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Abstract 

The present paper studies the response of a 3D steel composite building to progressive collapse 

through the Partial Distributed Damage Method (PDDM). The method can assess the robustness 

of 3D steel and concrete composite structures, considering the introduction of partial damage to 

more than one element in contrast to the dominant Alternate Load Path Method (APM) which 

involves a complete loss of a member. Computational analysis using finite element software 

ABAQUS is performed, in order to account for the instability phenomena and assess the integrity 

of the structure. Considering a damage degree index δj, PDDM predicts lower and more critical 

collapse loads in comparison with APM. 

 

 

1. Introduction 

Progressive collapse is a catastrophic failure, partial or total, that propagates from the localized 

damage caused by an event. Blast loads, terrorist attacks, fire, gas explosions or vehicle collisions 

can be the causes of the initial local failure. The terrorist attack in Murrah Building in Oklahoma 

(1996), the plane collision at the World trade center in New York (2001) and the bombing of the 

Khubar Tower in Saudi Arabia (1996) are hailed as the instigating failures which highlighted the 

need for research in progressive collapse. 

  

US Department of Defense (DoD, 2016) and the General Services Administration (GSA, 2013) 

are the two major documents that provide design recommendations for reducing the potential for 

progressive collapse. Both documents include the Alternate Load Path Method (APM) as an 

analysis method. APM has become widely popular in the field since it is based on the simple 

concept of a key-component removal from the structure and the assessment of the structural 

integrity of the remaining structure. 

 

Research on progressive collapse has been multi-faceted during the last decades. Ettouney et al. 

(2006) and Kwasniewski (2010) applied the APM in two-dimensional frames and in three-
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dimensional structures respectively, in order to assess the response of the buildings under a column 

loss scenario. Adopting the APM, analytical methodologies were applied in Gerasimidis (2014) 

and Pantidis and Gerasimidis (2017) that indicate the collapse modes and the critical collapse loads 

of 2D moment resisting frames for the case of an external column removal and an interior column 

loss, respectively.  

 

Alashker et al. (2011), in a study of composite floor systems and their shear connections, concluded 

that the steel deck provides the most significant contribution and as a result, planar simulations are 

unconservative. Li and El-Tawil (2014), focused on the role of the slab in the robustness of the 

structure in a suite of 3D nonlinear simulations. Pantidis and Gerasimidis (2018) captured the 

collapse mechanisms activated by an interior key-component removal via analytical and numerical 

models of a 3D composite building and denoted failures as either yielding type or stability type. 

 

Agarwal and Varma (2014) evaluated the response of the buildings subjected to fire, while 

Gerasimidis et al. (2017) investigated the post-fire response until the overall collapse. While 

column loss as described in APM can reduce complexity in progressive collapse analyses, failure 

of a member throughout its whole length and the assumption of negligible damage to other 

components is unrealistic and unconservative, as described in Ellingwood (2002). Blast events 

were evaluated in McConnell and Brown (2011) and Mlakar et. al. (1998) concluded that damage 

can be distributed to more than one element and that the complete removal notion utilized in APM 

is unconservative. 

 

Therefore, partial distribution of damage is needed to gain insight in progressive collapse. Partial 

Distributed Damage Method (PDDM) was introduced by Gerasimidis et al. (2013), in which a 

model of a short steel frame with partial column losses predicted no significant instability 

phenomena. Gerasimidis and Sideri (2016) applied PDDM in a 15-story 2D moment resisting 

frame. Through 165 damage scenarios they observed the collapse mechanisms of the building, 

while they identified more critical collapse loads than APM.  

 

The current study implements the Partial Distributed Damage Method in a 9-story 3D steel and 

concrete composite building. Local damage is distributed to adjacent columns in the first floor of 

the structure through damage indices δj. Advanced computational analysis is performed, and loss 

of stability phenomena are captured accurately. Lower buckling loads are predicted in comparison 

with the widely used APM. The advantage of the method is that it constitutes a more realistic 

scenario than a complete member loss and it is able to assess the global robustness of the structure. 

