Lateral displacement of bottom flange 
 

4. Critical distribution of imperfection  

The non-linear buckling analyses discussed so far have focused on the behavior of simply-

supported systems. For continuous systems with two spans or more, the girder imperfection 

within one span also will likely affect the nonlinear bucking behavior of the neighboring spans. 

The critical distribution of imperfection for continuous systems that leads to the largest second-

order lateral-torsional displacement requires further understanding.  

 

 
Figure 7. Distributions of Imperfection Considered 

 

To investigate this effect, nonlinear load-deflection analyses were performed on a two span 

continuous twin I-girder system equally spanned by 140 ft. and spaced 7 ft. apart with standard 

girder section. Given the findings from the previous section, a “pure sweep” shape imperfection 

was assigned to both girders with a single wave distribution and a maximum value Δ0 = L/1000 = 

1.68 in. at mid-span consistent for any individual spans where girder imperfections are 

considered. As depicted in Fig. 7, three cases labeled D1 to D3 that account for different 

combinations of imperfection distributions with varying lateral directions in each span were 

analyzed.  

 

For Case D1, the imperfections were only imposed on one span while the other span keeps 

straight. For Case D2, girder imperfections were applied to both spans with same lateral 

direction, whereas the lateral direction of girder imperfection alternated in two spans for Case 

D3, forming a zigzagging distribution pattern along the length. 
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Figure 8. Effect of Distribution of Imperfection on Displacement Amplification 

 

Fig. 8 presents a curve of normalized load versus maximum lateral displacement which is 

examined at mid-span for all three cases. The loads are normalized by the elastic buckling loads 

while the lateral displacement is normalized by the maximum initial imperfection Δ0. It can be 

observed that the most critical shape is Case D3 in which the lateral directions of imperfection 

distribution alternated among neighboring spans forming a zigzagging pattern. The reason for 

this critical imperfection distribution can be explained by the resemblance to the buckled shape 

of the continuous girder system as depicted in Fig. 2. This is consistent with many studies on 

instabilities in which eigenvalue buckling solutions are used for “seed” imperfections.  At 70% 

of the elastic buckling loads, the normalized lateral displacement for the critical Case D3 is only 

0.67 (1.13 in.). 

 

 

 
(2) 

 

 

As a result of the previous study and this study, the AASHTO (2015) limitation to 50% of the 

critical load (Eq.(1)) appears overly-conservative. A twofold moment gradient value Cbs is 

proposed in addition to Eq. (1). The constant value of 1.1 for simply-supported systems and 2.0 

for continuous girder systems are recommended. The sum of girder moment across the width is 

limited to 70% of the Eq. (2) to avoid excessive second-order amplification. 

 

5. Curved girder systems 

 

Given the results from the previous analyses, the initial girder imperfection distribution pattern 

has a profound impact on the nonlinear buckling behavior of the I-girder system. Concerns have 

been consequently raised over curved girder systems, whose curved geometries are of similar 

character to the straight girder systems with single wave imperfection distributions.  Although 

curved girder systems do not tend to experience “bifurcations” many engineers still use the 

buckling solutions as an indicator limiting the capacity of the system – despite the fact that these 
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solutions represent an upper limit on the likely capacity.  For the curved girder geometry, the 

curve offsets, as denoted by “h” in Fig. 9, is akin to the maximum imperfection value Δ0 of the 

straight girders, which will likely translate to very large values with greater girder curvature 

(smaller R). 

 

 
Figure 9. Schematic Diagram of Curved Geometry 

 

To investigate the non-linear displacement behavior of curved girder system, three load-

deflection analyses labeled R1 to R3 were performed on curved two-span continuous twin I-

girder systems as depicted in Fig. 10. The girder systems for all three analyses were equally 

spanned by 140 ft. and spaced at 7 ft. with radius of curvature R varying from 1000 ft., 2000 ft., 

and 3000 ft., resulting in respective curve offsets of 29.4 in., 14.7 in., and 9.8 in. and respective 

L/R ratios 0.14, 0.07, and 0.047. Girders were assumed perfectly curved with no initial 

imperfection assigned. 

 

 
Figure 10. FE Model of Curved Two Span Twin I-Girder System 

 

Fig. 11 contains a graph showing the graphs of load versus lateral displacement which is 

examined at mid-span for all three analyses. The loads are normalized by their elastic buckling 

loads while the lateral displacements are normalized by the value Δ0 = L/1000 = 1.68 in. for the 

sake of comparison with previous analyses though no imperfection is assign for curved systems. 

It is evident that the second-order amplification effect for lateral torsional displacement increases 
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with greater curvature. It should be nevertheless noticed that despite the fact that the 

horizontally-curved girder geometries have considerable “imperfection-like” curve offsets, the 

magnitude of the lateral displacements are not proportional to the offset. At 70% of the elastic 

buckling loads, the normalized lateral displacements are 2.61 (4.38 in.), 1.38 (2.31 in.), 0.93 

(1.56 in.), respectively for curve offset values of 29.4 in., 14.7 in., and 9.8 in. Further analyses of 

this study are ongoing. The authors are examining the curved systems with greater radius of 

curvature. The goal of the parametric studies on horizontally curved girders is to identify a 

degree of curvature that can be used so that 70% of the critical load provided by Eq. (1) can be 

used as a limit. For more curved systems, the specification would require a second order analysis 

to fully understand the behavior.   

 

 
Figure 11. Normalized Load vs Displacement Curves for Curved Systems 

 

 

6. Conclusions 

An earlier study (Han and Helwig 2016) on non-linear buckling behavior of a simply-supported 

twin I-girder system reveals that “twist-dominant” cross-sectional shape is the most critical to the 

second-order amplification of lateral-torsional displacement. In spite of this, the simulation of 

cross frame installation process conducted in this study shows that the fit-up of cross frames 

would alter the initial cross-sectional shape of imperfection. After the installation, the two 

girders will have the same cross-sectional shape which is close to “pure sweep” type regardless 

of the initial cross-sectional shapes of two girders, therefore significantly reducing the possible 

second–order displacement amplification. 

 

For continuous girder systems which have two or more spans, the study shows that the 

distribution of imperfection has a profound effect on their non-linear buckling behavior. The 

most critical distribution of imperfection would have a zigzagging pattern in which the lateral 

directions of girder imperfections alternate in the neighboring spans. The findings of this study 

along with previous research provide insight into the development of proper limits on second-

order displacement amplification of I-girder systems as a function of the geometry of the system.  
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For curved girder systems, despite their geometric resemblance to straight girders with wave 

imperfection distributions of significant magnitude. The lateral displacement amplifications for 

them are not proportional to the imperfection-like arch height of the horizontally-curved girder 

geometry. Nevertheless, the second-order displacement amplification increases with greater span 

curvature. The load-deflection analyses indicate that for slightly-curved ((L/R<0.05) systems, the 

girders can be loaded up to 70% of elastic buckling capacities without causing excessive second-

order displacement amplification. For girder systems with greater curvature, further nonlinear 

load-deflection analysis is necessary. 

 

Notation 

The following symbols are used in this paper: 

 

Cbs = moment gradient for system mode buckling of I-girder systems 

E = modulus of elasticity 

h = arch height of the curved girder geometry 

Ix = moment of inertia about the strong axis of a single girder 

Iy = moment of inertia about the weak axis of a single girder 

L = span lenghth 

Mg = total moment resistance of the girder system 

R = radius of curvature 

s = girder spacing 
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