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Abstract 

Stability analysis of steel structures under elevated temperatures remains a challenging design 

problem because of the uncertainties associated with fire loads, temperature-dependent material 

properties, non-uniform heating of structural members, and large deformational demands on the 

steel frames. The challenge is further aggravated if the stability of the system is also influenced 

by the permanent lateral deformation due to the earthquake preceding the thermal loads. The 

present study discusses a framework for assessing the stability of steel columns under inter-story 

drift imposed by the earthquake followed by fire loads. A nonlinear finite element formulation is 

proposed to analyze the stability of steel columns subjected to permanent lateral deformations 

caused by earthquake and fire loads. The finite element formulation takes into account the effects 

of longitudinal temperature variation in first- and second-order stiffness matrices of a beam-

column element, residual stresses, and initial geometric imperfections. The results indicate an 

excellent agreement with available strength design equations of steel columns at ambient and 

elevated temperatures. A set of equations is then proposed to predict the critical buckling stress 

in steel columns under fire and fire following an earthquake. The proposed equations can be 

implemented to investigate the performance of steel structures under fire and fire following 

earthquake considering stability as engineering demand parameter.  

 

 

1. Introduction 

Strong earthquakes can cause fatalities and severe damages to civil infrastructures by shaking, 

landslide, liquefaction, tsunami, fire, and release of hazardous materials. In the steel framed 

buildings, the earthquake-induced damages to gravity and lateral load resisting systems can 

significantly reduce post-earthquake fire resistance of the structure. This is particularly the case 

because current seismic design codes allow buildings to sustain a certain level of damages 

caused by strong earthquakes. Therefore, properly designed buildings for seismic actions can be 

significantly vulnerable under post-earthquake fire loads. Because columns are the most 

important members in resisting gravity loads in a building system, their stability under fire has 

been the focus of several previous studies (Franssen et al. 1998, Takagi and Deierlein 2007, 

Agarwal and Varma 2011). The stability of steel moment resisting frames under fire (Memari 
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and Mahmoud 2014) and the combined loads of earthquake and fire (Memari et al. 2014) has 

also been evaluated in recent studies. These studies highlighted the importance of improving 

understanding of the behavior of steel columns subjected to non-uniform longitudinal 

temperature and inter-story drift ratio (IDR).  

 

Takagi and Deierlein (2007) evaluated the AISC Specification (AISC 360-05 2005) and 

Eurocode 3 (CEN 2005) provisions for the design of isolated W-shape steel columns under 

elevated temperatures that were uniform along the length of the column. The numerical model of 

columns was developed using shell elements to account for local buckling. The outcome of this 

study was the design equation for W-shape steel columns under a uniform longitudinal 

temperature that currently appears in Appendix 4, Equation A-4-2, of AISC Specification (AISC 

360-10 2010).  

 

Another important study to note is the work by Agarwal and Varma (2011) who utilized 

comprehensive finite element analyses to assess the effects of slenderness and rotational 

restraints on the buckling response of W-shaped steel columns subjected to uniform elevated 

temperatures. Shell elements were also used to create the numerical models because of their 

ability in capturing local buckling and inelastic flexural-torsional buckling. The study resulted in 

the new design equations for simply supported columns with uniform longitudinal temperature 

distribution considering an equivalent bilinear material behavior. The effects of rotational 

constraints, provided by continuity with cooler columns above and below the column of interest 

in a structural frame, were also included in the proposed design equations. 

 

Extending the work by Takagi and Deierlein (2007) and Agarwal and Varma (2011), in this 

paper, a nonlinear finite element formulation is introduced to perform the stability analysis of W-

shape steel columns subjected to non-uniform longitudinal temperature profiles in the absence or 

presence of inter-story drift, which represent residual drift following an earthquake. This 

formulation takes into account the residual stress distribution in steel hot-rolled W-shape 

sections, initial geometric imperfections in the steel columns, and temperature-dependent 

material properties. The results of the finite element analysis (FEA) are verified against 

comparison with previous studies. Afterward, a set of equations is proposed for predicting the 

critical buckling stress in steel columns subjected to the cascading hazard of earthquake, 

represented by lateral drift, and fire, represented with non-uniform longitudinal temperature 

distributions.  

