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Abstract 
This paper contains a critical reappraisal of the reliability of local buckling rules based on the 
traditional “Winter curve”. It makes use of a data pool of recently published and own “stub 
column”-type buckling tests, conducted on welded, square box sections, and uses the reliability 
design philosophy and evaluation methods of the Eurocode - EN 1990 as reference. The evaluation 
results show that the current European practice is potentially quite unconservative for the basic 
case studied in this paper; this practice makes use of the Winter curve in conjunction with the 
effective width method for buckling design, and at the same time neglects any partial safety factor  
- meaning that the corresponding safety factor γM, by which nominal strength values are divided, 
is set to 1.0. The paper gives an overview of the available pool of test data, discusses the 
background of this evaluation result in detail and describes possible amendments to the code. 

1. Introduction 
The resistance curve against local buckling used in international design codes is often based on 
the semi-empirical approach proposed by George Winter in 1947, widely known as the “Winter 
curve”. This design curve reproduces the mean reduction values achieved in experiments 
conducted by Winter and other researchers. When applying the safety concept of LRFD-based 
design codes such as the Eurocodes, an additional safety factor is necessary to obtain a defined 
level of failure probability. Currently, this factor is set to 1.0 in the Eurocode for applications in 
building structures, and to 1.1 for bridge applications – values which are often criticized as possibly 
too optimistic. In the proposed paper, the worst-case application of square, welded box sections in 
centric or slightly eccentric loading with hinged edge conditions is considered. In this paper, which 
contains relevant excerpts from the doctoral thesis of the first author (Schillo, 2017), 131 
international stub column tests on welded, squared box sections from steel grades S275 up to S960 
were evaluated with respect to the required partial factor of safety in accordance with European 
building regulations (EN 1990). The evaluation of test results revealed a considerable scatter, and 
showed the currently employed partial factors in European standards to require additional 
prescriptions on fabrication tolerances and on material overstrength to guarantee the required 
failure probability given in EN 1990. In this paper, the individual parameters influencing the 
reliability of the “Winter curve” are separated and assessed. It is furthermore shown that the scatter 
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of thickness has at least as high an influence as the scatter of the yield stress. Proposals are then 
made for the implementation of the findings into design codes.  

2. Local buckling resistance prediction using the effective width method of Eurocode 3 
In the current Eurocode - EN1993-1-5 (2010), the reduction curve to depict local failure and 
calculate the effective width of the remaining load-bearing cross-section for local buckling is based 
on the so-called Winter-curve and is adopted in EC3. It was derived using a semi-empirical 
approach published by George Winter in 1947, with adjusted constants introduced in his paper 
published in 1968. This design curve depicts the buckling reduction values achieved in the 
experiments conducted by Winter and other researchers as an approximated average resistance 
curve. The fact that the so-called Winter curve represents a mean predictor of the buckling 
resistance of slender plates has been the subject of various investigations and has been discussed 
in various references. Figure 1 reproduces a figure from the Beuth commentary to DIN 18800 
(Lindner et al, 1994), which shows older test results plotted over the plate slenderness λ p and 
compares them to the Winter curve. The continuous line equals the Winter curve and the equation 
for the reduction factor 𝜌𝜌: 
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Figure 1: Results of local buckling tests, compared with the Winter resistance curve;  

figure taken from Lindner et al. (1994) 

 
Considering these observations, it is inevitable that - when applying the reliability assessment 
methods prescribed by the Eurocodes (see EN 1990, 2010) - an additional safety factor 𝛾𝛾𝑀𝑀  is 
necessary to obtain the defined, quite low level of non-exceedance probability, which is in the 
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proximity of 1/1000 for resistance values. However, counterintuitively, this factor is set to 1.0 for 
applications in building structures and can thus not cover a lower bound of the experimental results. 
 