 

2. Partial-distributed damage method (PDDM) description 

The distribution of damage degree in the proposed method is based on the indices δj introduced by 

Kachanov, as shown in Eq. 1: 

 

                                                                    𝛿𝑗 =
𝐴 − 𝐴΄

𝐴
, 0 ≤ 𝛿𝑗 ≤ 1                                                       (1)  

 

where A is the overall area of each element j and Α΄ is the effective resisting area. The method 

relies on the assumption that the introduction of damage to a member leads to a decrease in cross 
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sectional area, and an increase in its effective stress. Effective stress (Eq. 2) and effective area 

(Eq.3) are formulated in terms of δj as follows: 

 

                                                                          𝜎΄ =
𝜎

1 − 𝛿𝑗  
                                                                         (2) 

 

                                                                   {𝐴}΄ =  {𝐴}(1 − 𝛿𝑗)                                                                  (3) 

  

In this study damage is distributed between an interior and a next-to-exterior column. 

 

A set of six damage scenarios are introduced in the first floor of the structure, including five partial 

distributed damage scenarios and 1 complete column removal one.  

The notation depicted in Table 1 is used to describe each damage scenario (DS): 

 
Table 1: Damage Distribution between columns C3 and B3 

Damage Scenario Damage Indices Cross-sectional Area decrease 

DS(1) 
δj

A=1 Complete Loss 

δj
B=0 No Damage 

DS(2) 
δj

A =0.9 10%A 

δj
B=0.1 90%A 

DS(3) 
δj

A =0.8 20%A 

δj
B=0.2 80%A 

DS(4) 
δj

A =0.7 30%A 

δj
B=0.3 70%A 

DS(5) 
δj

A=0.6 40%A 

δj
B=0.4 60%A 

DS(6) 
δj

A =0.5 50%A 

δj
B=0.5 50%A 

 

where δj=1 corresponds to complete column loss (fully damaged element) and δj=0 to a fully intact 

column (no damage). Any other value of δj in the range (0,1) corresponds to partial damage. The 

equivalence of the partial distribution of damage (PDDM) and the complete removal scenarios 

(APM) is established in Eq. 4, which allows for meaningful comparisons between the two 

methods: 

   

                                                                      𝛿𝑗
𝐴  +  𝛿𝑗  𝐵  =  1                                                                  (4)                   

                                                  

3. Progressive collapse capacity and critical loads 

Critical collapse loads are calculated at each damage scenario produced by vertical push-down 

static analysis. As Pantidis and Gerasimidis (2018), Pantidis and Gerasimidis (2017) and 

Gerasimidis (2014) found that the governing collapse mechanism was stability-type failure in the 

lower stories, this work focuses on the distribution of damage in the first floor of the building, 

expecting a stability-related collapse mechanism. For the analysis performed in this paper, the 

expected collapse mechanism is a column buckling failure. However, the method can be account 

for other collapse mechanisms as well. 
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The governing equation used for the prediction of the Collapse Load (CL) at each separate damage 

scenario is: 

 

                                                 𝐶𝐿(𝑘)  =  𝑚𝑎𝑥 {𝐶𝐿𝐼(𝑘), 𝐶𝐿𝐼𝐼(𝑘)}                                                           (5)      

 

where k= 1,2, …,6 and refers to each Damage Scenario, while CLI and CLII corresponds to 

Analysis I and Analysis II as described below:  

 

• Analysis I: A push-down analysis is performed, and first column buckling occurs at a 

collapse load CLI(k).  

• Analysis II: The buckled column is then removed from the structure, and a second push-

down analysis is performed. The remaining elements in the model maintain their initial 

damage state and a collapse load CLII(k) is predicted, when a second column is buckling.  

 

The final collapse load is defined using Eq. 5, as the maximum of the two buckling loads obtained 

from analyses I and II. 