 

2. Modeling and Analysis Methodology 

 

2.1 Finite Element Formulation 

A finite element formulation is utilized to predict the onset of instability of steel columns 

subjected to an inter-story drift level followed by non-uniform longitudinal temperature 

distribution. Euler-Bernoulli beam theory is employed assuming a constant temperature profile 

throughout the cross section of the element. This finite element formulation is created based on 

studies conducted by Carol and Murcia (1989) and Memari and Attarnejad (2010). In addition, 

the details of the formulation have been discussed in Memari et al. (2016) and Memari (2016). In 

this formulation, a finite element is assumed to have a non-uniform longitudinal temperature 

distribution with Ti and Tj as the nodal temperatures at either end as shown in Fig. 1.  
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Figure 1: (a) A finite element with linear variation of modulus of elasticity along its length and three applied 

external nodal forces, (b) the deformed state of the finite element with all nodal deformation variables, and (c) the 

deformed state of the finite element with all nodal force variables 

 

Since the modulus of elasticity of structural steel is a function of temperature, a linear variation 

of temperature-dependent modulus of elasticity, E(x), is assumed along the length of the finite 

element per Eq. 1, in which  is calculated according to Eq. 2. To model the entire column, a 

sufficient number of finite elements can be utilized such that the linear variation of elastic 

modulus along each element results in capturing of the nonlinear variation along the entire length 

of the column. 
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In this approach, three sets of equations are considered in developing first- and second-order 

stiffness matrices: kinematic equation (Eq. 3), 2nd-order equilibrium (Eq. 4), and constitutive 

law (Eq. 5). In accordance with the deformed state of the finite element shown in Fig. 1(b), the 

kinematic equation relates the relative displacements and rotations to the field of axial strain at 

the neutral axis of the section, , and curvature, . The cross-sectional axial force, N(X), and 

bending moment, M(x), is determined based on applied nodal axial force, Ni, and nodal 

moments, Mi and Mj, using equilibrium equations per Eq. 4 including the second-order (P-) 

effects, shown in Fig. 1(c). The cross-sectional strain and curvature can be also related to the 

cross-sectional forces and moments per Eq. 5 under the assumption that the element responds 

elastically to the nodal forces. It is noted that the compact form of Eq.’s 3-5 is shown in the 

brackets. In Eq. 3, u demonstrates a vector of relative displacements and rotations,  is a 

transformation matrix that converts strains to displacements and rotations, and  is called vector 

of strains. In Eq. 5, w2(x) is the out-of-straightness curvature of the finite element that causes the 

P- effects. R(x) is a vector of internal cross-sectional forces developed at the inclusion of 2nd-
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order effects, R2(x). The vector f represents the applied nodal forces and moments and  is a 

matrix that correlates the applied nodal forces to those developed internally in the cross-section. 

In Eq. 6, A and I are cross-sectional area and moment of inertia, respectively. ks(x) is called 

cross-sectional stiffness matrix. The remainder of variables was shown in Fig. 1.  
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The longitudinal variation in the modulus of elasticity, caused by the non-uniform temperature 

distribution, is reflected in the cross-sectional stiffness matrix by substituting the Eq. 1 into Eq. 5 

as follows: 
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Eq. 6 clearly indicates that the section stiffness varies along the length of element as a function 

of the elastic modulus. This important feature allows for considering the effects of non-uniform 

longitudinal temperature distribution in developing first- and second-order stiffness matrices. 

These stiffness matrices, necessary for the stability analysis, can be extracted from above-

discussed three sets of kinematic, equilibrium, and material law equations by substituting the 

equilibrium equation (Eq. 4) and constitutive law (Eq. 5) into the kinematic equation (Eq. 3). 