In this paper, as stated in the introduction, 131 more recent stub column tests on welded, squared 
box sections fabricated from plates with steel grades S275 up to S960 (nominal yield strength 
values of fy=275 to 960 N/mm²) were evaluated to assess a realistic safety factor 𝛾𝛾𝑀𝑀 in conformity 
with the above-mentioned requirements of EN 1990. The experimental database comprises the 
tests of the research papers found in the list of references. 
 
3. Stub column tests 
In this section, the experiments on welded sections conducted by the first author are described, see 
Schillo (2017). An exemplary representation of the test setup is shown in Figure 2. Special 
attention was paid on the measurement and evaluation of intended and unintended eccentricities. 
While the data collected from previous research claim a concentric loading of the specimens, it 
could be observed during the tests that small eccentricities are inevitable. For the assessment of 
the load prediction, the eccentricity was taken into account, leading to a reduction of scatter in the 
results.  
 

 
Figure 2: Tests at the laboratory of the Chair of Steel Structures at RWTH Aachen; representation of the load 

introduction and the measurement of rotation (through two LVDTs) and strains (through strain gauges) at 
each corner. 
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3.1 Design and fabrication 
The welded sections were provided with matching weld strengths, i.e. the yield strength of the 
seams were similar to the yield strength of the specimens. The specimens were designed so that 
they covered a significant range of slenderness. The length was taken as 3*width + 50 mm, in 
order to avoid global buckling behaviour and allow for a representative residual stress distribution 
in the specimens. After sawing, the specimens were milled flat at the ends, providing for an even 
surface. Welded end plates were avoided in order to introduce no further residual stresses. All the 
plate material was fabricated according to EN 10149-2. 
 
3.2 Test matrix and results 
34 stub column tests were carried out. They covered the steel grades S500 up to S960, and values 
of the relative plate slenderness from 0.64 to 1.55. The denomination of specimens contains the 
steel grade (e.g. 960), the dimensions (e.g. 170-6 means a width of 170 mm and a thickness of 6 
mm) and the sequential number (−4 means the 4th test of this specimen configuration). For each 
configuration (steel grade and slenderness), 4 to 5 tests were conducted, with different 
eccentricities of load introduction. 
The experiments were carried out with intentionally and unintentionally applied eccentricities. It 
was aimed at at least 2 concentrically loaded tests, but the evaluation of strain gauges showed that 
small eccentricities are inevitable. The eccentricity was measured by 2×2 strain gauges at 
opposite faces of the specimens. The values were evaluated at a total load of 10% of the theoretical 
yield load, which was also used as alignment load. At this level, the specimen response is still in 
the elastic range and no significant 2nd order effect exists. An overview of eccentricities and the 
achieved ultimate load is presented in Table 1. The values of the stress ratio ψ=σmin/σmax indicate 
the degree of eccentricity recorded by the strain gauges. 
 

Table 1: Test results 
Specimen 

(Welded, steel 
grade, width, 

thickness) 

 No. 1 No. 2 No. 3 No. 4 No. 5 

W-S500-195-6 ψ [-] 0.92 0.96 0.68 0.95 - 
Fu,exp [kN] 2261 2275 2216 2341 - 

W-S500-250-4 ψ [-] 0.95 1 0.71 0.32 - 
Fu,exp [kN] 1086 1083 1056 902 - 

W-S700-180-4 ψ [-] 0.85 0.99 0.25 1 0.96 
Fu,exp [kN] 2716 2686 2017 - 2785 

W-S700-260-6 ψ [-] 0.96 0.97 0.69 0.33 0.95 
Fu,exp [kN] 2666 2670 2579 2199 2661 

W-S960-120-6 ψ [-] 1 0.98 - 0.74 - 
Fu,exp [kN] 2931 2970 1970 2622 - 

W-S960-170-6 ψ [-] 0.98 0.99 0.92 0.18 - 
Fu,exp [kN] 3382 3362 3447 2241 - 

W-S960-220-6 ψ [-] 0.99 0.96 0.2 0.96 - 
Fu,exp [kN] 3178 3184 2359 3196 - 

W-S960-250-6 ψ [-] 0.96 0.95 0.54 0.27 - 
Fu,exp [kN] - 3289 2867 2526 - 
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4. Evaluation of the experiments  
The following section describes the procedure employed in the evaluation of the experiments 
conducted by the first author, as well as the experiments available from other researchers, and 
shows the results of this evaluation.  
 