 

Failure propagates to the structure in two possible ways as described below: 

1. Case I: If the applied load that causes the first column buckling CLI(k) is lower than the 

applied load CLII(k) at which second column buckles, the failure propagation is initiated 

in the first analysis and it is progressing in the second. Therefore, CLII(k) identifies the 

ultimate collapse capacity of the structure.  

2. Case II: If the applied load CLI(k) of the first buckled column is higher than the applied 

load CLII(k) of second buckled column, the collapse capacity is governed by the first 

analysis. That means that the second failure occurs immediately after the first buckling 

failure and hence CLI(k) is able to provoke both buckling failures. 

 

4. Modelling and Numerical Application 

 

4.1 Prototype structure description 

The current work adopts the 9-story Boston Pre-Northridge building designed by the Federal 

Emergency Management Agent (FEMA 2000) and used by Foley et al. (2007). The building is a 

5-bay building with each bay spanning 9.144m. Gravity load is applied with identical loads at all 

floors above the column removal. Bolted double angle connections are adopted, and a non-linear 

tension and compression response of each bolt-element is defined according to Shen and Astaneh-

Asl (2000), Liu and Astaneh-Asl (2000) and Thornton (1985). Furthermore, as per Pantidis and 

Gerasimidis (2018), the compression zone is modeled bilinearly with a perfectly plastic branch. In 

tension the capacity drops to zero after the limit state is attained. 

 

4.2 Finite Element approach 

The prototype structure is simulated using the advanced finite element software ABAQUS Simulia 

(2014), as depicted in Fig 2. Beam elements are used for all the beams and columns, with a three-

dimensional beam element with two integration points (B32OS). Warping of open sections is 

considered. Each column is comprised of 10 elements, while each primary girder is comprised of 

18 elements and each secondary beam is comprised of 20. S4 elements are used for modeling the 

slab, which involves a shell element with a four-node integration. The mesh of the slab follows the 
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mesh of the beams so that the nodes between the slab and the beams are merged reflecting 

composite action.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Plan view of the Boston North Pre-Northridge 10-story building. Highlighted columns C3 and B3 in which 

damage is introduced 

 

Typical steel properties are used for the beams and columns, with a modulus of elasticity of 

210GPa, a material yield stress of 345MPa and an ultimate stress of 448MPa at a strain of 18%, 

with isotropic strain hardening. The slab has a typical concrete material with a modulus of elasticity 

of 20GPa and a compressive strength of 20MPa, while Concrete Damaged Plasticity model is used 

for simulating the tension and compression characteristics of the concrete. 2VLI22 steel deck 

contributes to the tensile capacity of the slab, having a bilinear perfectly plastic material branch 

and collaborating with the 6x6-W1.4xW1.4 wire mesh for the increase of the capacity of the slab. 

 

Perimeter moment resisting frames are assumed to behave rigidly, while the interior gravity 

connections are modeled using the CONN3D2 connector element from the ABAQUS library. In 

particular, SLOT and ROTATION options are chosen for the connector element and 

ELASTICITY and FAILURE options are used for describing their axial loading properties. 

 

Full modeling description, design considerations and assumption clarification can be found in 

Pantidis and Gerasimidis (2018). 
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Figure 2: Finite Element simulation in ABAQUS of the 3D steel and concrete composite structure. Damage 

distribution between columns C3 and B3 in the first floor of the building 

 

5. Results and Discussion 

Table 2 shows a full presentation of the collapse loads estimated by the finite element analysis. 

The final collapse capacity of both analyses in each damage scenario is highlighted. 

