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Abstract 
Thin (slender) steel plates possess strength beyond the elastic buckling load which is commonly 
referred to as the postbuckling capacity.  Semi-empirical equations based on experimental tests 
of plate girders have been used for decades to predict the ultimate postbuckling strength. 
However, several recent studies have shown that the current models for predicting the ultimate 
shear buckling capacity of thin plates are based on some incorrect assumptions of their 
mechanical behavior. As a result, the current design equations provide an approximate (albeit 
generally conservative) estimate of capacity based upon a range of test data parameters upon 
which they are founded. This paper explores the fundamental behavior of thin plates under pure 
shear.  Such a fundamental examination of shear postbuckling behavior in thin plates is 
important because it will enable design procedures that can optimize a plate’s shear strength and 
load-deformation performance for a wider range of loading and design parameters. Using finite 
element analyses (which are validated against available results of previous tests), outputs such as 
von Mises stresses, principal stresses, and principal stress directions are examined on both 
surfaces of a buckled plate acting in pure shear. The internal bending, shear, and axial stresses in 
the plate’s finite elements are also evaluated. In this study, these evaluations are performed for a 
simply-supported plate with aspect ratio equal to 1.0 and slenderness equal to 134 - future work 
will examine a wider range of plate parameters. Results show that localized bending in the plates 
due to the out-of-plane postbuckling deformations appear to be a significant factor in the ultimate 
shear buckling capacity of the plate. Also, the compressive stresses continue to increase beyond 
elastic buckling in some regions of the plate, contrary to current design assumptions. Overall, 
this study provides new insights into the mechanics of shear postbuckling behavior of thin plates 
that can be exploited for improved design modifications compared to designs currently allowed 
in current practice. 
 
1. Introduction 
A significant portion of the bridge inventory in the US is supported with deep steel beams (e.g. 
plate girders) which have thin webs.  The design of these elements is often controlled by the 
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shear strength of that web plate.  Web plates that elastically buckle due to shear load still possess 
a significant amount of postbuckling shear strength.  Postbuckling capacity is utilized in the 
design of many bridge girders due to high web slenderness, which is necessitated by large girder 
depths and weight savings.  This postbuckling behavior has attracted the attention of researchers 
and engineers since the 1880s.  Since 1931, more than a dozen proposals have been developed to 
explain and predict the postbuckling shear strength of thin webs in plate girders; however, the 
true mechanics and postbuckling behavior is still not fully understood. Previous publications 
have provided extensive discussions on the various proposed plate shear buckling models 
throughout the literature (Ziemian, 2010; White & Barker, 2008; Yoo & Lee, 2006), and 
essentially all the models are based on tension field action.  Tension field theory posits that the 
main source of this postbuckling shear strength is the development of tensile stresses in a defined 
diagonal field, which is mobilized after the onset of elastic shear buckling.  Recent research, 
however, has shown that the fundamental assumptions upon which tension field action is based 
do not represent the full mechanical response of web-shear buckling (Yoo & Lee, 2006, 
Glassman & Garlock, 2016).   
 
This paper explores the fundamental behavior of thin plates under pure shear. Using validated 
finite element analyses, outputs such as von Mises stresses, principal stresses, and principal 
stress directions are examined on both surfaces of the buckled plate. The internal bending, shear, 
and axial stresses in the plate elements are also evaluated. These evaluations are performed for a 
plate with aspect ratio equal to 1.0 and slenderness equal to 134. Future work will examine a 
wider range of plate parameters and potential design modifications. 
 
2. Finite Element Model 
The plate used for this study is based on standard plans for typical steel girder highway bridges 
specified by the Federal Highway Administration (FHWA).  The 27.4-meter (90-foot) span 
design was used as a prototype, where the depth, D, equals 1473 mm, and the web thickness, tw, 
equals 11 mm.  In practice, many of these girders are designed with transverse stiffener spacing, 
a, greater than D; however, in this study, for simplification, we assume a = D.  Future work will 
examine other stiffener spacings.  The steel material is assumed to have a nominal yield stress of 
345 MPa (50 ksi), which is common for many existing girders. 
 