4.1 Evaluation procedure for experiments with eccentricity - determination of “ρexp” 
The aim of the procedure described hereafter was obtaining values of ρexp, i.e. the buckling 
reduction factor for plate buckling, from the tests on entire sections. This is particularly relevant 
for eccentrically loaded plates (when a square section is loaded centrically, the plate buckling 
reduction factor can be determined directly and in a straightforward manner). A complete 
compilation of the considered tests can be found in (Schillo, 2017).  
 
In order to assess the local buckling resistance, EC3 - EN 1993-1-5 generally assumes that each 
plate features hinged boundary conditions and thus an elastic buckling factor of k = 4 for 
rectangular plates in uniform compression. However, the consideration of bending on the stub 
column leads to an increased k-value for the overall section, since the plates adjacent to the most 
loaded plate act as a partial, additional clamping. This effect must be taken into account for the 
evaluation of ρexp. For the assessment of the elastic critical load, this value can e.g. be derived by 
using the open source software CUFSM, which uses the Finite-Strip-Method to calculate the 
critical load of a given structure, see e.g. Schafer et al. (2006). With the input of Young’s Modulus 
(210,000 MPa), the cross-section geometry and the load pattern ψ, a load amplification factor is 
given as output, defining the critical load but also the buckling factor k, as we know that  
 
 cr Ekσ = ⋅σ  (2) 
 
where σcr equals the critical stress and σE is the reference, Euler buckling stress. By applying EN 
1993-1-5 in its conservative form, the less loaded plate on the opposite side of an eccentrically 
loaded box section would also be evaluated with k = 4, resulting in a smaller ρ-value than for the 
most loaded plate, if the modified k-value is applied only to the latter. Yet since the latter plate 
will actually buckle first, the load on the opposite plate will be generally lower, which can be taken 
into account by using a modified slenderness: 
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The slenderness itself is determined by 
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Thus, the reduction factor ρECof the most loaded plate is assessed by means of the k-factor derived 
from the Finite Strip Analysis, while the k-values (and subsequently the ρ-values) of the opposite 
and adjacent faces are set in proportional dependency to the first one. The reduction factor ρ (later 
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to be set equal to ρexp) can be calculated using the modified Winter curve (to account for ψ-values 
in individual plates) as found in EN 1993-1-5. We can then calculate: 
 
For the plate in an eccentrically loaded box section opposite of the most loaded one: 
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and for the side plates (where a stress gradient is present): 
 

 
( )( )

( )

2
, ,

2
, ,

0,055 3 /

0,22 /

p psi p psi

psi
p most loaded p most loaded− −

λ − ⋅ +ψ λ
ρ = ρ⋅

λ − λ
 (6) 

 
As the load-carrying capacity of each plate depends on the force distribution, which correlates with 
the reduction factor, an iterative process is needed in order to calculate the reduction factor ρ which 
corresponds to the value ρexp that can be determined from an evaluation of the experimental tests 
with known eccentricity. The following equations has thus been fulfilled: 
 

 ( ),exp , exp/
1

y eff
u eff y eff

eff

f A
F A W

z
⋅

= ⋅ ⋅ ρ = ρ
+

 (7) 

where the effective properties depend on the ρ-values and zeff additionally depends on the load 
eccentricity. 
 
4.2 Illustration of the results 
When the experimental results are compared with the resistance prediction of EN 1993-1-5, the 
representation in Figure 3 is obtained.  
 
The actual slenderness λ p,act is thereby calculated by referring to the the actual dimensions and 
measured yield strength of the experiments.  
 
The figure illustrates that the deviation of the experimental results from the theoretical (Winter 
curve) resistance increases with slenderness, with the theoretical curve tending towards 
increasingly optimistic results. In Wang et al. (2017), this tendency was confirmed also for cold-
formed and hot-rolled hollow sections. 
 