Further details are provided in Memari et al. (2016) and Memari (2016). In summary, the first- 

and second-order stiffness matrices of a beam-column finite element are developed to reflect 

non-uniform temperature variation along the length of the finite elements while a uniform 

temperature distribution is assumed through the cross section. The sources of initial geometric 

imperfections including out-of-straightness and out-of-plumbness are independently considered 

in the geometry of the columns for the nonlinear inelastic analysis. The out-of-straightness is 

modeled by introducing a single sinusoidal curve along the length of the column such that a 
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maximum displacement of 0.001 of column length is located at its mid-height. In addition, an 

initial out-of-plumbness of 0.001 of length of column is assumed at the top end of the column 

and the lateral nodal displacement for the remaining nodes is calculated accordingly.  

 

2.2 Temperature-Dependent Mechanical Properties of Material 

An elastic-perfectly plastic behavior of structural steel is assumed at ambient temperature, 68°F 

(20°C), as shown in Fig. 2(a). At elevated temperatures, a curvilinear material behavior per Fig. 

2(a) is utilized as it has a significant effect on the critical buckling stress of steel columns 

(Takagi and Deierlein 2007, Agarwal and Varma 2011). Therefore, three mechanical properties 

of structural steel are considered in the stability analysis of steel columns exposed to elevated 

temperatures: modulus of elasticity (E), proportional limit (Fp), and yield stress (Fy). 

Temperature-dependent mechanical properties of structural steel are modeled per Eurocode 3 

(CEN 2005), as shown in Fig. 2(a). The variations in E, Fp, and Fy as a function of temperature, 

described by E, p, and y, respectively, for Eurocode 3 (CEN 2005) stress-strain curves are 

shown in Fig. 2(b). It is noted that the temperature-dependent material properties according to 

Eurocode 3 (CEN 2005) inherently captures creep effects.  
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Figure 2: A schematic explanation of material modeling (a) Eurocode 3 (CEN 2005) and (b) variations in modulus 

of elasticity, yield stress, and proportional limit in accordance with Eurocode 3 (CEN 2005) 

 

2.3 Non-uniform Longitudinal Temperature Profiles 

A uniform temperature is assumed across the W-shape steel section in accordance with the AISC 

360-10 (2010) design recommendations. The uniform longitudinal temperature profiles will be 

mainly used for validation analyses; however, non-uniform longitudinal temperature 

distributions are employed to investigate the critical buckling stress of steel columns under either 

single-hazard of fire or multiple-hazard of the earthquake and fire. In the present study, four 

various non-uniform longitudinal temperature profiles are considered in the steel columns as 

shown in Table 1, which summarizes longitudinal reduction of temperature-dependent 

mechanical properties from the cool-end to hot-end of the steel column. The temperature 

intervals were selected such that they capture various rates of longitudinal change in 

temperature-dependent mechanical properties of structural steel.  
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Table 1: Longitudinal variation of mechanical properties of structural steel according to non-uniform temperature 

profiles 

Profile 

Temperature at 

cool-end 

°F (°C) 

Temperature at 

hot-end 

°F (°C) 

Longitudinal relative reduction of mechanical properties 

between cool- and hot-end of steel column  

(%) 

Modulus of elasticity Yield stress Proportional limit 

(1) 68 (20) 572 (300) 20.0 0.0 38.7 

(2) 392 (200) 932 (500) 33.3 22.0 55.4 

(3) 572 (300) 1112 (600) 61.3 53.0 70.6 

(4) 752 (400) 1472 (800) 87.1 89.0 88.1 

 

The pattern of longitudinal temperature distribution is also an important parameter to be 

considered. In this paper, two longitudinal temperature distributions are considered: Parabolic 

and Linear. It is essential to evaluate the critical buckling stress of steel columns with parabolic 

distribution of temperature along the length because the solution of the governing 1-D Partial 

Differential Equation (PDE) for conduction heat transfer shows a parabolic function along the 

length of steel member at time t. However, since the requirements in code provisions to 

determine the parabolic distribution of temperature along the length of the member impose 

difficulties in real world engineering applications, a linear longitudinal distribution of 

temperature is also considered. This is to assess the difference in the results when using the two 

different longitudinal temperature patterns and evaluate the effectiveness of linear distribution on 

the results that might be considered acceptable.  