The finite element (FE) model was developed using the software Abaqus and meshed using S4 
shell elements (doubly curved, general-purpose, finite membrane strains).  Simply supported 
boundary conditions in the out-of-plane direction were used on all four sides.  Fig. 1 shows that 
the in-plane translation is restrained along one edge, which provides the reaction to produce pure 
shear in conjunction with the load P applied along the opposite edge.  Mesh convergence studies 
were conducted using an eigenvalue extraction analysis. The final mesh selected is shown in Fig. 
1, and equal to 37 x 37 elements (approximately 40 mm square each).  The finite element 
solution for the elastic shear buckling load, Vcr, equaled 1532 kN.  This value has less than 1% 
error compared to a theoretical solution of 1526 kN, which is obtained from Eq. (1): 
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In Eqn. (1), τcr, is the elastic shear buckling stress, E is Young’s modulus, ν is Poisson’s ratio, D 
is the depth of the plate, tw is the plate thickness, and k is the elastic shear buckling coefficient. 
The value of k is a function of the span-to-depth ratio (a/D) of the plate and the boundary 
conditions supplied to its edges (Timoshenko & Gere, 1961). For a plate with a/D = 1 and simply 
supported on all four edges, k equals 9.34. D/tw is the slenderness ratio and indicates how 
susceptible the plate girder is to web shear buckling. The elastic critical shear buckling load, Vcr, 
is calculated by multiplying Eq. (1) by D·tw.   
 
The modeling approach described above was further validated with experimental tests for 
various a/D and D/tw ratios. Glassman and Garlock (2016) show that in comparison with 16 
experiments, the FE models have very good correlation to the ultimate shear buckling capacity, 
Vu, of the plates: the FE models predicted Vu values to within about 10% of the published 
experimental values with one exception where the flange-to-web thickness ratio (tf/tw) was quite 
large compared to other tests. 

 
Figure 1: Boundary conditions of FE model (left), and mesh density in first mode buckled shape (right)  

 
3. Results  
3.1 Sign Conventions and Definitions 
To properly interpret the finite elements results, the definitions and sign conventions of the 
stresses, moments, and rotations are clarified in the following list based on the Abaqus software: 
• Tensile stresses are positive and compressive stresses are negative. 
• SP:1 and SP:5 refer to the integrations points on the ‘top’ and ‘bottom’ surface of the plate, 

respectively (see Fig. 2). 
• The element stresses, σ1, σ2, and σ12 are defined in Fig. 3a in the positive direction.  
• Maximum principal stresses (σmax) are the maximum positive value, thus typically 

corresponding to maximum tensile stresses.  If no tension is present, the value will be 
negative, thus corresponding to the minimum compressive value. See Fig. 3b. 

• Minimum principal stresses (σmin) are the maximum negative value, thus typically 
corresponding to maximum compressive stresses.  If no compression is present, the value 
will be positive, thus corresponding to the minimum tensile value. See Fig. 3b. 

• Von Mises stresses are defined for the principal plane stress condition defined by Eq. (1), 
where σy is the yield stress. Fig. 4 plots this yield surface. 

 σ y
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Figure 2: Integration points and section points on the finite element 

 

 
Figure 3: (a) Positive stresses on element; (b) Principal stresses and principal stress direction (with Abaqus sign 

convention in parenthesis). 
 

 
Figure 4: Von Mises yield surface 

 
3.2 Ultimate Buckling Load, Vu, and Deformation 
Fig. 5 illustrates the final deformed shape at the ultimate (postbuckling) shear load, Vu, which for 
this case study equaled 2634 kN.  It can be seen that the out of plane deformations (U3) are 
represented in three half-wavelengths from Point B to Point D.  The surface being shown in Fig. 
5 represents the SP:5 face (see Fig. 2).  Therefore, along the ‘tension field’ (from Point A to 
Point C, where the red color represents maximum positive U3), it will be shown that the SP:5 
stresses will be in tension and SP:1 stresses will be in compression due to the significant bending 
in the plate.  Conversely, in Fig. 5 where the deep blue shows large negative U3, SP:5 stresses 
will be in compression and SP:1 stresses will be in tension.  A thorough analysis of the stresses 
will be discussed in sections to follow, where it will be shown that the plate bending due to this 
deformation dominates the response when Vu is reached. 
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Figure 5: Deformed shape at Vu, with out of plane deformations, U3, shown in meters.  The face shown (front face) 

corresponds to SP:5; the back face not shown corresponds to SP:1 (see Fig. 2). 
 