Another observation is the generally somewhat higher resistance recorded in the tests documented 
in Schillo (2017). This may be attributed to the more precise evaluation possibilities, since for 
these experiments more information in terms of intended and unintended eccentricity was available 
and was considered in the evaluation. 
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Figure 3: Results of recent stub column tests on welded box section members,  

compared with the Winter resistance curve 

 
5. Reliability assessment according to EN 1990 
5.1 General description 
The definition and the reliability of load and resistance units is regulated in EN 1990 (2010) for all 
materials (concrete, timber, steel etc.). The aim of this standard is to provide a uniform and 
consistent procedure to allow for the quantification of the reliability of structural design rules 
across structural typologies. As some of the design procedures of Eurocode 3 (EC3) were 
developed well before the introduction of EN 1990, the actual applied safety concept may differ 
and the design might not fit to the concept prescript by this standard. For example, for global 
buckling, the application of the reliability assessment procedure of EN 1990 leads to inconsistent, 
non-homogenous levels of reliability across slenderness values and failure modes, see e.g. Müller 
(2003) or Taras et al. (2014). The need of a 𝛾𝛾𝑀𝑀1-value higher than 1 for various global instability 
failure modes is thus currently under discussion in the responsible committee CEN/TC 250 SC3. 
 
This paper focuses exclusively on the assessment with regards to the corresponding partial safety 
factor γM0 used for the effective width method for local buckling according to EN1993-1-1. The 
employed methodology is described in the following. 
 
In order to define or quantify the reliability of a structure, the basic variables of action (loading) 
and reaction (resistance) in the structure have to be identified. The focus of this study is on the 
determination of a safety factor γM, which defines the safety margin on the resistance (or material 
side, “M”). Using a common procedure in the semi-probabilistic LRFD design codes found 
internationally, the total reliability demand is split - through “fixed” factors - among the resistance 
and loading side. This, in practical terms, the reliability demand of the Eurocodes leads to the 
request for a non-exceedance probability of the resistances corresponding to the value at around 
3,09 standard deviations from the mean in a standard normal distribution, which in turn is 
approximately 1/1000.  
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Figure 4: Reliability concept in EN 1990 and representation of the characteristic (rk) and design (rd) values of 
resistances. 

 
The graphical interpretation of the reliability concept of EN 1990 is illustrated in Figure 4. 
Assuming a normal distribution, the characteristic (5% fractile) values Rk can be described by: 
 
 1.64kR = µ − σ  (8) 
 
In order to reach the design value, equal to a 0.1%-fractile, 3.09 standard deviations are necessary. 
 
 3.09dR = µ − σ  (9) 
 
Knowing the mean value 𝜇𝜇  and standard deviation 𝜎𝜎  of a unit or model, the Coefficient of 
Variation (CoV) 𝑉𝑉  can be derived. The CoV is a standardized measure for the scatter of a 
probability distribution.  
 

 V σ
=
µ

 (10) 

 
For the total scatter of the resistance, it is possible to distinguish between the model uncertainty 
Vδ (a quantity that describes the quality of the description of the actual resistance, as measured e.g. 
in tests, by the chosen design resistance function or formulae) and uncertainties in the basic 
variables of the design formulation itself, Vrt (error propagation in the resistance function of the 
scatter of material properties and geometric data). The coefficients of variation of both lead to a 
common value Vr, which may finally be used to determine the design value of resistance as 
described above.  
 