 
Table 2: Collapse Loads and Ultimate Collapse Capacity at each Damage Scenario 

Damage Scenario  C3 Collapse Load B3 Collapse Load 

DS(1),  

C3 Removal (APM) 

Analysis I - 9.24 kPa 

Analysis II   

DS(2),  

δj
C3=0.9; δj

B3=0.1 

Analysis I 1.44 kPa  

Analysis II - 8.40 kPa 

DS(3),  

δj
C3=0.8; δj

B3=0.2 

Analysis I 2.64 kPa  

Analysis II - 7.30 kPa 

DS(4),  

δj
C3=0.7; δj

B3=0.3 

Analysis I 3.80 kPa  

Analysis II - 6.30 kPa 

DS(5),  

δj
C3=0.6; δj

B3=0.4 

Analysis I 5.00 kPa  

Analysis II - 5.50 kPa 

DS(6),  

δj
C3=0.5; δj

B3=0.5 

Analysis I 6.30 kPa  

Analysis II - 4.60 kPa 
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• DS(1), Full Column Removal Scenario - APM, (δj
C3=1; δj

B3=0): 

The first damage scenario comprises of the full removal of the interior gravity column C3, 

as shown in Fig. 3(a). In this case, the immediate adjacent column B3 has an abrupt, brittle 

horizontal displacement, which displays its inelastic buckling failure. The applied load at 

which buckling is happening is 9.24kPa. A second analysis is not needed in this scenario, 

since the absence of two columns is considered as a state of structural collapse. As a result, 

the collapse load in this damage scenario is CL(1)=9.24kPa. Fig. 3(b) depicts the Von-

Mises stresses throughout the B3 column cross section until the column buckles.  The five 

section integration points across the width of the column are illustrated in the graph. The 

green line represents the stress in the column fiber which is closer to the removal, while 

the blue line depicts the stress in the other outer fiber. The rest stresses lie in between the 

outer fibers. 

 

 
 
                  Figure 3: Complete Column C3 Removal (Alternate Load Path Method). (a) Horizontal Displacement of 

column B3 against applied load. (b) Von-Mises Stresses of the I-cross section points against applied load. The 

column section has non-uniform compressive stresses. 

 

• DS(2), Partial Distributed Damage, (δj
C3=0.9; δj

B3=0.1): 

This damage scenario involves of the partial distribution of damage between C3 and B3 

columns. In particular, 90% of the damage is introduced in C3 column, while 10% of the 

damage is assigned in B3. In the proposed method, that means that the 10% of the cross 

sectional area of C3 and the 90% percent of the cross sectional area of B3 contribute in this 

analysis. In the first analysis, C3 buckling failure is observed at CLI(2)=1.44kPa. At this 

point column C3 reaches its inelastic capacity. In the second analysis, column B3 reaches 

its axial capacity at CLII(2)=8.4kPa.  

 

The final collapse load is calculated using Eq. 5 as CL(2) = max {CLI(2),CLII(2)}=8.4kPa. 

The results of this damage scenario are shown in Fig. 4. It must be mentioned that the 

collapse capacity is decreased by 9% in comparison with the APM column removal 

scenario described previously. This is a first significant finding that illustrates that PDDM 

leads to more critical collapse loads than APM. 
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• DS(3) and DS(4), Partial Distributed Damage, (δj
C3=0.8; δj

B3=0.2 and δj
C3=0.7; δj

B3=0.3): 

In the following 2 damage scenarios, the same tendency is observed in the results. 

Specifically, the first analysis predicts lower collapse loads of C3 column buckling 

(CLI(3)=2.64kPa and CLI(4)=3.8kPa) than the second analysis of B3 column buckling 

failure (CLII(3)=7.3kPa and CLII(4)=6.3kPa).  

 

Therefore the final collapse loads for DS(3) and DS(4), in which the axial capacity is 

reached and the columns cannot withstand any additional axial force, are CL(3)=7.3kPa 

and CL(4)=6.3kPa, respectively. The axial forces in the columns in every damage scenario 

tend to increase linearly until the inelastic buckling occurs. The collapse capacity is 

decreased by 21% in DS(3) and by 32% in DS(4) in comparison with the APM column 

removal scenario. 