 

2.4 Nonlinear Inelastic Analysis 

A W1490 section, made from A992 structural steel, is selected for the nonlinear inelastic 

analysis. To determine the critical buckling stress in a simply supported column, the applied 

compressive force at the top of the column is increased incrementally until the onset of buckling 

in the column. Per AISC Specification (AISC 360-10 2010), columns with slenderness ratio, , 

less than 
yF

E714 .  at ambient temperature are vulnerable to inelastic buckling, while columns 

with slenderness greater than 
y

F
E714 .  buckle elastically. Therefore, it is crucial that this 

distinction be captured in the nonlinear finite element analysis. This is performed by defining 

two independent buckling limit states. The onset of compressive yielding at any cross section of 

steel column, based on the temperature-dependent yield stress, is chosen as the limit state for the 

inelastic buckling. The effects of temperature-dependent residual stresses are taken into account 

in the calculation of stress as shown in Fig. 3. A maximum of 10 ksi (~70 MPa) thermally-

induced residual stresses is assumed at ambient temperature. The reduction factor for yield stress 

at elevated temperatures is also employed to reduce the intensity of the residual stresses in the 

cross section. This assumption was made by Takagi and Deierlein (2007). To determine the 

elastic buckling, the lateral stiffness of the column at a given loading increment is compared to 

the initial lateral stiffness of the column, which is calculated based on first increment of loading. 

Initial investigation of the developed formulation shows that the onset of elastic buckling is 

reached when the column loses 96% or more of its initial lateral stiffness.  
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Figure 3: (a) 6 reference points and (b) distribution of residual stresses in W-shape steel section 

 

2.5 Verification of the Formulation 

A set of analyses is performed to verify the finite element formulation in the present study. This 

includes evaluating buckling of a pinned-pinned column at ambient and uniform longitudinal 

elevated temperatures using the W1490 steel section considered previously. Details of the 

column are shown in Fig. 4(a). The material model utilized is shown in Fig. 2 for ambient and 

elevated temperatures. In addition, the effect of out-of-plumbness is neglected in the verification 

analysis since it is not reflected in the AISC Specification (AISC 360-10 2010) for critical 

buckling stress of members under compressive forces. However, initial out-of-straightness is 

considered per AISC Specification (AISC 360-10 2010). 

 

At ambient temperature, the results of the finite element analysis are compared to the column 

buckling stress, Fcr, calculated using equations E3 and E4 of the AISC Specification (AISC 360-

10 2010). As shown in Fig. 4(b), excellent agreement is observed between the critical buckling 

stresses determined by the finite element analysis and that of the AISC Specification (AISC 360-

10 2010) design equation. Verification of the column stability at elevated temperatures is 

conducted by comparing the results of the finite element formulation to those of the column 

buckling equation proposed by Takagi and Deierlein (2007), available in Appendix 4 of AISC 

specifications (AISC 360-10 2010). The comparison is performed at two temperatures: 752°F 

(400°C) and 1472°F (800°C). Excellent agreements are also observed between the results of 

finite element formulation and the equations available in Appendix 4 of the AISC Specification 

(AISC 360-10 2010). 
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Figure 4: (a) Steel column subjected to a uniform longitudinal temperature and critical buckling stress computed 

using AISC Specification (AISC 360-10 2010) and finite element analysis at (b) ambient temperature, (c) 752°F 

(400°C), and (d) 1472°F (800°C) 

 

3. Parametric Study 

Four non-uniform longitudinal temperature profiles are chosen for the parametric study to 

evaluate the effect of the presence or absence of inter-story drift as illustrated in Fig. 5. Fig. 6 

shows the critical buckling stress of a pinned-pinned steel column under various levels of inter-

story drift ratios and the non-uniform longitudinal temperature profiles discussed previously. As 