In the basic procedure of EN 1990 (as detailed in Annex D of that standard), it is assumed that the 
basic variables for the investigated problem (here: local buckling) follow a normal or log-normal 
distribution, as indicated in Figure 4, and that they are independent of each other. This is a rather 
simplified assumption, as e.g. the yield strength of steel is known to be thickness-dependent and 
thus its scatter cannot be entirely independent of the scatter of the plate thickness. Furthermore, 
the scatter of certain quantities is often neglected in evaluations of the partial safety factors, e.g. 
the Young's Modulus E, which is usually not determined in the material certificates and thus not 
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available for evaluation purposes. While for E the assumption of 210,000 N/mm2 is commonly 
accepted as natural constant, the precise magnitudes of the local and global imperfections are often 
also neglected as basic variable as well, since they do not enter common design rules directly - this 
is true e.g. for the Winter curve. This is due to the fact that reliable data is hard to assess with 
conventional measurement techniques and thus seldomly available. As this is, however, a major 
variable in stability issues, the capturing of scatter in imperfection amplitudes is shifted to the 
model uncertainty Vδ. 
 

5.2 Model uncertainty: term Vδ 
As mentioned above, the model uncertainty is accounted for by the CoV of the resistance model 
error, Vδ. The model means here the resistance function or equation (1), respectively. For its 
derivation, the experimental results re are compared with the theoretical results of the resistance 
model rt. The deviation between both is characterised by the mean deviation 𝑏𝑏: 
 

 ,
2

e i

t

r
b

r
= ∑
∑

 (11) 

 
For each experiment 𝑖𝑖, the corresponding dispersion can subsequently be estimated: 
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,
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 (12) 

 
Using some interim steps for a set of 𝑛𝑛 experiments: 
 
 ( )lni i∆ = δ  (13) 
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∆ = ∆∑  (14) 

 
the Variance s can be calculated by: 
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1

1
1

n

D i
i
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n =

= ∆ −∆
− ∑  (15) 

 
And knowing the Variance, finally the value of Vδ may be assessed by: 
 

 ( )2expV sδ ∆=  (16) 

 
5.3 Error propagation in the theoretical resistance function: term Vrt 
The basic variables describe the main parameters influencing the resistance. In the case of local 
buckling, these are the geometric properties like the plate width b and the thickness t, as well as 
the yield strength fy. The imperfections and the Young's Modulus are neglected as scattering 
variables, as discussed in the previous section  
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Vrt is the resulting CoV that represents the “error propagation”, i.e. the propagation of the scatter 
of individual basic variables into the scatter of the theoretical resistance function. In order to derive 
Vrt, EN 1990 Annex D gives several possibilities. For simple additive or multiplicative resistance 
functions, the following formulation may be used, i.e. a simple square of the sum of roots: 
 

 2 2
,

1

j

rt x i
i

V V
=

=∑  (17) 

 
If the resistance function rt is of complex character (e.g. a highly non-linear function of the various 
basic variables, as is usually the case for buckling formulae), the sensitivity of the function for the 
various basic variables must be assessed at the given “design point”, using partial derivatives: 
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2
2

2
1

1 j
t

rt i
imt i
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 ∂
= ⋅ ⋅σ ∂ 

∑  (18) 

 
5.4 Resulting CoV: Vr 
The resulting CoV may be assessed through the sum of the squares of Vδ and Vrt are each small: 
 
 2 2 2

r rtV V Vδ= +  (19) 
 
For larger values of scatter, the following equation should be used instead: 
 
 ( ) ( )2 2 21 1 1r rtV V Vδ= + ⋅ + −  (20) 
 
For the studies conducted by Schillo (2017) and the summary shown in this paper, the local 
buckling reduction curves is a complex function. This is due to the fact that the dependencies of 
each basic variables in the resistance function (1) are changing and the impact on the result differs 
in dependence of the slenderness. This was explained in detail in section 4.1. 
 

5.5 Partial safety factors: γM and γM* 
One common definition of the partial safety factor γM (valid, as given here, for a large number of 
test results) makes use of both the characteristic (5% fractile) and design values: 
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( ) exp 3.09 0.5
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M
d mt

b r X Q Qr
r b r X Q Q
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 (21) 

 
 
where rk and rd are the characteristic (5%) and design value (1/1000 non-exceedance probability), 
respectively. 
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The 𝑄𝑄 -value depends on the scatter of the model and basic variables, (see Equ. (11) and Equ. (12), 
respectively): 
 

 ( )2ln 1rQ V= +  (22) 