3.3 Plate Behavior Just After Elastic Buckling 
Before the plate reached elastic shear buckling, Vcr, the FE results were consistent with the 
theoretical behavior of a plate under pure shear: the angle of the principal stress, θp, was 45o and 
the principal stresses in tension and compression (σmax and σmin, respectively) were equal and 
opposite to one another and also equal to the shear stress (V/(D·tw), where V is the applied load).  
Note that Abaqus does not output θp - this value was derived using σ1, σ2, and σ12 and the well-
established equation based on Mohr’s circle.  In this section, the state of the plate when the shear 
V equals 1.15·Vcr (i.e. near the beginning of postbuckling behavior) is examined to enable a 
comparison to ultimate postbuckling behavior when Vu is reached. 
 
• Principal Stress Direction, θp:  Fig. 6 plots the θp contours for V/Vu = 1.15.  It can be seen 

that this angle has not changed much from the pre-buckling state (before elastic buckling the 
angle was 45 degrees).  

• Principal Stresses:  Fig. 7 plots the σmin and σmax contours for V/Vu = 1.15.  None of these 
stresses have reached yield and σmin (compressive) is of comparable magnitude to σmax 
(tension).  At an elastic buckling load of 1532 KN, the elastic buckling stress theoretically 
equals 95 MPa.  At V = 1.15 Vcr, Fig. 7 shows that both σmin and σmax have generally 
increased beyond 95 MPa.   

• von Mises Stresses:  Fig. 8 plots the von Mises stress contours for V/Vu = 1.15.  The stresses 
are shown to be well below yield (= 345 MPa). 

 
Though the contour patterns are similar, Figs. 6 through 8 all show some variation in the 
magnitudes of plotted results between the SP:1 and SP:5 faces of the plate.  More significant 
levels of variation are shown for the principal and von Mises stresses in Figs. 7 and 8.  These 
results highlight the emergence of bending moment through the thickness of the postbuckled 
plate in addition to in-plane stress.  These moments are caused by second order bending due to 
compression of the buckled plate.  Each of the three half wavelengths of this prototype’s buckled 
shape experiences “bulging” as the top right and bottom left corners of the plate (see Fig. 5) are 
pushed closer together by the pure shear force. 
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Figure 6: Principal Stress Direction, θp, for V/Vu = 1.15 in degrees.  Left SP:1, Right SP:5 (See Figs. 2, 3). 

 
 

 

 
Figure 7: Principal Stresses, σmin (top) and σmax (bottom) for V/Vu = 1.15 (MPa).  Left SP:1, Right SP:5 (See Figs. 2, 

3). 
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Figure 8: von Mises Stresses for V/Vu = 1.15 (MPa).  Left SP:1, Right SP:5 (See Figs. 2, 3, 4). 

 
3.3 Plate Behavior at the Ultimate Shear Buckling Load, Vu 
In this section, we examine the stress state of the plate when the shear V equals the ultimate shear 
buckling load, Vu, which has a value of 2634 kN.   
 
• Principal Stress Direction, θp:  Fig. 9 plots the θp contours for V = Vu.  It can be seen that this 

angle is no longer 45 degrees - it ranges between 20 and 50 degrees.  Also, the values are 
now significantly different on each face (SP:1 and SP:5) since the principal stresses are 
different on each face.  θp is shown to be largely dependent on the out-of-plane postbuckled 
deformation. 
 