 

 
Figure 4: Damage Scenario DS(2), δj

C3=0.9; δj
B3=0.1: (a) Axial Load of Column C3 against collapse load in the first 

analysis, (b) Abrupt Horizontal Displacement of column B3 against collapse load in the second analysis 

 

• DS(5), Partial Distributed Damage, (δj
C3=0.6; δj

B3=0.4): 

This damage scenario results to a CLI(5)=5kPa when column C3 buckles and 

CLII(5)=5.5kPa when column B3 buckles, illustrate the second column buckling almost at 

the same collapse. The collapse capacity at this scenario is CL(5)=5.5kPa and compared to 

the APM of DS(1) it is 41% smaller. 

 

• DS(6), Partial Distributed Damage, (δj
C3=0.5; δj

B3=0.5): 

The cross sectional area assigned in columns C3 and B3 are equal and as a result their 

inelastic capacity is the same. The first analysis displays the C3 column buckling at the 

vertical load of CLI(6)=6.3kPa, while second analysis leads to B3 buckling failure at the 

collapse load of CLII(6)=4.6kPa, as illustrated in Fig. 5. In this case, the second buckling 

failure happens immediately after the first one. The collapse capacity is CL(6)=6.3kPa and 

it is 32% smaller in comparison with the APM of DS(1). 

 



9 
 

 
Figure 5: Damage Scenario DS(6), δj

C3=0.5; δj
B3=0.5: (a) Axial Load of Column C3 against collapse load in the first 

analysis, (b) Abrupt Horizontal Displacement of column B3 against collapse load in the second analysis 

 

The most significant finding of these analyses is that Partial Distributed Damage Method predicts 

lower collapse loads than Alternate Load Path Method. Fig. 6 illustrates the collapse loads of each 

partial distributed damage scenario normalized by the collapse load of the notional element 

removal scenario (APM). The discrepancy between the two methods are highlighted in the graph 

and a high decrease in the collapse load is observed. Hence the collapse capacities predicted by 

the proposed method are considered more critical for progressive collapse analysis. 

 

 
Figure 6: Collapse Loads against Damage Scenarios. Comparison between Partial Distributed Damage Method 

(PDDM) and Alternate Load Path Method (APM). More critical buckling loads are evaluated, and discrepancy 

percentages are pointed in the graph. 
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Another important finding is the correlation of the resulting collapse loads with the progressive 

collapse design load of the building, according to DoD (2016). The vertical Design Load (DL) is: 

 

                                                                 DL =  1.2D +  0.5L                                                                   (6) 

 

where D is the dead gravity load of 4.6kPa and L is the live load of 2.39kPa. The applied design 

load equals 6.71kPa. Based on the results attained by the finite element analysis, it turns out that 

PDDM predicts lower loading resistance than the progressive collapse design loading combination 

from DoD (2016), as depicted in Fig. 7. Although APM would not require any progressive collapse 

design for the specific structure, the results from PDDM show that the capacity is not enough for 

some partial damage scenarios. This raises concerns about the APM. 

 
Figure 7: Progressive collapse capacity predicted by the analysis against damage scenarios (DS). Partial Distributed    

Damage Method displays more critical resistance capability of the structure than the calculated design load. 

 

6. Conclusions 

This work sheds light on the response of steel composite buildings under extreme loading events 

through Partial Distributed Damage Method (PDDM). Different ratios of damage were applied to 

elements of the structure and the buckling loads as well as the overall collapse capacities were 

evaluated. 

 

The two most important findings of the proposed method are: 

1. Lower buckling loads and therefore more critical ultimate collapse capacities are predicted 

by PDDM in comparison to APM. The discrepancy between the methods can be high in 

some cases. For example, DS(5), which introduces 60% of the damage in column C3 and 

the remaining 40% in column B3, demonstrated that PDDM analysis yields a decrease of 

40.5% in collapse load, when compared to total column removal. Hence the APM can 

overpredict the capacity of the structure. 
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2. In some damage ratios, lower collapse capacity is predicted, as compared to the required 

progressive collapse design capacity of the structure. DS(1) which represents the APM has 

a safety factor of 1.38 against the DoD (2016) design load combination. DS(4) and DS(5) 

however have safety factors of 0.94 and 0.82 respectively. 
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