 
 
The definition of γM given above is the theoretical definition found in EN 1990 Annex D, and may 
be applied in this form for materials and failure scenarios for which no standardized, nominal value 
of resistance is used.  
However, in normal practice for steel structures design, the designer does not know - nor make use 
of - the statistical distribution of the basic variables affecting the design problem. Nominal values, 
often taken from production standards as the minimum guaranteed values of strength values, or as 
mean, “idealized” values in the case of geometric quantities, are used instead. Thus, the 
calculations are carried out with these nominal values. This leads to a corrected safety factor  γM*: 
 

 * nom
M

d

r
r

γ =  (23) 

 
where rnom is the result of the evaluation of the resistance function with nominal values of the 
basic variables.  
 
All γMi values found in EC3 are derived on the basis of calculated γM* values, i.e. by referring to 
nominal strength and geometric values. 
 
6. Application and discussion of the reliability assessment procedure 
6.1 On the coefficients of variation of the basic variables Vrt,i 

The coefficients of variation (CoVs) are without dimension and describe the scatter of a probability 
distribution. For each parameter of the local buckling equation (e.g. b, t, fy), a coefficient can be 
derived.  
 
Variables not included here are the residual stresses due to fabrication processes and the inevitable 
imperfections of plated material. The first issue here is the assessment of appropriate data for the 
basic variables: In many tests from literature, these values are either not documented or different 
measuring techniques impede comparability. Furthermore, the variation would not be independent 
of other variations: e.g. residual stress would depend on the yield strength, while the imperfections 
are depending on width and thickness. In this case of depending variations, eq. (19) or (20) would 
not be applicable. The influence is nonetheless indirectly captured in the test results, displayed in 
a considerable scatter along the resistance model and thus influencing the CoV of the Model Vδ. 
 
Table 2 shows the mean values and the values of the CoVs for the individual geometric basic 
variables adopted in this study, while Table 3 shows the same for the yield strength. Thereby, the 
plate width, thickness and length were considered as scattering geometry parameters. The assumed 
CoV values are comparable with widely assumed values from the literature, see e.g. Taras et al. 
(2014). For the yield strength, the so-called “over-strength” factor, i.e. the ratio between the mean 
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value and the nominal value of fy, is of particular relevance: it clearly decreases with increasing 
yield strength, leading to a loss of “safety” inherently given by a high “over-strength”. 
 
 

Table 2. Assumed scatter - geometry 
Basic Variable Vi mean value CoV [-]    
Plate thickness Vt tnom 0.05    
Plate width Vb hnom 0.005    
Plate length Vl lnom 0.005    

 
 

Table 3. Assumed scatter - yield strength 
nominal fy [N/mm²] fy,mean Vfy 
fy ≤ 300 1,25 fy,nom 0.070 
300 <  fy ≤ 450 1,15 fy,nom 0.055 
450 <  fy ≤ 600 1,10 fy,nom 0.045 
fy > 600 1,05 fy,nom 0.033 

 
 
Studying the sensitivity of the scatter of the basic variables (b, t, fy) on the resulting coefficient of 
variation for the model (Vrt), equation (18) is used. In Figure 5 the Vrt,i values for each test i, in 
dependence of the nominal slenderness λ p,nom, are shown.  
It can be observed that: 

1. the influence of the scatter of the plate width is negligible. 
2. the scatter of the yield strength is of high influence for stocky sections, but its influence 

decreases with increasing slenderness of the plate. 
3. the scatter of the plate thickness is absolutely decisive in the relevant slenderness range. 
4. the often-assumed sum function (equation (19)) for Vrt , which would result in Vrt = 0.086 

with the assumed scatter bands, is unconservative in the relevant slenderness range. 
 