Fig. 6 shows, columns subjected to IDRs have significantly smaller critical buckling stress than 

those with no IDRs. This indicates that the increase in the inter-story drift causes significant 

reduction in the critical buckling stress of steel columns. This reduction differs from one 

temperature profile to another. In conclusion, permanent residual inter-story drift in the steel 

columns as conclusion of the earthquake can result in significant reduction in buckling capacity 

of the column. 
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Figure 5: (a) Non-uniform parabolic and linear longitudinal temperature profiles, (b) pinned-pinned column with 

various slenderness ratios and no IDR, and (c) pinned-pinned columns subjected to IDR 
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Figure 6: Critical buckling stress in the pinned-pinned steel column at various IDRs and linear non-uniform 

longitudinal temperature profiles 

 

4. Proposed Design Equations 

 

4.1 Critical Buckling Stress in the Absence of IDR 
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In this section, equations are proposed to predict the critical buckling stress of steel columns with 

no IDR subjected to non-uniform longitudinal temperature profiles. The effects of IDR caused by 

the earthquake demands will be discussed in the next section. 

  

The proposed equation has a similar format to the current equation listed in Appendix 4 of the 

AISC Specification (AISC 360-10 2010). Two coefficients, p and q, are incorporated in the 

current design equation per the AISC Specification (AISC 360-10 2010) in order to consider 

longitudinal variation of mechanical properties of structural steel as per Eq. 7. 
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where, Fe(T) is the Euler elastic buckling stress considering non-uniform longitudinal 

temperature distribution and shall be calculated according to Memari and Mahmoud (2016). Two 

coefficients, p and q, can be determined according to Tables 2 and 3, and depend on non-uniform 

longitudinal temperature profiles as listed in Table 1 as well as limit state for the elastic/inelastic 

buckling of steel columns. It is noted that the term Fy(Tmax) corresponds to the yield stress at the 

hot-end of the column. The coefficients, p and q, can be also considered as unity for uniform 

longitudinal temperature profiles to convert Eq. 7 to the current available design equation in 

Appendix 4 of the AISC Specification (AISC 36-10 2010). 

 

Table 2: The p and q coefficients for 
)(

)(

max

max

TF

TE
4.71λ

y

  

Profile 
Longitudinal variation of yield stress 

(%) 
p q 

(1) 0.0 0.90 0.90 

(2) 22.0 1.05 1.50 

(3) 53.0 1.30 1.80 

(4) 89.0 1.30 2.40 

 

Table 3: The p and q coefficients for 
)(

)(

max

max

TF

TE
4.71λ

y

  

Profile 
Longitudinal variation of yield stress 

(%) 
p q 

(1) 0.0 0.90 0.90 

(2) 22.0 0.90 0.90 

(3) 53.0 1.18 1.15 

(4) 89.0 1.20 1.50 

 

As shown in Fig. 7, the proposed equation is in excellent agreement with the results of the FEA. 

A relative error of less than 10% is observed in all cases by comparing the predicted critical 

buckling stresses calculated using the proposed equation and the results of the FEA. The 
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accuracy of the proposed equation for any non-uniform longitudinal temperature profiles in the 

absence of IDR was evaluated in Memari and Mahmoud (2016). 

 

 
Figure 7: Critical buckling stress computed by FEA and proposed equation in absence of IDR 

 

4.2 Critical Buckling Stress in the Presence of IDR 

To consider the effects of permanent lateral deformation in reducing the critical buckling stress 

of steel columns, a reduction factor, , is introduced as shown in Eq. 8 below: 

 

    TΘ.FTF
cr

idr

cr
   (8) 

 

where,  TF
idr

cr
 is the critical buckling stress considering the permanent inter-story drift, , caused 

by the earthquake demands. Fcr(T) is calculated per Eq. 7. This is also determined in accordance 

with the desired limit of column slenderness as follow: 

For 
 

 
maxy

max

TF

TE
4.71λ   
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sλrλn

.emθΘ

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where, m, n, r, and s are determined according to Table 4. 