• Principal Stresses:  Fig. 10 plots the σmin and σmax contours for V = Vu.  σmax has reached 
yield (as shown by the bold lines), and σmin is close to yield.  The magnitudes and signs 
(positive, negative) are related to the deformation (and bending) of the plate at Vu as seen in 
Fig. 5.  The σmax contours for SP:5 in Fig. 10 show a distinct band of yielding in the tension 
field direction, which generally supports the assumptions in the current state of practice.  
However, the corresponding plot for SP:1 shows much lower maximum stress (actually 
remaining negative) in this same region due to bending.  The maximum stresses at yield for 
SP:1 are instead located along two smaller bands that are parallel to the tension field 
direction but located about half the perpendicularly distance from the tension diagonal to 
each corner.  The σmin contour for SP:1 shows near-yield compressive stresses (~300 MPa) 
along the tension field direction. These stresses represent the compression face of bending in 
the buckled half-wavelength along the diagonal.  The emergence of these large compressive 
stresses on the SP:1 face indicates that the large tensile stresses in the tension field on the 
SP:5 face are cause by a combination of in-plane stress and second-order bending. 
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Figure 9: Principal Stress Direction, θp, for V = Vu in degrees.  Left SP:1, Right SP:5 (See Figs. 2, 3). 

 

 
 

 
Figure 10: Principal Stresses, σmin (top) and σmax (bottom) for V = Vu (MPa).  Left SP:1, Right SP:5 (See Figs. 2, 3). 
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• von Mises Stresses:  Fig. 11 plots the von Mises stress contours for V = Vu.  The stresses on 
almost all of the plate surface have reached yield (at 345 MPa, again shown with bold lines) 
on both faces.  At ultimate shear, the plate experiences a saturation of von Mises yielding due 
to the combination of internal forces that develops in its buckled shape.  Fig. 11 shows that 
face SP:5 experiences a more widespread saturation of von Mises yielding than SP:1, which 
has a distinct band of yielding along the tension field diagonal.  Note that bending-induced 
compression stress has caused von Mises yielding in the tension field diagonal on face SP:1 
rather than in-plane tensile stresses.  This deviates from the current state of practice which 
assumes in-plane stress to be the primary contributor to reaching ultimate shear capacity. 

 

 
Figure 11: von Mises Stresses for V = Vu (MPa).  Left SP:1, Right SP:5 (See Figs. 2, 4). 

 
 
3.4 Bending Stresses at the Ultimate Shear Buckling Load, Vu 
The results presented thus far indicate that bending through the thickness of the plate due to 
postbuckling out-of-plane deformations has a large effect on the stress distribution.  In this 
section, the axial stress is separated from the bending stress for both σ1 and σ2 (see Fig. 3).  The 
axial stress is the average of the stress on SP:1 and SP:5.  Assuming that the plane section 
through the plate’s thickness remains plane, the bending stress through that thickness is 
approximated as the stress on SP:1 minus the stress on SP:5, divided by two.  Fig. 12 presents 
the results for both σ1 and σ2.  It is clearly seen that bending stresses dominate.  Bending stress is 
on the order of 2 times larger than axial stress for σ1 and similarly on the order of 10 times larger 
for σ2. These plots clearly show that second-order moment in the postbuckled shape makes a 
significant contribution to the onset of ultimate shear capacity.  
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Figure 12: Axial stresses (left) and bending stresses (right) for V = Vu (MPa). Top figures are for σ1 and bottom are 

for σ2. See Fig. 3. 
 
Fig. 13 provides additional illustration of the bending in the plate.  It plots σmin and σmax for the 
element in the center of the plate on both surfaces SP:1 and SP:2.  These stresses are plotted 
against the analysis increment number until Vu is reached (increment 1693).  By zooming in on 
the first 350 increments of the analysis in Fig. 13, one clearly observes the point of elastic shear 
buckling where SP:1 and SP:5 diverge at increment 313.  This increasing divergence clearly 
indicates the onset of second order bending moment through the thickness of the plate. At Vu, 
SP:1 and SP:5 are significantly different for both σmin and σmax. 
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Figure 13:  σmin (Smin) and σmax (Smax) for the element in the center of the plate on both surfaces SP:1 and SP:5.  
Elastic shear buckling occurs at increment 313, and ultimate shear buckling occurs at increment 1693. 
 