The reduced influence of plate width and yield strength, as well as the enhanced influence of the 
plate thickness can be derived from the resistance equation rt: 
 
 t yr b t f= ⋅ ⋅ρ ⋅  (23) 
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Figure 5: Sensitivity analysis: Vrt,i for the basic variables 𝑉𝑉𝑖𝑖 

Considering that 
 

 y
p

cr

f
λ =

σ
 (24) 

 
it is evident that the slenderness λ p is approximately proportional to the b/t -ratio times the square 
root of the yield strength and (see equation (1)): 

 p yproportional

b f
t

λ ←→  (25) 

 
 
The second term in Equ. (1), 0,22/λ p2, is small. By substituting in equation (23), we obtain: 
 

 21
t y yproportional

y

tr b t f t f
b f

= ⋅ ⋅ ⋅ ⋅ ←→ ⋅  (26) 

 
This highlights that the resistance of slender plates is approximately proportional to the square of 
the plate thickness, while it is only approximately proportional to the square root of the yield 
strength. This implies that the scatter of the plate thickness is far more relevant than other 
parameters, including the yield strength, in determining the scatter of the buckling resistance. 
 
In conclusion, the assumption of a simple additive function for Vrt proved to be unconservative 
and thus in the following studies equation (18) was used in the following, leading to accurate CoVs 
for each experiment. 
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The use of constant Coefficients of Variation, using the values of Table 2 and Table 3, in some 
cases leads to unrealistic assumptions: an example is illustrated on the left hand side of Figure 6. 
If we assume the CoV Vt for the plate thickness to be a constant value at 5%, and a mean plate 
thickness of 6 mm, the standard deviation would result in 0.3 mm. For the yield strength, the 5%-
fractile is computed, meaning that the lower limit for the actual thickness tact values would be tmean-
1.64σ = 5.5 mm. Taking into account that the tolerance limit given in EN 10029 (2010) can be 
taken (for execution Class B) as 0.3 mm, everything below 5.7mm would be below the limit. Since 
0.3 mm equals the assumed standard deviation, 16% of the samples of the normal distributed unit 
would be below tolerance. This is obviously not in compliance with the quality management of 
the steel producers.  
 

 
Figure 6: Example of unreasonable assumption for Vt (thickness, left) and Vfy (yield strength, right) 

For Vt, it was therefore assumed that the maximum value would be 5%, but that a lower value 
would be possible assuming the distance between the tolerance limit for Class B and the mean 
value equals 3σ, as given in Equ. (27).  
 

 1 1min 0,05;0,3
3t

mean

V
t

 
= ⋅ ⋅ 

 
 (27) 

The same exercise can be carried out for Vfy, as shown in Figure 6 on the right hand side. It is 
commonly known that the over-strength fy,mean/fy,nom reduces with increasing nominal values of 
yield strength. For S235, a value of 1.25 can be assumed, see Table 3, with a corresponding CoV 
of 5%; during the evaluation of EC3 rules, however, often a value of 7% was assumed. Values for 
high strength steel were only recently assessed, e.g. in Schillo (2017). Assuming an over-strength 
ratio for HSS of 1.1, with the “old” assumption of a CoV of 7%, the 5%-fractile limit for fy,act/fy,nom 
would be at 0.97: this would be lower than the nominal value. It was for this reason found more 
sensible to assume lower Vfy-values, leading to limits that are still in compliance with the quality 
requirements in steel production.  
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7. Evaluation results - required values of the partial safety factor γM* 
In this section, the EN1990-compatible reliability evaluation of the experimental results shown in 
Figure 3 is summarized. As was stated previously, the graphical evaluation of the plot itself already 
indicated lower deviations from the resistance curve for the tests conducted by the first author. In 
an attempt to reduce the scatter and thus the determined values of the required partial safety factor 
γM*, the experimental data set was thus split in two: one set with all collected (recent) test data on 
high-strength or mild steel welded box sections, and a reduced set containing only the results of 
the tests conducted at RWTH by the first author. On the left hand side of Figure 7, the achieved 
values of the nominal buckling reduction factor ρnom for the two subsets are shown in comparison 
to the Winter curve (continuous line) and the Winter curve reduced by the resulting, required value 
of γM*=1.30. This is therefore the value of the partial safety factor that would be required to fully 
comply with EN 1990 on the basis of the presented test results. The right hand side subplot shows 
the γM* values for each individual test, indicating that the RWTH/Schillo-results generally lead to 
lower values. This is discussed further below. 
 