 
Table 4: Coefficients for Eq. 9 

Profile 
Longitudinal reduction of yield stress 

(%) 
m n r s 

(1) 0.00 1.51410
-2

 0.8257 -3.23710
-2

 2.22010
-4

 

(2) 22.00 1.68610
-2

 0.8280 -3.62010
-2

 2.58410
-4

 

(3) 53.00 2.87010
-2

 0.8191 -5.04610
-2

 3.68210
-4

 

(4) 89.00 4.18910
-2

 0.8076 -4.77710
-2

 2.89710
-4

 

 

For 
 

 
maxy

max

TF

TE
4.71λ   

 

    rλn
.emθΘ


   (10) 

 

where, m, n, and r are determined in accordance with Table 5. 

 
Table 5: Coefficients for Eq. 10 

Profile 
Longitudinal reduction of yield stress 

(%) 
m n r 

(1) 0.00 3.87110
-3

 0.8211 2.96110
-3

 

(2) 22.00 3.89310
-3

 0.8296 3.37410
-3

 

(3) 53.00 4.01410
-3

 0.8307 3.19710
-3

 

(4) 89.00 4.07510
-3

 0.8371 2.84110
-3

 

 

Fig. 8 shows a very good agreement between the proposed equations and the results of the FEA 

for the critical buckling stress of steel columns under the combined lateral demands and thermal 

loads. It is observed that the relative error is not constant for various longitudinal temperature 

profiles and all range of slenderness. In general, there is a relatively larger error for slenderness 

ratios less than 40 (40) with a larger error for slenderness ratios between 20-40 in profiles (1) 

and (2) and a greater error for a slenderness ratio of 10 for profiles (3) and (4). For instance, the 

proposed equations overestimate the critical buckling stress for a slenderness value of 10 in the 

profile (4). In conclusion, the proposed equations can predict the critical buckling stress with 

sufficient accuracy for all range of slenderness. The accuracy of the proposed equations for any 

non-uniform longitudinal temperature profiles in the presence of IDR was assessed in Memari 

and Mahmoud (2016). 



 13 

L-Profile (1) L-Profile (2)

L-Profile (3) L-Profile (4)

 
Figure 8: Critical buckling stress computed by FEA and proposed equations in presence of IDR 

 

5. Conclusions 

In this paper, a nonlinear finite element approach was introduced for assessing the stability of 

steel columns under fire loading as well as the earthquake followed by fire loads. This 

formulation incorporated the effects of residual stresses in W-shape hot-rolled steel sections, 

temperature-dependent mechanical properties of material, non-uniform temperatures along the 

length of the column, and initial geometric imperfections. Four various non-uniform longitudinal 

temperature profiles were considered to allow for assessing the effects of various rates of change 

in temperature-dependent mechanical properties of structural steel including modulus of 

elasticity, yield stress, and proportional limit. 

 

Excellent agreement was observed between results of the finite element approach and available 

strength design equations for steel columns at ambient and uniform longitudinal elevated 

temperatures. The inclusion of inter-story drift ratio resulted in significant reduction in critical 

buckling capacity of steel columns with non-uniform longitudinal temperature profiles. A set of 

design equations was proposed to predict the critical buckling stress of W-shape steel columns 

for the case of non-uniform longitudinal temperature profiles with and without the presence of 

inter-story drift. The proposed equations showed a very good agreement with the results of 

nonlinear finite element analysis (FEA). In the absence of IDR, the comparison between the 

predicted critical buckling stresses calculated using the proposed equation and the results of the 

finite element analysis indicated a relative error of less than 10% in all cases. In the presence of 
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IDR, it seemed that the proposed equations can estimate the critical buckling stress with 

sufficient accuracy for all range of slenderness.  
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