4. Reducing the Compressive Response  
The results presented in Section 3 indicate that compression and second order bending stresses 
(due to large out-of-plane deformations) play an important role in the postbuckling performance 
of this slender plate.  A strategy to reduce compression and out-of-plane deformations would be 
to interrupt the continuity of the compression field (i.e. in the diagonal direction opposite the 
tension field), thereby reducing the severity of postbuckling compression-driven deformation.  
To this end, the plate was modified in two ways: (1) by cutting the compression field corners by 
16% of the depth D (model name = CUT), thus reducing the area by 3%; and (2) by cutting slits 
near the corners along the compression field (model name = SLITS), thus reducing the area by 
1%.  Images of these models and the resulting Vcr and Vu values obtained from finite element 
analysis are shown in Table 1.   Contour plots of the von Mises stress when the plate reaches Vu 
are shown for each case in Fig. 14.  
 
As would be expected, Table 1 shows that interrupting the compression field will delay the onset 
of elastic buckling and increases Vcr by at least 14%.  For the CUT case, Vu is unaffected since 
the cut corners do not deter the development of similar von Mises stress patterns as the FULL 
original plate, as shown in Fig. 14. For the SLITS case, Vu is slightly reduced but still produces 
similar von Mises yield stress saturation at ultimate shear capacity as the other cases.  These 
results suggest that the elastic buckling load could be strategically modified to meet a given 
design objective with relatively minor modification to the plate.  The mechanical impact and 
construction/life-cycle implications of these modifications will be examined in future research by 
the authors. 
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Table 1: Finite element results of modified plates. 

 

FULL
(baseline)

CUT

SLITS

Vcr (KN) Vu (KN)
(ratio to baseline)

1532
(1.0)

2640
(1.0)

1838
(1.20)

2640
(1.0)

1745
(1.14)

2516
(0.95)

 
 

 
Figure 14: von Mises stresses  at Vu for the FULL plate, the CUT plate, and the plate with SLITS (units = Pa). 

 
4. Summary and Conclusions 
Postbuckling behavior of slender webs in steel plate girders has been a mainstay of bridge design 
for several decades on the basis of semi-empirical equations that were originally developed in the 
1960’s.  Though the existing state of practice is generally conservative, the assumption of pure 
in-plane stress in response to shear loads after the web has buckled does not capture the full 
mechanical performance of the thin plate.  New research by the authors has begun to reexamine 
the postbuckling behavior of thin steel plates by considering the combined effects of in-plane 
stress and out-of-plane bending.  This study utilized previously validated finite element models 
to analyze a prototype simply supported plate with an aspect ratio equal to 1.0.  The results of 
these analyses showed that the out-of-plane bulges of the postbuckled plate develop second order 
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moments due to compression along the diagonal opposite the tension field.  Some conclusions 
from this initial study include the following: 
 
• At the ultimate shear buckling load, Vu, the angle of principal stress direction is no longer 45 

degrees - it ranges between 20 and 50 degrees. 
• The stress distribution through the plate thickness was separated into pure planar (i.e. axial) 

and bending stresses.  Bending stresses were found to be significantly higher than the pure 
planar stresses at the ultimate shear buckling load.  These stresses are created by second 
order compression of the plate’s buckled shape (i.e. the buckled half-wavelengths essentially 
create “springs” along the length of the compression field diagonal). 

• At the ultimate shear buckling load, almost the entire plate has reached the von Mises yield 
boundary due to a combination of planar and bending stress.  The contours of von Mises 
yielding show some differences, however, for the opposing faces of the plate. 

• The compression diagonal continues to offer resistance to shear following buckling; again, 
this is mostly due to second order bending of the buckled shape. 

 
Building off this result, the authors examined some simple modifications of the plate which 
would alter the compression-driven postbuckling moment behavior by interrupting the 
compression diagonal.  The results of two cases, with small through-plate cuts removed from the 
compression diagonal, showed (1) an increase of at least 14% in the shear load needed to induce 
buckling (i.e. elastic shear buckling load) and (2) a negligible effect on the ultimate shear 
buckling load.  These results indicate that the onset of elastic buckling can be delayed by 
interrupting the compression field, which may prove useful for designing girder webs. 
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