 
Fig. 7: Comparison of predicted ultimate load with experimental results and resulting γM*  values: evaluation of all 

data (γM*=1.30) vs. only the RWTH results from Schillo (2017) 

For the evaluation of γM*, the variable CoVs for the yield strength Vfy were taken from Table 3 
while the geometric parameters were taken in accordance with Table 2. As only two different plate 
thickness were used in the experiments, this results in Vt = 0.017 for the 6 mm and  
Vt = 0.025 for the 4 mm plates. The model uncertainty was calculated to be Vδ=0.074. With the 
Vrt values calculated for each experiment, the final, average γM* value for the subset of RWTH 
tests was shown to be considerably lower with 1.18.  
A possible explanation for this lower partial safety factor is that more information was available 
for the RWTH tests, in particular concerning eccentricities, and thus a more precise computation 
could be conducted. In any case, the tendency of increasing optimism and non-conservatism in the 
resistance prediction with increasing slenderness was confirmed in both subsets. 

 



 16 

8. Alternative resistance function and corresponding partial safety factor γM* 
Following the chain of thoughts of the previous sections, a best-fit function was derived 
exemplarily, in order to display the mean resistance function of the considered stub columns tests. 
The proposed curve is characterized by: 
 
 2.235 exp( 1.582 ) 0.288pρ = ⋅ − ⋅λ +  (28) 
 
Since in this function the mean value of reported test results is approximated very closely, the 
procedure introduced in section 5 combined with the assumptions shown in section 6 coherently 
lead to a very low required safety factor of 1.06 when considering the tests conducted at RWTH. 
A comparison between the Winter curve and the proposed best-fit function is shown in Figure 8. 
 

 
Figure 8: Comparison of Winter curve and best-fit curve with their corresponding γM* values  

 
The new curve shows only insignificant deviations from current practice using the Winter curve 
(without γΜ∗) in the stocky area, while both curves tend towards the same level of reliability with 
increasing slenderness.  
 
9. Summary and conclusions 
In Schillo (2017), a database of stub column tests on slender, welded box sections and square 
hollow sections was gathered, which highlighted a slenderness-dependent unconservativeness in 
the Winter curve-based resistance prediction of Eurocode 3 - EN 1993-1-5. The data revealed a 
high scatter across the investigated steel grades (S275 to S960). A reliability assessment was 
conducted using EN 1990, which defines required limits for the probability of failure of structures 
that correspond to a non-exceedance probability for the resistances of structural members of 
approximately 1/1000.  
 
The resulting values of the partial safety factor γM*, determined under consideration of all available 
test data, reaches a value of 1.30. This is by far higher than the value of 1.00 currently used in most 
European countries for the buckling check using the effective width method. The tests conducted 
by the first author, on the other hand, showed less scatter and a higher relative resistance than the 
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remaining tests in the collected database, as here more information in terms of eccentricities in 
loading was available. Using only these tests for the reliability analysis, but under the same 
assumptions regarding CoVs as before, the resulting γM* value could be reduced to 1.18.  
 
Based on the evaluation results presented in this paper, a codified γM  value for local buckling of 
either 1.15 or 1.20 may be appropriate for the loading case studied in this paper (constant 
compression in equally supported plates in square, welded box sections). While this is clearly the 
most severe case encountered in practice, it is also the most basic case of plate buckling, and the 
reliability discrepancy shown in this paper cannot be discounted. Among the alternative ways to 
address this discrepancy to the EN1990 requirements, the amendment or replacement of the Winter 
curve itself, by a more appropriate curve displaying the mean curve of the considered stub column 
tests, is currently also under discussion in the responsible committee CEN/TC250/SC3 Working 
Group 5, Plated Structures. By using the mean curve, the corresponding, required partial safety 
factor can be significantly reduced to 1.06. 
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